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I. INTRODUCTION  

Let 1 p n  , 1,( ) ( )qx W   , q r , ( 1)( ) ( , )
nq

n p r nf x L    . We shall examine the boundary 

value problem of the p-harmonic equation 

2div(| ( ) | ( )) ( ), ,

( ) ( ),

pu x u x f x x

u x x x

    


  ，
                    (1.1) 

Throughout this paper   will stand for a bounded regular domain in ( 2)n n  . By a regular 

domain we understand any domain of finite measure for which the estimates (3.3) and (3.4) 

below for the Hodge decomposition are satisfied, see [1], [2]. A Lipschitz domain, for example, 

is regular.  

Definition 1.1.  A function 1,
0 ( )ru W   , max{1, 1}p r p   , is called a very weak 

solution to the boundary value problem (1.1), for all 1, /( 1)
0 ( )r r pW     with compact support 

sets in  , there is 

2
, ( )

p
u u dx f x dx



 
                               (1.2) 

where ( 1)( ) ( , )
nq

n p r nf x L    .  

Recall that a function 1,
0 ( )pu W   is called the weak solution of the boundary value 

problem (1.1) if (1.2) holds true for all 1,
0 ( )pW  . The words very weak in Definition 1.1 mean 

that the Sobolev integrable exponent r  of u  can be smaller than the natural one p . see [1], 

Theorem 1, page 602. 

In this paper we will need the definition of weak tL -space (see [2]): for 0t  , the weak 



 

 

tL - space, ( )t
weakL  , consists of all measurable functions f  such that 

 : ( ) t
kx sf x
s

    

for some positive constant ( )k k f  and every 0s  , where E  is the n -dimensional 

Lebesgue measure of E . 

Integrability property is important in the regularity theories of nonlinear elliptic PDEs and 

systems. In [3], Zhu et al. studied the global integrability of nonhomogeneous quasilinear elliptic 

equations 2div ( , , ) ( ) div(| | )pA x u u f x u u      . In [4], Guo et al. studied the higher order 

integrability of the divergence elliptic equation div ( , ) divA x u f    . In [5], Zhang et al. studied 

the global integrability of  A- harmonic equation div ( , ) divA x u f    . In this paper, we consider 

the global integrability of the very weak solutions of the boundary value problem (1.1). The main 

result is the following theorem. 

Theoerm 1.1.  Let 1, ( )qW   , q r , There exists 0 0 ( , ) 0n p   , such that for each 

very weak solution 1,
0 ( )ru W   , max{1, 1}p r p n    , to the boundary value problem 

(1.1), we have 

* ( )

( )

( )

q
weak

weak

L for q r

u L for q r and

L for q n
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，

                        (1.3) 

provided that 0| |p r   .  

Note that we have restricted ourselves to the case r n  since otherwise any function in 
1, ( )rW   is in the spce ( )tL   for any t    by the Sobolev embedding theorem. At the same 

time, it is also noted that the very weak solution u  to the boundary value problem (1.1) is 

taken from the Sobolev space 1, ( )rW  , and the embedding theorem ensures that the 

integrability of u  reaches from r  to *r . And our result theorem 1.1 improves this 

integrability. Note that the key to proving the theorem 1.1 is to use Hodge decomposition[1][6] to 

construct the appropriate test function. 

II. PRELIMINARY LEMMAS 

Lemma 1.1.  For 2p   and any , nX Y  , one has 

2 2 22 | | | | | | , .p p p pX Y X X Y Y X Y       

Lemma 1.2.  For any , nX Y   and 0  , one has 
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Lemma 1.3.  For 1 2p   and any , nX Y  , one has 
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Lemma 1.4.  Let 
0 0  , 

0: ( , ) [0, )s    is a decrement function such that for each r , s

0( )r s s  , if  

( ) ( ( ))
( )

c
r s

r s


 


 

where , ,c    are constants, we have 

(1) if 1  we have that 
0( ) 0s d   , where /( 1) 1

02 ( ( ))d c s     ; 

(2) If 1  we have that /(1 ) 1/(1 )
0 0( ) 2 ( (2 ) ( ))s c s s s         , where /(1 )    . 

III. PROOF OF THEOREM 1.1 

For any 0L  , let 

0

u L for u L

v for L u L

u L for u L
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                   (3.1) 

Then according to the hypothesis, we have 1,
0 ( )rv W   

and 
{| | }( ) 1 u Lv u        , Where 1E

 

is the characteristic function of the set E . We introduce the Hodge decomposition of vector 

field 2 /( 1)| | ( )p r r pv v L      . So that   

| | ,r pv v h                                (3.2) 

Here 1, /( 1) /( 1)
0 , ( , )r r p r r p nW h L        is a vector field with zero divergence, and satisfied 

1
/( 1)|| || ( , ) || || r p

r r p rC n p v  
                         (3.3) 

and 

1
/( 1)|| || ( , ) | ||| || .r p

r r p rh C n p p r v  
                       (3.4) 

From the counter-proof method, it is inevitable to exist   such that     . Taken   as a 

test function of the integral identity (1.2), that is 

2 2

{ } { } { }
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u L u L u L
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Now we shall distinguish between two cases. 

Case 1: 2p  . using Lemma 2.1, (3.5) can be estimated as 
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Using the Lemma 2.2, Hölder inequality and Young inequality, 
1I can be estimated as 
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        (3.7) 

Using the Hölder inequality, (3.4) and Young inequality, 
2I  and 

3I can be estimated as 

p-1 1
1

1 1

2
2

{ }

1

{ }

{ } { }

{ } { }

{ } {

| | ,

| | | |

( | | ) ( | | )

( , ) | | ( | | ) ( | | )

( , ) | | [ ( ) | | | |

r r p
r pr r

p r p
r r

p

u L

p

u L

r

u L u L

r r

u L u L

r r

u L u

h dxI

h dx

dx h dx

C n p p r dx u dx

C n p p r C dx u dx





 

 



 





 

   

 
 

  



 



 

   

   

 

  

 

 

     

     





 

 
 }

] ,
L              

 (3.8) 



 

 

1 1

2
3

{ }

1 1

{ }

{ } { }

{ } { }

| | ,| | ( )

| | | |

( | | ) ( | | )

( ) | | | | .

p r p
r r

p r p

u L

p r p

u L

r r

u L u L

r r

u L u L

u u dxI

u dx

dx u dx

C dx u dx





 

 

   

 

 

   

  

 

 

  

 

   

   

       

   

   

    





 
 

                    (3.9) 

 Using the Hölder inequality, Sobolev-Poincáre inequality[7], 

/( ) ( )/ 1/( | | ) ( | | ) ,(1 ),
ppn n p n p pn pu u dx C u dx p n 


 

       

and using (3.3) and Young inequality, 
4I can be estimated as 
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 (3.10) 

Combining (3.5)-(3.10), we arrive at 
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( 1) ( 1)
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Case 2: 1 2p  . Lemma 2.3 yields 
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Using Lemma 2.2 and (3.4), 
1I  can be estimated as 
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(3.13) 

For the case1 2p  ,
2I -

3I can also be estimated by (3.8)-(3.9). Combining (3.5), (3.12) and 

(3.13) , we arrive at (3.11). 

Let 
0 1/ ( , )C n p  , Then for

0| |p r    we have ( , ) | | 1C n p p r  , Taking   small enough, 

such that ( , ) | | 1C n p p r    , then the second term on the right-hand side of (3.11) can be 

absorbed by the left-hand side; thus we obtain 
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(3.14) 

Since 1, ( )qW   , q r , using the Hölder inequality, we have 
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(3.15) 

By the proof idea of reference [9](Page 442), and the Hölder inequality, we get 
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where 
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  , M is bounded and is a constant dependent only on n ,

p . Then (3.14) can be collated into the following results 
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(3.17) 

where ( , , )C C n p M . 

We now turn our attention back to the function 1,
0 ( )rv W  . By the Sobolev embedding 

theorem, we have 
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since {| | }| | (| | ) 1 u Lv u L       , we have 
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By collecting (3.17)-(3.20), we deduce that 
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Thus 
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Let ( ) |{| | } |s u s    , *r  , *( ( , )(|| || 1)) r
qc C n r    , *(1/ 1/ )r r q   , 0 0s  , Then (3.22) 

become 
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for 0L L  . 

(1) For the case q n , one has 1  . In this case, if 1s  , we get from Lemma 2.3 that 

0|{| | } | ( , , ) ,tu s c s s       



 

 

where  /(1 ) *t q    . For 0 1s  , one has 
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* ( ).q
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(2) For the case q n , one has 1  . For any    , (3.23) implies 
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As about, we derive 

( ).weaku L    

(3) For the case q n , one has 1  . Lemma 2.3 implies ( ) 0d   for some 

0( , , , , (|| || 1))qd d s r     . Thus |{| | } | 0u d   , which means  u d  a.e. in , Therefore 

( ),u L     

completing the proof of Theorem 1.1. 
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