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l.  INTRODUCTION

Let 1<p<n, 8:Q—>R, (X)W (Q), g>r, f(X)e Lﬁ(Q). We shall examine the
boundary value problem of the p-harmonic equation

—div(| Vu(x)|"* Vu(x)) = f(x), xeQ, (1.1)
u(x) =0(x), X €0Q,

Throughout this paper Q will stand for a bounded regular domain inR"(n>2). By a

regular domain we understand any domain of finite measure for which the estimates (3.3) and
(3.4) below for the Hodge decomposition are satisfied, see [1], [2]. A Lipschitz domain, for
example, is regular.

Definition 1.1. A function Ue@+WS(Q), max{l, p-L<r<p, is called a very weak
solution to the boundary value problem (1.1) if for all ¢ e WP () with compact support

setsin Q, there is

L)<\Vu\ P2 Vu,V(I>>dx=.|‘Q f (x)Ddx (1.2)

where f(x)e L™ (Q).

Recall that a function ueg+W,?(Q)is called the weak solution of the boundary value
problem (1.1) if (1.2) holds true for all @ ew,""(Q?) . The words very weak in Definition 1.1 mean



that the Sobolev integrable exponent r of u can be smaller than the natural one p  see [1],

Theorem 1, page 602.

In this paper we will need the definition of weak L'-space (see [2]): for t >0, the weak
L'- space, L. (Q), consists of all measurable functions f such that

‘{XeQZ‘f(X)‘>S}‘S§

for some positive constant k =k(f) and everys>o, where |g| isthe n-dimensional

Lebesgue measure of E.

Integrability property is important in the regularity theories of nonlinear elliptic PDEs and
systems. In [3], Zhu et al. studied the global integrability of nonhomogeneous quasilinear elliptic
equations —divA(x,u,Vu) = f(x)+div(Vu|"?Vu). In [4], Guo et al. studied the higher order
integrability of the divergence elliptic equation —divA(x, Vu) = —divf . In [5], Zhang et al. studied
the global integrability of A-harmonic equation —divA(x, Vu) = —divf . In this paper, we consider
the global integrability of the very weak solutions of the boundary value problem (1.1) [10]. The
main result is the following theorem.

Theoerm 1.1. Let gcW™(Q), q>r, There exists g, =¢4(n, p)>0, such that for each
very weak solution ued+W, " (Q), max{l,p-1}<r<p<n, to the boundary value problem
(1.1), we have

O+L%. . (Q) forg<r,

UeiO+ Ly () forg=randr<oo,
f+L"(Q) forg>n,

(1.3)

provided that |p—r|<¢,-

Note that we have restricted ourselves to the case r <n since otherwise any function in

W (Q) isinthe spce L'(Q) forany t<w by the Sobolev embedding theorem. At the same

time, itis also noted that the very weak solution U to the boundary value problem (1.1) is taken
from the Sobolev spacew *'(Q) , and the embedding theorem ensures that the integrability of
U reaches from r to r”. And our result theorem 1.1 improves this integrability. Note that the
key to proving the theorem 1.1 is to use Hodge decomposition““el to construct the appropriate

test function.

Il. PRELIMINARY LEMMAS

Lemma1.1® For p>2 andany X,Y eR", one has
277 X =Y P (XX Y YL XY,

Here || is the Euclidian normin R" and (-,-) isthe euclidian scalar product.



Lemma 1.2 Forany X,Y €R", one has

IX 12 X=|Y Y]
- @+a)(Y |+ X=Y]D | X=Y], >0
S| XY -l<e<0.
(L+¢)

Lemma1.3® For 1< p<2 andany X,Y e R", one has

(IXP2 X=]Y[P?Y, X =Y)
Z|X =YI(( X =Y [+]Y )Py [P).
Lemma 1.4% Let g >0, ¢:(s, %) —[0,)is a decrement function such that for each r, s
(r>s>s,), if

C

(r—s)”

g(r) < (#(s))

where ¢,q, 8 are constants, we have
(1) if 3 >1we have that ¢(s, +d) =0, where d« =c27" (4(s,))"*;
(2) If p<1we have that g(s) <27 (c"P 1 (2s,)" #(s,))s “» Where p=a/(L-p)-
I1l.  PROOF OF THEOREM 1.1
Forany L>0, let

u-60+L foru-0<-L,

v=40 for—-L<u-0<L, @1
u-6-L foru-6>L.
Then according to the hypothesis, we have vew;"(Q) and vv=(Vu-vé)-1,_, . Where 1.

is the characteristic function of the set E. We introduce the Hodge decomposition of vector
field |vv|P2 vy e L"P (). So that

| V| Vv =V +h. (3.2)

Here ® WP hel"PD(Q,R") is a vector field with zero divergence, and
satisfied

VO [leie-pen< Cn, p) | VY17 (3.3)
and

[ 1lie-pen< C, P) [ p=r (I VVI[FP (3.4)

From the counter-proof method, it is inevitable to exist ¢ suchthat ®=¢p-¢,. Taken ® asa

test function of the integral identity (1.2), that is



p—z _ r-p _ _ p—z
L‘u79‘>L}<|Vu| Vu,|Vu=-Vo| (Vu-Vo))dx= {‘u79‘>L}<|Vu| Vu,h>dx+{‘M‘x}f(x)@dx.

This implies
[ (IVulP? Vu=|Ve|P? Vo, Vu-Ve|™* (Vu-Vo))dx
{lu-6]>L}
:I (IvulP? Vu-|Ve["? V6,h)dx
{u-6)>L} (3 5)
p-2 .
+ L‘uig‘x}(wm V6,h)dx
-2 r—
—j{‘u%‘)q(ww VO,|Vu-Vo|"P (Vu-Vv))dx
+ j{w‘)u f (x)Ddx
:|1+|2+|3+|4.
Now we shall distinguish between two cases.
Case 1: p>2.Using Lemma 2.1, (3.5) can be estimated as
p-2 _ p-2 _ r-p _
j{wmq Vu|P2 Vu—|VO|P2 VO, |Vu-Vo|" (Vu—V6))dx 356)
zzzfpj |[Vu-ve|" dx.
{u-6)>L}
Using the Lemma 2.2, Holder inequality and Young inequality, I,Jcan be estimated as
- p-2 _ p-2
IRE] I{\u79\>u<l Vu|"? Vu-|Ve|*? vo,h)dx|
<(p- - p=2 -
<(p 1)j{‘u76‘>u(|ve|+|w Vo) *?|Vu-ve| h|dx
<9P2(n_ p-2 _ _ p-1
<2°?%(p 1)(j{m70‘>u|v9| |IVu-vé|h| dx+'f{‘u70‘>L}|Vu V6o|" h|dx) (3.7)

<272 (p=1)[( L‘u_e‘)u
'(J.{‘ufgm}lhlw o) +(J‘{‘u7€‘>L}|Vu—V9| dx) '(J.{\ufa\x}'h'r% dx) ]
<2"?(p-1C(n,p)| p-r |[(J'{

.(J-{‘HH}IVU—VHI dx) © + {‘u70‘>L}|Vu—V¢9| dx].

|v9|’dx)"+2(j{ [Vu-vo| dx)*

Ju-6)>L}

VO dx)"

Ju-6)>L}

Using the Holder inequality, (3.4) and Young inequality, 1| and |1,|]can be estimated as

|I 2| . U{\u—a\>l_}<| vé| i v, h>dx‘

sJ' [VO|"Y h|dx
u-ob13 (3.8)

< (I{\u—0\>L}| ve | ' dX) pT(I{
<c(n.p)p-rl(,
<C(n,p)| p-r|[C(e) L‘H]‘x}' Vo dx+g.[{‘u76‘>u| Vu-ve| dx] ,

r—pil

|07 d)

Ju-o>L}

VoI )™ ([ |[Vu-ve| d) T

Ju-6>L3} {u-o>L}



MJ:FQW$DQV9|“ZV0JVU—VHV”(Vu—VH»d4
p-1 _ r—p+l

< J{‘U,g\>L}|V‘9| [Vu-ve |~ dx (3.9)

s(j{‘uiwwm dx)f(j{ [Vu-Ve|" dx)

Ju-6]>L}
<C (g)j{

rpsl
G

|v9|fdx+gj [Vu-Ve|" dx.
{u-6]>L}

Ju-6|>L}

Using the Holder inequality, Sobolev-Poincare inequality™,

([ lu=uq|™Pd) P <C(f |vul Pax)¥?, @< p<n),

and using (3.3) and Young inequality, 1,|can be estimated as

14 = ‘ [ (x)d)dx‘
n(pd)er n(r-ps)-r

< T = J‘ _ S nle-pae
(g gy FOOITT 0 ([ 1000 |57 dY)

<C o, ) FOOI™ 605 ([ Ve ™ ag (3.10)

<), ., FOOI™ 0 ([ VI )

<cmpICE)], ., OO do

p j{‘HHJ Vu-ve| dx].
Combining (3.5)-(3.10), we arrive at
j{‘u7€‘>L}| Vu-ve| dx
<cmpe)f, , Vol ox (3.11)

+(C(,p)l p—r|+g)j{‘u7€‘>L}|Vu—V9|' dx

v, , I FOOITT d

Ju-6|>L}

Case 2: 1< p<2.Lemma 2.3 yields

j{‘u79‘>L}<| VulP2 vu-|Ve|*? Ve,|[Vu-Ve|"" (Vu-ve))dx
> | |IVu-ve| Pt
{lu-6)>L}

((Vu=V|+|VaNP L= Va| " )dx.

This implies



j |[Vu-ve|" dx
{\uf{)\>L}

gj [Vu-veo|"* (Vu-va|+|Vel) " dx
{u-0]>L}

< j{W}q VU[P2 Vu-|VO|*? Vo, [Vu-Ve| (Vu—ve))dx (3.12)

+j |IVU-VO|P V|t dx
{\u—0\>L}

< j{W}q VU|P2 Vu-|VO|*? VO, Vu-Vo | (Vu-V6))dx

+5L‘u70‘>L}|Vu—V9| dx+C(g)L VO dx.

\u70\>L}|

Using Lemma 2.2 and (3.4), 1,| can be estimated as

= L‘U%L}Q Vu [P Vu-| V[P Ve, h>dx‘
S%L\u%uwu ~VOI™hdx (3.13)
S%(J‘{\H\m' Vu-vo| dx)* '(I{\U*H\n}l | d) 7
s%cm, PIp-rlf, , | Vu-vol d

For the casel<p<2, I1,] and |1,| can also be estimated by (3.8)-(3.9). Combining (3.5),

(3.12) and (3.13), we arrive at (3.11).

Let g =1/C(n,p)- Then for|p—-ri<g, We have C(n,p)| p-r|<1. Taking ¢ small enough,
such that C(n, p)| p—r|+& <1, then the second term on the right-hand side of (3.11) can be
absorbed by the left-hand side; thus we obtain

S VU=V OI" 0 (3.14)
scopf, . VoI dCmp), , lFe1™ dx) 6

Ju-6]>L} {lu-6)>L}

Since 9eW(Q), q>r, using the Holder inequality, we have

[, Vel dx
{u-0>L} (3 15)
a rla — (a-r)/q .
: (J{\u-e\>L}| Vo' do™ {lu-6> L}
= Volli{lu=-6> L}
By the proof idea of reference [9](Page 442), and the Holder inequality, we get
£(X) |5 dx) T
(J{\ufﬁ\x}' (1 X)
(3.16)

=i r(pr? )
< (J.{\ufﬁbL}' f (X) | APy dX) an(p-1) |{| u-—=0 |> L}|(q r/q

<M [{Ju-@[> L},



where :(J‘ | £(x) |ﬁ dx)%v M is bounded and is a constant dependent only on n,
{u-op>L}

p . Then (3.14) can be collated into the following results

j |IVu-ve|" dx
{u-6)>L}

<C P, , V01 d) " [{lu-0> L} " (3.17)

Ju-6|>L}
+C(n pM [{lu-g}> L}
=C{lu-0> L} @+ Vo) .

whereC =C(n, p,M) .

We now turn our attention back to the functionyew,"(Q). By the Sobolev embedding

theorem, we have

([ Iv1 9 <cinn(]_ | vv|'dy”

(3.18)
=C(n, r)(jM>L}|vU7va|rc|x)“r ,
since|v|=(lu—0|-L)-1yu-g.13, We have
(jﬂu?gl)uq Vu-vo|-1) )" = ([ [v| ), (3.19)
andfor L'>L,
(L'-0)" {lu-0> L}
= J (L~ D) (3.20)
< Lm,gm(' u-6]-L)"dx

< jﬂu?Mq u-6|-L)"dx.
By collecting (3.17)-(3.20), we deduce that
(L-0)" [{u-0|>L3"" (3.21)
<C(NNAIVOlla +D)[{lu-o> L} ™.
Thus

Hlu-6>L}|

1 r r*(U/r-1/q)
S——=—(C(n,n)(IVE|lq+1 U=0|> L .

(3.22)
Let g(s)d{lu-0>s}, a=r*, c=(Cr(IVOl,+1)", g=r*@/r-1/q), so>0, Then (3.22)
become

, c s 3.23
OB O (3:23)

for L'>L>0.

(1) Forthe case g<n,onehas g<1.Inthiscase,if s>1, we get from Lemma 2.3 that

[{lu—0>s}<c(a, B.s0)s ™,



where t=qa/(1-p)=q*. For 0<s<1, one has
[{lu-6>s}< QI Q|sTs ™ g Q|s ™.
Thus
Ued+ L. (Q).

(2) Forthe caseq=n, one has g=1.Forany r<w, (3.23) implies

L) S—LC— (L) =—C—g(L) " g(L)“"

(L'=L)” (L"=L)*
alt
< (Cl_ll? I_) - ¢(L) lfa/r.

As about, we derive
U e+ L (Q).

(3) For the case 4>N, one has F>1. Lemma 2.3 implies #(d)=0 for some
d=d(a,5,50,1,(|VO|lq+D)). Thus [{{u—-€>d}|=0, whichmeans u-6#<da.e.inQ. Therefore

ued+L*(Q),

completing the proof of Theorem 1.1.

References

[11  T. lwaniec, “p-harmonic tensors and quasiregular mappings,” Ann. Math, 1992,
136(2): 589-624.

[2] Hongya Gao, Shuang Liang, Yi Cui, “Integrability for very weak solutions to boundary
value problems of p-harmonic equantion,” 2016, 66(141): 101-110.

[3] Kunjie Zhu, Shuhong Chen, “The properties of very weak solutions of
nonhomogeneous A -harmonic equations,” Fujian: Minnan normal University, 2017.

[4] Kaili Guo, Hongya Gao, “Functional minima and integrability of solutions of elliptic
differential equations,” Baoding: Hebei University, 2017.

[5] Shicong Zhang , Shenzhou Zheng, “Regularity of generalized solutions of Dirichlet
boundary value problems for two classes of elliptic equations,” Beijing: Beijing Jiaotong
University, 2018.

[6] P.Lindqvist: Notes on the p-Laplace Equation. Report. University of Jyvaskyla
Department of Mathematics and Statistics 102, University of Jyvaskyla, Jyvaskyla, 2006.

[71 T. lwaniec, L. Migliaccio, L. Nania, C. Sbordone, “Integrability and removability
results for quasiregular mappings in high dimensions,” Math. Scand, 1994, 75: 263-279.

[8] Reshetnyak Yu.G, “Space mappings with bounded distirtion,” Vol. 173, Trans. Math.
Mokeygraphs, Amer. Soc., 1989.

[91 Hongya Gao.Qinghua Di.Dongna Ma, “Integrability for solutions to some anisotropic
obstacle problems,” 2015, 146: 433-444



[10] Gao, H,, Liang, S., & Cui, Y. (2016). Integrability for very weak solutions to boundary value problems of p-harmonic
equation. Czechoslovak Mathematical Journal, 66(1), 101-110.



