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Abstract: In this paper, we are concerned with the global existence, large time behavior, and time-
increasing-rate of entropy solutions to the one-dimensional unipolar hydrodynamic model for semicon-
ductors in the form of Euler-Poisson equations. When the adiabatic index γ > 2, the L∞ estimates of
artificial viscosity approximate solutions are obtained by using entropy inequality and maximum princi-
ple. Then the L∞ compensated compactness framework demonstrates the convergence of approximate
solutions. Finally, the global entropy solutions are proved to decay exponentially fast to the stationary
solution, without any assumption on the smallness of initial data and doping profile.

1 Introduction

In this paper, we consider the following one-dimensional Euler-Poisson system for semiconductor
devices: 

nt + Jx = 0,

Jt + (
J2

n
+ p(n))

x
= nE − J, x ∈ R, t > 0,

Ex = n− b(x).

(1.1)

Here n ≥ 0, J, and E denote the electron density, (average) electron current density and the (negative)
electric field, respectively. We assume the pressure p satisfies the γ-law: p(n) = p0n

γ (γ > 1), where
p0 = θ2

γ
, θ = γ−1

2
. Several physical constants (such as the relaxation time) have been set to be unity

for the simplicity of presentation. The function b(x) > 0, which is called doping profile, stands for the
density of fixed, positively charged background ions. We refer to [28] for background on modeling and
analysis.

System (1.1) is supplemented with the initial conditions

n(x, 0) = n0(x) ≥ 0, J(x, 0) = J0(x), (1.2)
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which satisfy
lim

x→±∞
n0(x) = n±, lim

x→±∞
J0(x) = J̄ , lim

x→±∞
n′
0(x) = 0.

E(x, t) is added on the “boundary” condition

lim
x→−∞

E(x, t) = E−. (1.3)

Here the letters n±, J̄ and E− are given constants. In this paper, we assume b(x) satisfies

b(x) ∈ C2(R), b′(x) ∈ L1(R) ∩H1(R),

lim
x→±∞

b(x) = b± > 0, B∗ = sup
x
b(x) ≥ inf

x
b(x) = B∗ > 0. (1.4)

The corresponding steady-state model of equation (1.1) is
J̃x = 0,

(
J̃2

Ñ
+ p(Ñ))x = ÑẼ − J̃ ,

Ẽx = Ñ − b(x).

(1.5)

A lot of efforts have been made for system (1.1) and (1.5) on the whole space or bounded domain.
The mathematical study was initiated by Degond and Markowich, who obtained the existence of a
unique subsonic smooth solution for the steady-state model (1.5) in [5]. Then, some other kinds of
subsonic, transonic, and supersonic solutions are obtained, cf. [1, 6, 10, 25, 26, 30] etc. As for the time-
dependent problem (1.1), the existence of a local smooth solution was proved in [33], and the existence
and asymptotic behavior of global smooth solution can be found in [11,12,15,16,19,20,24,29]. However,
when the C1 norm of the initial data is large, the corresponding solution shall develop singularities
in finite time, see [31]. So weak solutions that include singularities should be considered. As far
as weak solutions are concerned, Zhang [34], Marcati-Natalini [27], Li [22], and Li-Huang-Yu [13]
investigated the global existence of entropy solutions by using numerical schemes and the compensated
compactness method. As to the large time behavior of weak solutions, [18] first built the large time
behavior framework for any uniformly bounded weak entropy solution, including vacuum case. It is
worthy to be pointed out that in [18] the uniform bound of density is assumed to be independent of
time. Later Yu in [32] considered the large time behavior of weak solutions with the density’s bound
increasing with time. However, the result in [32] need the density’s bound increase slowly, i.e.

∥n(x, t)∥L∞ ≤ Ctα, α < 2. (1.6)

For the approximate solutions obtained by Lax-Friedrichs scheme, H. Yu [32] got the estimate

∥nl(x, t)∥L∞ ≤ C(1 + t)
2
θ , θ =

γ − 1

2
. (1.7)

Therefore, to ensure the assumption (1.6), the author required the adiabatic exponent γ > 3. A natural
question is what about the case 1 < γ ≤ 3? One way to consider this problem is to improve the estimate
of density. In this direction, X. Fang and H. Yu gave a sufficient condition which ensure the boundedness
of the global weak solution (i.e. α = 0 in (1.6)) in [9]. For problem (1.1) with insulating boundary
condition, Huang et. al. [14] proved the vanishing viscosity weak solution is uniformly bounded by
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using a maximum principle, and then they proved the weak solution converge to the steady state with
an exponential decay rate. However, since the boundedness of the space variable played an essential
role in the proof, the method used in [14] can not be used in the whole line.

In this paper, we construct approximate solution (nε, Jε, Eε)(x, t) of system (1.1)− (1.3) by adding
artificial viscosity and prove the approximate solution satisfy

∥nε(x, t)∥L∞ ≤M(1 + t)
1
θ , ∥Jε(x, t)∥L∞ ≤M(1 + t)1+

1
θ , ∥Eε(x, t)∥L∞ ≤M, (1.8)

for θ = γ−1
2

by using entropy estimate and maximum principle in the whole space. Then, the compen-
sated compactness theory ensure the convergence and consistency. Finally, using the framework built
in [32], we get the large time behavior of the obtained weak entropy solution. The main novelty of this
paper is to make full use of the entropy inequality and gain the bound of approximate electric fields.
Entropy analysis method can be used in many other physical models, such as MHD (magnetohydro-
dynamic), see [3] [4] for details.

Before stating our main results, we give the definition of entropy solution to (1.1)− (1.3).
Definition 1. For any fixed T > 0, the bounded measurable function (n, J, E)(x, t) is said to be a
weak solution of problem (1.1)− (1.3) in (−∞,∞)× [0, T ), if it satisfies the system (1.1) in the sense
of distribution and verifies the initial and limiting restrictions (1.2) and (1.3). Furthermore, a weak
solution of system (1.1)− (1.3) is called a weak entropy solution if it satisfies the entropy inequality

ηt + qx − ηJ(nE − J) ≤ 0 (1.9)

in the sense of distribution, where (η, q) is mechanical entropy-entropy-flux pair satisfying

η(n, J) =
J2

2n
+
p0n

γ

γ − 1
, q(n, J) =

J3

2n2
+

p0γ

γ − 1
nγ−1J. (1.10)

Suppose (n, J, E)(x, t) is the weak entropy solution of (1.1)− (1.3), (Ñ , J̄ , Ẽ) is the corresponding
stationary solution. Due to the relaxation mechanism in the equation of (1.1), we expect that all its
solutions converge to the corresponding steady solution. Therefore, we define the relative entropy

η∗ = η − η̃ −∇η̃(U − Ũ)

=
J2

2n
+
p0n

γ

γ − 1
− J̄2

2Ñ
− p0Ñ

γ

γ − 1
− [

p0γ

γ − 1
Ñγ−1 − J̄2

2Ñ2
](n− Ñ)− J̄

Ñ
(J − J̄).

(1.11)

The main result of this paper is given as follows.
Theorem 1. For any adiabatic index γ > 2, suppose the initial data satisfy

(E − Ẽ)(x, 0) ∈ L2(R), η∗(x, 0) ∈ L1(R), (1.12)∫ ∞

−∞

(
n0(s)− Ñ(s)

)
ds = 0, (1.13)

and
0 ≤ n0(x) ≤ C0, |J0(x)| ≤ C0n0(x), (1.14)
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for some constant C0 > 0. Then
(a) There exists a global L∞ weak solution (n, J,E)(x, t) to (1.1) − (1.3) in the sense of Definition 1
such that

0 ≤ n(x, t) ≤M(1 + t)
1
θ , |J(x, t)| ≤M(1 + t)1+

1
θ , |E(x, t)| ≤M, (1.15)

where θ = γ−1
2

and positive constant M depends solely on C0 and γ .

(b) There exist positive constants T ∗(γ), C, and C̃ such that∫ +∞

−∞

(
(E − Ẽ)2(x, t) + η∗(x, t)

)
dx

≤ Ce−C̃t
γ−2
γ−1

∫ +∞

−∞

(
(E − Ẽ)2(x, 0) + η∗(x, 0)

)
dx

(1.16)

for any t > T ∗(γ).

Remark: Compared with the large time behavior result in [32], we generalize the adiabatic exponent to
γ > 2.

Throughout this paper, Ci (i = 1, 2...) andM mean different constants, while C(·) denotes constant
depending on the parameters in the bracket.

2 Preliminary and formulation

We first introduce some basic facts about the homogenous compressible Euler equation
nt + Jx = 0,

Jt +

(
J2

n
+ p(n)

)
x

= 0.
(2.1)

The eigenvalues are

λ1 =
J

n
− θnθ, λ2 =

J

n
+ θnθ, (2.2)

and the corresponding right eigenvectors are

r1 =

[
1
λ1

]
, r2 =

[
1
λ2

]
. (2.3)

The Riemann invariants are given by

W =
J

n
+ nθ, Z =

J

n
− nθ, (2.4)

satisfying ∇W · r1 = 0 and ∇Z · r2 = 0, where ∇ = (∂n, ∂J) is the gradient with respect to U = (n, J).

As for the steady system (1.5) under the conditions

Ñ(x)− b(x) ∈ H1(R), J̃ = J̄ , Ẽ(−∞) = E−, (2.5)
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we consider the classical solution in the region where the subsonic condition

inf
x
(p′(Ñ)− J̄2

Ñ2
) > 0 (2.6)

and the positivity of the density inf
x
Ñ(x) > 0 hold. Then we have the following theorem, see [18,21,24]

etc for details.
Theorem A. Suppose b(x) satisfies (1.4) and p′(B∗)B

2
∗ > J̄2, then problem (1.5) has a unique solution

(Ñ , J̄ , Ẽ) such that b±Ẽ(±∞) = J̄ and

B∗ ≤ Ñ(x) ≤ B∗, x ∈ R,

|Ñ(x)− b±| = O(1)e−C±|x|, as x→ ±∞,

∥Ñ(x)− b(x)∥H2 + sup
x∈R

(|Ñ ′(x)|+ |Ñ ′′(x)|+ |Ẽ(x)|) ≤ C1,
(2.7)

where C1 > 0 depends only on b(x) and C± =
Ẽ±

p′(b±)− Ẽ2
±
.

Theorem B comes from [17] Lemma 3.1, after a minor modification in the proof:
Theorem B. Let γ > 2, n ≥ 0 and 0 < a ≤ N ≤ b < +∞. Then there exists positive constant
C̃1(a, b, γ) such that

nγ −Nγ − γNγ−1(n−N) ≥ C̃1(n−N)2.

3 Boundedness of the approximate solution

For any fixed T ∈ R+, we consider the following approximate equation
nε
t + Jε

x = εnε
xx,

Jε
t +

(
(Jε)2

nε
+ p(nε)

)
x

= εJε
xx + nεEε − Jε,

Eε = E− +

∫ x

−∞
(nε(s, t)− b(s))ds

(3.1)

in (x, t) ∈ (−∞,+∞)× [0, T ) with the initial data

(nε
0(x), J

ε
0(x)) = (max(n0(x), ε), J0(x)) ∗ jε, (3.2)

and the far field condition
lim

x→−∞
Eε(x, t) = E−. (3.3)

Here jε is the standard mollifier and the positive parameter ε is small.
The local existence of the approximate solution can be proved by the same argument of [7]. To

extend the local solution to the whole space, it is important to obtain a priori estimate of the upper
bound of (nε, Jε) and the positive lower estimate of nε. For γ > 1, as stated in [2,14], the positive lower
bound of nε can be given by the upper bound estimate of Jε

nε . Therefore, we only need to estimate the

5



bounds of Riemann invariants (wε, zε) to gain the upper bound of (nε, J
ε

nε ). However, it is worthy to be
pointed out that the estimates of approximate electric field

Eε =

∫ x

−∞
(nε(s, t)− b(s))ds+ E−, (3.4)

which plays a vital role in deriving the upper bound of density, are not trivial in the whole space. This
is very different from the bounded domain case considered in [14]. Fortunately, with the help of relative
entropy, we obtain our aim.

To prove Theorem 1, we first use the estimate on Eε to derive the upper bound of (nε, J
ε

nε ) by the
following maximum principle:

Lemma 3.1 [2] Let (x, t) ∈ R× [0, T ] and (p, q)(x, t) be any bounded classical solution of the following
quasilinear parabolic system {

pt + µ1px = εpxx + a11p+ a12q +R1,

qt + µ2qx = εqxx + a21p+ a22q +R2,
(3.5)

with initial data p(x, 0) ≤ 0, q(x, 0) ≥ 0, where the coefficients µi and aij are bounded with respect to
(x, t) and may depend on p, q. The source terms Ri may also depend on p, q and x, t. Assume that
a12, a21 ≤ 0, R1 ≤ 0, R2 ≥ 0. Then for any (x, t), p(x, t) ≤ 0, q(x, t) ≥ 0.

Then we have the following Lemma:
Lemma 3.2 The smooth solution (nε, Jε, Eε) of problem (3.1)-(3.3) satisfies the following a priori
estimate:

0 ≤ nε(x, t) ≤M(1 + t)
1
θ , |Jε(x, t)| ≤M(1 + t)1+

1
θ , |Eε(x, t)| ≤M, (x, t) ∈ R× [0, T ], (3.6)

where the positive constant M depends only on the initial data.

Proof: By the formula of Riemann invariants (2.4), system (3.1)1,2 can be rewritten as
wt + µ2wx = εwxx + 2εwx

nε
x

nε
− εθ(θ + 1)(nε)θ−2(nε

x)
2 +

1

nε
(nεEε − Jε) ,

zt + µ1zx = εzxx + 2εzx
nε
x

nε
+ εθ(θ + 1)(nε)θ−2(nε

x)
2 +

1

nε
(nεEε − Jε) ,

(3.7)

where

w =
Jε

nε
+ (nε)θ, z =

Jε

nε
− (nε)θ, (3.8)

µ1 =
Jε

nε
− (θnε)θ, µ2 =

Jε

nε
+ (θnε)θ. (3.9)

Set the control function ϕ(t) = 2M0(1 + t), where M0 will be determined later. Denote the modified
Riemann invariants (w̄, z̄) as

w̄ = w − ϕ, z̄ = z + ϕ. (3.10)
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Then (3.7) yields the decoupled equations for (w̄, z̄):
w̄t + µ2w̄x = εw̄xx + 2εw̄x

nε
x

nε
− εθ(θ + 1)(nε)θ−2(nε

x)
2 + Eε − Jε

nε
− 2M0,

z̄t + µ1z̄x = εz̄xx + 2εz̄x
nε
x

nε
+ εθ(θ + 1)(nε)θ−2(nε

x)
2 + Eε − Jε

nε
+ 2M0.

(3.11)

Since
Jε

nε
=
w + z

2
=
w̄ + z̄

2
,

then system (3.11) becomes
w̄t + (µ2 − 2ε

nε
x

nε
)w̄x = εw̄xx + a11w̄ + a12z̄ +R1,

z̄t + (µ1 − 2ε
nε
x

nε
)z̄x = εz̄xx + a21w̄ + a22z̄ +R2,

with

a11 = −1

2
, a12 = −1

2
, a21 = −1

2
, a22 = −1

2
,

R1 = −εθ(θ + 1)(nε)θ−2(nε
x)

2 + Eε − 2M0,

R2 = εθ(θ + 1)(nε)θ−2(nε
x)

2 + Eε + 2M0.

In order to use Lemma 3.1, we need to get the estimate of approximate electric fields by the relative
entropy. Therefore, we introduce a new variable

yε = −(Eε − Ẽ) = −
∫ x

−∞

(
nε(s, t)− Ñ(s)

)
ds. (3.12)

Then system (3.1) infer that

yεx = −(nε − Ñ), yεt = Jε − εnε
x − J̄ , (3.13)

where we have used the facts that nε
x(−∞) = 0, Jε(−∞) = J̄ , which can be seen by inverting the heat

operator, differentiating by space and then letting x→ −∞. For simplicity, we only consider the case
E− = J̄ = 0, the other case can be treated similarly as the way used in [18].

Define convex entropy-entropy flux pairs

η̃(nε, Jε) =
(Jε)2

2nε
+
p0(n

ε)γ

γ − 1
, q̃(nε, Jε) =

(Jε)3

2(nε)2
+
γp0(n

ε)γ−1

γ − 1
Jε. (3.14)

Multiplying (3.1)1,2 with ∇η̃ = (η̃nε , η̃Jε), we have

η̃t + q̃x = ε(ηnεnε
xx + ηJεJε

xx) + JεEε − (Jε)2

nε

≤ ε(ηnεnε
x + ηJεJε

x)x + JεEε − (Jε)2

nε
,

(3.15)
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where the convexity of η is used. Introduce the relative entropy-entropy flux pair

η̃∗ = η̃ − p0Ñ
γ

γ − 1
− p0γ

γ − 1
Ñγ−1(nε − Ñ),

q̃∗ = q̃ − p0γ

γ − 1
Ñγ−1Jε.

(3.16)

Since

JεEε = JεẼ − yεJε = p0γÑ
γ−2JεÑx − yεJε, (3.17)

then (3.15) turns into

η̃∗t + q̃∗x +
(Jε)2

nε
+ Jεyε

= η̃∗t + q̃∗x +
(Jε)2

nε
+ p0γÑ

γ−2JεÑx − JεEε

= η̃t + q̃x − p0γ
γ−1

Ñγ−1nε
t −

p0γ
γ−1

(Ñγ−1Jε)x + p0γÑ
γ−2JεÑx +

(Jε)2

nε
− JεEε

≤ ε(η̃nεnε
x + η̃JεJε

x)x −
εp0γ

γ − 1
Ñγ−1nε

xx.

(3.18)

Integrating (3.18) over (−∞,+∞), we have

d

dt

∫ +∞

−∞
η̃∗dx+

∫ +∞

−∞
(Jεyε +

(Jε)2

nε
)dx ≤ − εp0γ

γ − 1

∫ +∞

−∞
Ñγ−1nε

xxdx. (3.19)

Moreover, noticing (1.4), (2.7) and∫ +∞

−∞
Ñγ−1nε

xxdx = −
∫ +∞

−∞
(γ − 1)Ñγ−2Ñxn

ε
xdx

= (γ − 1)

∫ +∞

−∞
[Ñγ−2Ñxx + (γ − 2)Ñγ−3(Ñx)

2]nεdx

≤ (γ − 1)∥nε∥L∞

∫ +∞

−∞
[Ñγ−2Ñxx + (γ − 2)Ñγ−3(Ñx)

2]dx

we get
d

dt

∫ +∞

−∞
η̃∗dx+

∫ +∞

−∞
(Jεyε +

(Jε)2

nε
)dx ≤ C2ε∥nε∥L∞ (3.20)

from (3.19) and the Cauchy’s inequality, where C2 = C(γ, ∥Ñ∥H2 , ∥Ñ∥L∞).
On the other hand, from (3.13) we have∫ +∞

−∞
Jεyεdx =

d

dt

∫ +∞

−∞

(yε)2

2
dx+ ε

∫ +∞

−∞
(yεx)

2dx− ε

∫ +∞

−∞
Ñyεxdx. (3.21)

Again due to the Cauchy’s inequality, (3.20) turns into

d

dt

∫ +∞

−∞
(η̃∗ +

(yε)2

2
)dx+

ε

2

∫ +∞

−∞
(yεx)

2dx+

∫ +∞

−∞

(Jε)2

nε
dx

≤ C3ε(∥nε∥L∞ + 1),

(3.22)
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where C3 depends only on γ, ∥Ñ∥H2 and ∥Ñ∥L∞ . Integrating this inequality from 0 to t gives∫ +∞

−∞
(η̃∗ +

(yε)2

2
)dx

≤
∫ +∞

−∞
(η̃∗ +

(yε)2

2
)(x, 0)dx+ εC3

∫ t

0

(∥nε∥L∞ + 1)dτ

≤
∫ +∞

−∞
(η̃∗ +

(yε)2

2
)(x, 0)dx+ 1,

(3.23)

provided 0 < ε ≤ ε1 = (C3(C(T ) + 1)T )−1 and we priori assuming

∥nε∥L∞ ≤ C(T ) = 2M0(1 + T )
1
θ , (x, t) ∈ R× [0, T ). (3.24)

Define

η∗(x, 0) =

[
J2

2n
+
p0n

γ

γ − 1
− p0Ñ

γ

γ − 1
− p0γ

γ − 1
Ñγ−1(n− Ñ)

]
(x, 0)

y(x, 0) = −(E − Ẽ)(x, 0),

(3.25)

and notice the definition in (3.2), we have∫ +∞

−∞
(η̃∗ +

(yε)2

2
)(x, 0)dx ≤

∫ +∞

−∞
(η∗ +

y2

2
)(x, 0)dx+ 1, for 0 < ε ≤ ε2 << 1. (3.26)

On the other hand, from Theorem B, when γ > 2 there exists a positive constant C̃2(B∗, B
∗, γ)

such that

η̃∗ ≥ C̃2

(
(Jε)2

nε
+

(yεx)
2

2

)
. (3.27)

Combine (3.23), (3.26) and (3.27), we get∫ +∞

−∞

(
(Jε)2

nε
+

(yεx)
2

2
+

(yε)2

2

)
dx ≤ C̃3

(∫ +∞

−∞
(η∗ +

y2

2
)(x, 0)dx+ 2

)
(3.28)

for some C̃3 = C̃3(B∗, B
∗, γ) and 0 < ε < min{ε1, ε2}. Then

∥yε∥2L∞ ≤
∫ +∞

−∞

(
(yε)2 + (yεx)

2

)
dx ≤ 2C̃3

(∫ +∞

−∞
(η∗ +

y2

2
)(x, 0)dx+ 2

)
.

Let

M0 ≥ 2max

{
C̃3

(∫ +∞

−∞
(η∗ +

y2

2
)(x, 0)dx+ 2

)
,
J0
n0

+ nθ
0 + 1, C1

}
and notice the boundedness of Ẽ in Theorem A, we have |Eε(x, t)| < 3

2
M0. Therefore,

R1 ≤
3

2
M0 − 2M0 ≤ 0, (3.29)

R2 ≥ −3

2
M0 + 2M0 ≥ 0. (3.30)

9

hmyu
高亮



We also have the initial conditions

w̄(x, 0) = w(x, 0)− ϕ(0) =
J0
n0

+ nθ
0 − 2M0 ≤ 0,

z̄(x, 0) = z(x, 0) + ψ(0) =
J0
n0

− nθ
0 + 2M0 ≥ 0.

Then Lemma 3.1 yields

w̄(x, t) ≤ 0, z̄(x, t) ≥ 0, ∀(x, t) ∈ R× [0, T ],

which implies that

w(x, t) ≤ ϕ(t) ≤ 2M0(t+ 1),

z(x, t) ≥ −ϕ(t) ≥ −2M0(t+ 1).

Therefore, we finish the proof of Lemma 3.2.

4 Existence of global entropy solution and its large time be-

havior

The calculation in this section is standard, we just give the sketch. With the help of Lemma 3.2, and
the compactness framework established in [7,8,23,27,34], we can prove that there exists a subsequence
of (nε, Jε)(still denoted by (nε, Jε)) such that (nε, Jε) → (n, J) in Lp

loc, p ≥ 1 and (1.15) is proved. As
to the large time behavior, use Theorem 3.1 in [32] we get (1.16) directly.

5 Conclusion

We construct a weak entropy solution for the unipolar semiconductor model in the whole space
by the compensated compactness theory and vanishing viscosity method. Compared with the results
in [32], we have a sharp estimate on the solution and generalize the large time behavior result to the
case γ > 2. The main novelty of this paper is to get the L∞ estimate on approximate electric fields by
the entropy inequality.
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