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l.  INTRODUCTION

Let 1<p<n, 9(X)eW™(Q), g>r, f(X)e Lﬁ(g). We shall examine the boundary value
problem of the p-harmonic equation

—div(| Vu(x) [*? Vu(x)) = f(x), xeQ, (1.1)
u(x) = 6(x), X €0Q,

Throughout this paper Q will stand for a bounded regular domain inR"(n>2). By a

regular domain we understand any domain of finite measure for which the estimates (3.3) and
(3.4) below for the Hodge decomposition are satisfied, see [1], [2]. A Lipschitz domain, for
example, is regular.

Definition 1.1. A function Ue@+WS(Q), max{l, p-L<r<p, is called a very weak
solution to the boundary value problem (1.1) if for all ¢ e WP () with compact support

setsin Q, there is

J'Q<\Vu\ P Vu,V(D>dx = IQ f (x)@dx (1.2)

where f(x)e L (Q).

Recall that a function ueg+W,?(Q)is called the weak solution of the boundary value
problem (1.1) if (1.2) holds true for all @ ew,""(Q?) . The words very weak in Definition 1.1 mean



that the Sobolev integrable exponent r of u can be smaller than the natural one p  see [1],
Theorem 1, page 602.

In this paper we will need the definition of weak L'-space (see [2]): for t>0, the weak
L'- space, L'..(Q), consists of all measurable functions  such that

‘{XeQZ‘f(X)‘>S}‘S§

for some positive constant k =k(f) and everys>o, where |g| isthe n-dimensional
Lebesgue measure of E.

Integrability property is important in the regularity theories of nonlinear elliptic PDEs and
systems. In [3], Zhu et al. studied the global integrability of nonhomogeneous quasilinear elliptic
equations —divA(x,u,Vu) = f(x)+div(Vu|"?Vu). In [4], Guo et al. studied the higher order
integrability of the divergence elliptic equation —divA(x, Vu) = —divf . In [5], Zhang et al. studied
the global integrability of A-harmonic equation —divA(x, Vu) = —divf . In this paper, we consider
the global integrability of the very weak solutions of the boundary value problem (1.1). The main
result is the following theorem.

Theoerm 1.1. Let gcW™(Q), gq>r, There exists g, =¢4(n, p)>0, such that for each
very weak solution ued+W, " (Q), max{l,p-1}<r<p<n, to the boundary value problem
(1.1), we have

6+L%.,(Q) forg<r,
Uedf+Luex(Q) forg=randr<oo,
f+L"(Q) forg>n,

(1.3)

provided that |p—r|<¢,-

Note that we have restricted ourselves to the case r <n since otherwise any function in
w(Q) isinthespce L'(Q) forany t<w by the Sobolev embedding theorem. At the same
time, it is also noted that the very weak solution U to the boundary value problem (1.1) is
taken from the Sobolev spacew''(Q), and the embedding theorem ensures that the
integrability of U reaches from r to r". And our result theorem 1.1 improves this
integrability. Note that the key to proving the theorem 1.1 is to use Hodge decomposition[”[e] to

construct the appropriate test function.

Il.  PRELIMINARY LEMMAS

Lemma1.1® For p>2 andany X,Y eR", one has
277 X =Y P (XX Y YL XY,

Here |.| is the Euclidiannormin R"  and (-,-) isthe euclidian scalar product.



Lemma 1.2 Forany X,Y €R", one has

IX 12 X=|Y Y]
- @+a)(Y |+ X=Y]D | X=Y], >0
S| XY -l<e<0.
(L+¢)

Lemma1.3® For 1< p<2 andany X,Y e R", one has

(IXP2 X=]Y[P?Y, X =Y)
Z|X =YI(( X =Y [+]Y )Py [P).
Lemma 1.4% Let g >0, ¢:(s, %) —[0,)is a decrement function such that for each r, s
(r>s>s,), if

C

(r—s)”

g(r) < (#(s))

where ¢,q, 8 are constants, we have
(1) if 3 >1we have that ¢(s, +d) =0, where d« =c27" (4(s,))"*;
(2) If p<1we have that g(s) <27 (c"P 1 (2s,)" #(s,))s “» Where p=a/(L-p)-
I1l.  PROOF OF THEOREM 1.1
Forany L>0, let

u-0+L foru-0<-L,
v=<0 for—-L<u-60<L, @1
u-6-L foru-6>L.

Then according to the hypothesis, we have vew;' () and vv=(Vu-veo)-4 where 1

lu-6>L}’

is the characteristic function of the set E. We introduce the Hodge decomposition of vector
field |vv|P2 vy e L"P (). So that

|VV|"P VW=V +h. (3.2)

Here ® WP | hel"PD(Q,R") is a vector field with zero divergence, and
satisfied
VO [|eie-pen< C(, PY I VV I (3.3)
and
[ 1lie-pen< C, P) [ p=r (I VV [P (3.4)

From the counter-proof method, it is inevitable to exist ¢ suchthat ®=¢p-¢,. Taken ® asa

test function of the integral identity (1.2), that is



p-2 _ r-p _ _ p-2
(Ivu[*? vu,|Vu-vo|™ (Vu V6)>dx_{‘ (vul Vu,h>dx+{‘M‘x}f(x)@dx.

J.{\u—e\>L} w0y

This implies
J‘{\u,g\ L}<| Vul|"? Vu-|Ve|P? Ve, |vu-ve |’ (VU—V0)>dx
= (| VU177 VU101 V0, h)dx

o (3.5)
+ j{‘w‘x}(wm V6,h)dx
_ p-2 _ =p —
L‘u,y‘>L}<|V‘9| VO,|Vu-vo|"P (Vu-Vv))dx
+ me f (x)Ddx
:|1+|2+|3+|4.
Now we shall distinguish between two cases.
Case 1: p>2.Using Lemma 2.1, (3.5) can be estimated as
p-2 _ p-2 _ r-p _
j{wmq Vu|P2 Vu—|VO|P2 VO, |Vu-Vo|" (Vu—V6))dx 356)
zzzfpj |[Vu-ve|" dx.
{u-6)>L}
Using the Lemma 2.2, Holder inequality and Young inequality, I,Jcan be estimated as
IRE| jMMQ Vu|*? Vu-|V@|"? V6, h)dx|
<(p- = p=2 =
<(p l)j{‘u7€‘>L}(|V9|+|VU Vo) *?|Vu-vé| h|dx
<2P2(n_ p-2 _ _ p-1
<2°?(p 1)([{‘u70‘>u|v9| [Vu-V@| h|dx+ j{‘u70‘>L}| Vu-vo|"?* h|dx) (3.7)

VoI d)([  |Vu-vel dx)

{u-6]>L}

<272 (p=1)[( j{‘u_9‘>L}
'(L‘uf'g‘”‘}'h'w ) +(J.(\u79\>L}| Vu-vao|" dx) r ’(J.{\ufe\x}lhlw dx) ]
<2P2(p-DC(n, p)|p-r]| [(J‘{

.(J.{‘H‘)L}IVU—VM ax) "+ {‘H‘)L}Wu—vm dx].

VOl dx)"

Ju-6]>L}

Using the Holder inequality, (3.4) and Young inequality, 1| and |I,]can be estimated as

12| = U{\ufﬂ\>L}<| VoI ve, h> dx‘

<[ 1VO|™Ih|dx
{u-o>L} 58)

r—ptl

< T = :
_(J‘{\UWPL}'VH' 6y (J‘{\ufa\x}lhl dx)

Ju-6>L}

<c(n,p)| p-r| [C(e)j{‘u76‘>L}| VO| dx+e j{‘u7€‘>L)| vu-ve| dx] ,



[15]= ‘_I{\u—a\>L}<| VO|P2vVe,|Vu-ve |’ (Vu —VH))dx‘

< j{‘u70‘>L}| VO|" Y Vu-Ve| " dx (3.9)

rpil

s(j{w‘)uwm dx)T(j{ [Vu-Vo| dx)

Ju-6|>L}
<C (g)j{

|V9|“dx+gj

{u-6>L

}|Vu—V9|’dx.

Ju-6|>L}

Using the Holder inequality, Sobolev-Poincare inequality™,

([ lu=uq|™Pd) P <C(f |vul Pax)¥?, @< p<n),

and using (3.3) and Young inequality, 1,|can be estimated as

| 1] = U{MW f (x)chx‘

< (J‘{\ufe\x}' f) |W dx) e '(J‘{\u*e\n}' P—@a |W dx)w
<C(n, p)(J{Mml £ dx) T ( J{\u,gu}' Vo |~ dx) (3.10)
<C(n, p)(J{‘H‘)L}I £(X) |5 dx) - ( L\Hml V| dx)
<C(n, p)[C(g)('f{‘u7g‘>L}| £ [T dx) T
vef, ,IVu-vol i
Combining (3.5)-(3.10), we arrive at
[ o o VU= VO X
SCOpa, VO (3.11)
+(C(n,p)lp-rl +g).[{‘u7€‘>u| Vu-ve|" dx
e P, OO a0

Case 2: 1< p<2.Lemma 2.3 yields

j{‘u79‘>L}<| VulP2 vu-|Ve|*? Ve,|[Vu-Ve|"" (Vu-ve))dx
> | |IVu-ve| Pt
{lu-6)>L}

((Vu-va|+|ve)r'=|ve|"Hdx.

This implies



j |[Vu-ve|" dx
{\uf{)\>L}

gj [Vu-veo|"* (Vu-va|+|Vel) " dx
{u-0]>L}

< j{W}q VU[P2 Vu-|VO|*? Vo, [Vu-Ve| (Vu—ve))dx (3.12)

+j |IVU-VO|P V|t dx
{\u—0\>L}

< j{W}q VU|P2 Vu-|VO|*? VO, Vu-Vo | (Vu-V6))dx

+5L‘u70‘>L}|Vu—V9| dx+C(g)L VO dx.

\u70\>L}|

Using Lemma 2.2 and (3.4), 1,| can be estimated as

= I{MMQ VU [P Vu—| V|2 VB,h)dx‘
S%L\wm}' Vu-VoI*hldx (3.13)
< %( Jio o VU=TOI 0] 10T a0
S%C(n, PIp-rlf, , ,IVu-vol dx

For the casel<p<2, I1,] and |1,| can also be estimated by (3.8)-(3.9). Combining (3.5),

(3.12) and (3.13), we arrive at (3.11).

Let g =1/C(n,p)- Then for|p—-ri<g, We have C(n,p)| p-r|<1. Taking ¢ small enough,
such that C(n, p)| p—r|+& <1, then the second term on the right-hand side of (3.11) can be
absorbed by the left-hand side; thus we obtain

Jiw o VU-VOI" dx (3.14)
scopf, . Vel dxcmp), , | FeI o) 6

Ju-6]>L} {u-6)>L}

Since 9eW(Q), q>r, using the Holder inequality, we have

[ vl d
{u-o)>L} (3 15)
r/ _ (G-r)/ .
S(I{\u—9\>L}|V0|q A" [{Ju-@ > L}
= Vol{lu-@|> L},
By the proof idea of reference [9](Page 442), and the Holder inequality, we get
(J.{‘ufﬁbL}' f(x)] dx)
(3.16)

=i r(pr? )
< (J.{\ufﬁbL}' f (X) | APy dX) an(p-1) |{| u-—=0 |> L}|(q r/q

<M [{Ju-@[> L},



where :(J‘ | £(x) |ﬁ dx)%v M is bounded and is a constant dependent only on n,
{u-op>L}

p . Then (3.14) can be collated into the following results

j [Vu-ve|" dx
{u-6)>L}

<c(n, p)(L VO]9 dx)" [{lu—0]> L} (3.17)

Ju-6]>L}
+C(n, pM [{lu-0> L}«
=CH{lu-0p> L} @+ Vo) .

whereC =C(n, p,M) .

We now turn our attention back to the functionyew,"(Q). By the Sobolev embedding

theorem, we have

([ Iv1 ) <cin (]| vv|'dy”"

(3.18)
=C(n, r)(jﬂu%& vu-ve|dx)¥r,
since|v|=(lu-0|-L)-1yu-g.1, We have
(jﬂuw}q Vu-vo|-1) )" = (] [v| &), (3.19)
andfor L'>L,
(L'-0)" {lu-0[> L}
= Jp oy (D (3.20)

< j{lwmq u—6|-L)"dx

< I{M‘)L}q u-6|-L)"dx.
By collecting (3.17)-(3.20), we deduce that
(L'-D)" [{u-6|>L3P"" (3.21)
<C(NAIVOllq +1) [{u-o1> L}
Thus

Hlu-6>L}|

1 r r*(U/r-1/q)
S——=—(C(n,n)(IVE|lq+1 U=0|> L .

(3.22)
Let g(s)d{lu-0>s}, a=r*, c=(C(nr(IVOl,+1)", g=r*@/r-1/q), so>0, Then (3.22)
become

, c s 3.23
OB O (3:23)

for L'>L>0.

(1) Forthe case g<n,onehas g<1.Inthiscase,if s>1, we get from Lemma 2.3 that

[{lu—0>s}<c(a, B.s0)s ™,



where t=qa/(1-p)=q*. For 0<s<1, one has
[{lu-6>s}< QI Q|sTs ™ g Q|s ™.
Thus
Ued+ L. (Q).

(2) Forthe caseq=n, one has g=1.Forany r<w, (3.23) implies

L) S—LC— (L) =—C—g(L) " g(L)“"

(L'=L)” (L"=L)*
alt
< (Cl_ll? I_) - ¢(L) lfa/r.

As about, we derive
U e+ L (Q).

(3) For the case 4>N, one has F>1. Lemma 2.3 implies #(d)=0 for some
d=d(a,5,50,1,(|VO|lq+D)). Thus [{{u—-€>d}|=0, whichmeans u-6#<da.e.inQ. Therefore

ued+L*(Q),

completing the proof of Theorem 1.1.
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