

Original Research Article 1

Logical Design of n-bit Comparators: 2

Pedagogical Insight from Eight-Variable Karnaugh Maps 3
 4

 5

 6

 7

Abstract 8

An ݊-bit comparator is a celebrated combinational circuit that compares two ݊-bit 9

inputs ࢅ and ࢆ and produces three orthonormal outputs: G (indicating that ࢅ is 10

strictly greater than ࢆ), E (indicating that ࢅ and ࢆ are equal or equivalent), and L 11

(indicating that ࢅ is strictly less than ࢆ). The symbols ‘G’, ‘E’, and ‘L’ are 12

deliberately chosen to convey the notions of ‘Greater than,’ ‘Equal to,’ and ‘Less 13

than,’ respectively. This paper analyzes an ݊-bit comparator in the general case of 14

arbitrary ݊ and visualizes the analysis for ݊ ൌ 4 on a regular and modular version 15

of the 8-variable Karnaugh-map. The cases ݊ ൌ 3, 2, and 1 appear as special cases 16

on 6-variable, 4-variable, and 2-variable submaps of the original map. The analysis 17

is a tutorial exposition of many important concepts in switching theory including 18

those of implicants, prime implicants, essential prime implicants, minimal sum, 19

complete sum and disjoint sum of products (or probability-ready expressions). 20

Key Words 21

Comparator, Karnaugh map, Prime implicant, Minimal sum, Complete sum, 22

Probability-ready expression. 23

 24

 25

1. Introduction 26

Modern logic digital design handles real-life problems that involve very large 27

numbers of variables, and hence are not amenable to solution via heuristic manual 28

tools but are solvable only via computerized algorithms. However, there is one 29

heuristic manual tool, namely, the Karnaugh map [1-23], that plays an 30

indispensable role in logic design as it provides pictorial insight in demonstrating 31

concepts, proving theorems, and understanding procedures by showing their details 32

in small examples. The literature abounds with contributions that offer instructive 33

and pedagogical expositions of the Karnaugh map and related logic design tools 34

[24-30]. The purpose of this paper is to make yet another such contribution, as it 35

provides a tutorial exposition of a regular and modular version of the Karnaugh 36

map [31-34] and to utilize this version in presenting many important concepts of 37

switching theory and logic design. This map version can be (theoretically) 38

extended to an arbitrary large number of variables, and includes all maps of 39

smaller sizes as special cases. 40

The Karnaugh map is an enhanced form of the truth table [9], in which two 41

dimensions (rather than one dimension) are used, and in which reflected binary 42

ordering or grey ordering (as opposed to direct binary ordering) is employed. The 43

݊-variable map consists of 2௡ cells, such that every cell has ݊ neighboring cells or 44

logically adjacent cells. Two cells are (first) neighbors or (immediately) adjacent if 45

their variable values except one are exactly the same. Such two cells are said to 46

have a Hamming distance [35-43] of one or to differ in exactly one-bit position. 47

The map is constructed such that any two logically adjacent cells are made also as 48

visually adjacent as possible. In general, two logically adjacent cells appear as the 49

mirror images with respect to boundary lines separating the internal and external 50

domains of the variable in whose value the two cells differ (See Fig. 1). 51

Typically, the Karnaugh map is conveniently used up to six variables [4]. There are 52

occasions in which Karnaugh maps of eight variables are used, in which the 53

rectangular shape of cells is abandoned to a triangular shape [44-48]. In this paper, 54

however, we will use the aforementioned regular and modular form of the 55

Karnaugh map that appeared earlier in [31-34], and is such that 56

a) The rectangular shape of the cell is retained. 57

b) The internal domain of the ሺ݊	 ൅ 	1ሻst variable is introduced to be centered 58

around the boundary lines of the ሺ݊	– 	1ሻst variable (See Fig. 2). 59

We note that the process outlined in (b) above can be, in theory, indefinitely 60

continued. Hence, there is no theoretical upper bound on the size of the Karnaugh 61

map constructed this way. However, as the number of variables increases, the size 62

of the map increases exponentially, and its utility diminishes very quickly due to 63

prohibitively increasing difficulty. 64

As a demonstration of the usefulness of the aforementioned version of the 65

Karnaugh map, we present its case of eight variables herein. We use this map to 66

explore the design of a well-known combinational circuit, namely an ݊-bit digital 67

magnitude comparator [49-51]. Note that we deal herein only with digital (as 68

opposed to analogue) comparators. A digital comparator typically uses two ݊-bit 69

inputs ܇ and ܈, and could possibly be 70

1. An Identity Comparator, which has a single output ܧ such that ܧ ൌ 1 when 71

ࢅ ൌ i.e., when the two inputs match bit for bit. 72 ,ࢆ

2. A Magnitude Comparator, which has three orthonormal outputs ሼܩ, ,ܧ ሽ, 73ܮ

namely ܩ ൌ 1 when ࢅ ൐ ܧ ,ࢆ ൌ 1 when ࢅ ൌ ܮ and ࢆ ൌ 1 when ࢅ ൏ ܼ. 74

Note that a magnitude comparator includes an identity comparator as a special 75

case. The magnitude comparator is a redundant circuit in the sense that any of its 76

three outputs might be readily obtained from the other two. Digital 77

Comparators are used widely in Analogue-to-Digital Converters (ADC) and to 78

perform a variety of arithmetic operations in the Arithmetic Logic Units (ALU) of 79

a digital computer. 80

Karnaugh-map analysis of the digital magnitude comparator is employed herein to 81

provide instructive and pedagogical exposition of many important concepts in 82

logic design and switching theory including those of implicants, prime implicants, 83

essential prime implicants, minimal sum, complete sum and disjoint sum of 84

products (or probability-ready expressions). 85

The organization of the rest of this paper is as follows. Section 2 presents a 86

mathematical description of an ݊-bit magnitude digital comparator. Section 3 87

derives expressions for the comparator outputs in minimal-sum or complete-sum 88

form as well as in probability-ready form. Section 4 concludes the paper. To make 89

the paper self-contained, five appendices are included. Appendix A explains basic 90

concepts of Boolean minimization, Appendix B is about the complete sum. 91

Appendix C defines probability-ready expressions. Appendix D briefly introduces 92

the Boole-Shannon expansion. Appendix E deals with unate Boolean functions. 93

 94

2. Mathematical Description of an n-bit Comparator 95

An n-bit comparator is a (combinational) circuit (shown in Fig. 3) that compares 96

two n-bit inputs ܇ ൌ ሺY௡ିଵY௡ିଶ …YଵY଴ሻଶ and ܈ ൌ ሺZ௡ିଵZ௡ିଶ …ZଵZ଴ሻଶ such that 97

܇ ൌ ∑ 		Y୩
௡ିଵ
௞ୀ଴ 2௞, (1a) 98

܈ ൌ ∑ 		Z୩
௡ିଵ
௞ୀ଴ 2௞. (1b) 99

The comparator has three 1-bit outputs, namely 100

ܩ ൌ ሼ܇ ൐ ሽ, (2a) 101܈

ܧ ൌ ሼ܇ ൌ 102	ሽ, (2b)܈

ܮ ൌ ሼ܇ ൏ ሽ. (2c) 103܈

The three variables G, E, and L form an orthonormal set, or in other words, they 104

are mutually exclusive and exhaustive, i.e., 105

ܩ ∨ ܧ ∨ ܮ ൌ 1. (3a)	106

ܧܩ ൌ ܮܧ ൌ ܮܩ ൌ 0. (3b) 107

Consequently, these three variables are inter-related by the following equations. 108

ܩ ൌ ܩ̅			,തܮതܧ ൌ ܧ	 ∨ 109 (4a) ,ܮ

ܧ ൌ തܧ			,തܮܩ̅ ൌ ܩ	 ∨ 110 (4b) 	,ܮ

ܮ ൌ തܮ			,തܧܩ̅ ൌ ܩ	 ∨ 111 (4c) .ܧ

Figure 4 is a display of the results above for two single-bit inputs ܇ ൌ ௞ܻ	and	܈ ൌ112

ܼ௞. For this case, we simply obtain 113

ܩ ൌ ௞ܻܼ௞തതത ൌ ሼ ௞ܻ ൐ ܼ௞ሽ ൌ ሼ ௞ܻ ൑ ܼ௞ሽതതതതതതതതതതതത ൌ ሼ ௞ܻ → ܼ௞തതതതതതതതതതതതሽ (5a) 114

ܧ ൌ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ ൌ ሼ ௞ܻ ⊙ ܼ௞ሽ ൌ ሼ ௞ܻ ≡ ܼ௞ሽ (5b) 115

ܮ ൌ ௞ܻഥ 	ܼ௞ ൌ ሼ ௞ܻ ൏ ܼ௞ሽ ൌ ሼܼ௞ ൑ ௞ܻሽതതതതതതതതതതതത ൌ ሼܼ௞ → ௞ܻሽതതതതതതതതതതതതത (5c) 116

As seen from equations (5), the three variables ܩ, ,ܧ and	ܮ in the case of single-bit 117

inputs are given by the functions 	ܶܫܤܫܪܰܫሺ ௞ܻ, ܼ௞ሻ, ܱܴܺܰሺ ௞ܻ, ܼ௞ሻ, and 118

,ሺܼ௞ܶܫܤܫܪܰܫ 	 ௞ܻሻ. 119

3. Derivation of the Comparator Equations 120

In this section, we derive the explicit output equations for a 4-bit comparator, and 121

then generalize our results to an ݊-bit one. by obtaining the output equations in 122

terms of recursive relations and boundary conditions. Figure 5 is a flow chart that 123

compares the bits ௞ܻ to the bits ܼ௞ (starting from the most significant bit and 124

ending with the least significant one, i.e., for ݇ ൌ 3, 2, 1, and 0. As the flow chart 125

indicates, the three outputs denoted as ܩସ, ,ସܧ ସ are given by 126ܮ	݀݊ܽ

Gସ ൌ ଷܻܼଷതതത ∨ ሺ ଷܻഥ ܼଷതതത ∨ ଷܻܼଷሻሺ ଶܻܼଶതതത ∨ ሺ ଶܻഥ ܼଶതതത ∨ ଶܻܼଶሻሺ ଵܻܼଵതതത ∨ ሺ ଵܻഥܼଵതതത ∨ ଵܻܼଵሻ ଴ܻܼ଴തതതሻሻ 127

 (6a) 128

Eସ ൌ ⋀ 		ሺ ௠ܻതതതത	ܼ௠തതതത ∨ ௠ܻܼ௠ሻ
ଷ
௠ୀ଴ (6b) 129

Lସ ൌ ଷܻഥ ܼଷ ∨ ሺ ଷܻഥ ܼଷതതത ∨ ଷܻܼଷሻሺ ଶܻഥ ܼଶ ∨ ሺ ଶܻഥ ܼଶതതത ∨ ଶܻܼଶሻሺ ଵܻഥܼଵ ∨ ሺ ଵܻഥܼଵതതത ∨ ଵܻܼଵሻ ଴ܻഥ ܼ଴ሻሻ 130

 (6c) 131

Equations (6) are demonstrated by the 8-variable Karnaugh map in Fig. 6, where 132

the cells for which ܩସ ൌ 1 are entered by ܩ and given a light blue color, while the 133

cells for which ܮସ ൌ 1 are entered by ܮ and given a pale red color, and the cells for 134

which ܧସ ൌ 1 are entered by ܧ and left uncolored. The single map in Fig. 6 is 135

obtained by combining three maps for the orthonormal variables ܩସ, ܮସ, and ܧସ. 136

Both the cells for the functions ܩସ and ܮସ are covered by disjoint (non-overlapping 137

loops). For each of these two functions, there is one 64-cell loop, two 16-cell 138

loops, four 4-cell loops, and eight 1-cell loops. These loops come in four 139

consecutive stages, with the loops in a succeeding stage doubling in number and 140

diminishing to quarter size, compared to the loops in the preceding stage. 141

Remarkable symmetry could be observed with respect to the main diagonal of the 142

map. 143

Figure 6 is, in a sense, a summary of the results of equations (6) (for the 4-bit 144

comparator) demonstrated on an 8-variable Karnaugh map with inputs ܇ ൌ145

ሺYଷYଶYଵY଴ሻଶ and ܈ ൌ ሺZଷZଶZଵZ଴ሻଶ. Though the analysis is intended for ݊ ൌ 4 on 146

the 8-variable map, the cases ݊ ൌ 3, 2, and 1 appear as special cases on 6-variable, 147

4-variable, and 2-variable submaps of the original map. The top left quarter of this 148

map is a 6-variable submap representing a 3-bit comparator with inputs ܇ ൌ149

ሺYଶYଵY଴ሻଶ and ܈ ൌ ሺZଶZଵZ଴ሻଶ. Again, the top left quarter of this submap is a 4-150

variable submap representing a 2-bit comparator with inputs ܇ ൌ ሺYଵY଴ሻଶ and 151

܈ ൌ ሺZଵZ଴ሻଶ. Finally, the top left quarter of this latter submap is a 2-variable 152

submap representing a 1-bit comparator with inputs ܇ ൌ ሺY଴ሻଶ and ܈ ൌ ሺZ଴ሻଶ. 153

The analysis above for ݊ ൌ 4 on the 8-variable map of Fig. 6 can also be extended 154

to higher (encompassing) values of ݊. Figure 7 demonstrates the construction of 155

the 2݊-variable map (for the ݊-bit comparator) from a 2ሺ݊ െ 1ሻ-variable map (for 156

the ሺ݊ െ 1ሻ-bit comparator). Theoretically, such a construction can be inductively 157

continued without limit. Therefore, one can easily imagine how the maps for 158

݊ ൌ 5, 6, 7… look like. The 2݊-variable map might be viewed as a map-159	.ܿݐ݁

entered map [52-54] with two map variables ௡ܻ and ܼ௡, and four major cells, each 160

of which having the size of a 2ሺ݊ െ 1ሻ-variable map. The middle point of this new 161

map is taken for a center of symmetry. Initially, the major cell ௡ܻതതത ܼ௡തതത is filled with 162

the original 2ሺ݊ െ 1ሻ-variable map as it is. Next, the major cell ௡ܻܼ௡ is filled with 163

the original 2ሺ݊ െ 1ሻ-variable map reflected with respect to the center of 164

symmetry, while the major cell ௡ܻܼ௡തതത is filled uniformly with a ′ܩ′ in each of its 165

cells. Finally, the major cell ௡ܻതതത ܼ௡ is filled uniformly with an ′ܮ′ in each of its 166

cells. In fact, one can start with a base case of the 2-variable map with inputs 167

܇ ൌ ሺY଴ሻଶ and ܈ ൌ ሺZ଴ሻଶ, and use the recursive step suggested by Fig. 7 168

repeatedly, so as to construct any desirable 2݊-variable map. 169

Equations (6) constitute probability-ready expressions [55-60] (See Appendix C), 170

and hence, can be converted, on a one-to one basis, to the corresponding 171

expectation expressions 172

Eሼܩସሽ ൌ173

ሼܧ ଷܻሽܧሼܼଷതതതሽ ൅ ሺܧሼ ଷܻഥ ሽܧሼܼଷതതതሽ ൅ ሼܧ ଷܻሽܧሼܼଷሽሻሺܧሼ ଶܻሽܧሼܼଶതതതሽ ൅ ሺܧሼ ଶܻഥ ሽܧሼܼଶതതതሽ ൅174

ሼܧ ଶܻሽܧሼܼଶሽሻሺܧሼ ଵܻሽܧሼܼଵതതതሽ ൅ ሺܧሼ ଵܻഥ ሽܧሼܼଵതതതሽ ൅ ሼܧ ଵܻሽܧሼܼଵሽሻܧሼ ଴ܻሽܧሼܼ଴തതതሽሻሻ. (7a) 175

 176

ସሽܧሼܧ ൌ ⋀ 		ሺܧሼ ௠ܻതതതതሽܧሼ	ܼ௠തതതതሽ ൅ ሼܧ ௠ܻሽܧሼܼ௠ሽሻ
ଷ
௠ୀ଴ . (7b) 177

	

Eሼܮସሽ ൌ178

ሼܧ ଷܻഥ ሽܧሼܼଷሽ ൅ ሺܧሼ ଷܻഥ ሽܧሼܼଷതതതሽ ൅ ሼܧ ଷܻሽܧሼܼଷሽሻሺܧሼ ଶܻഥ ሽܧሼܼଶሽ ൅ ሺܧሼ ଶܻഥ ሽܧሼܼଶതതതሽ ൅179

ሼܧ ଶܻሽܧሼܼଶሽሻሺܧሼ ଵܻഥ ሽܧሼܼଵሽ ൅ ሺܧሼ ଵܻഥ ሽܧሼܼଵതതതሽ ൅ ሼܧ ଵܻሽܧሼܼଵሽሻܧሼ ଴ܻഥ ሽܧሼܼ଴ሽሻሻ. (7c) 180

A generalization of equations (6) is possible via the following recursive relations 181

G௞ ൌ ௞ܻܼ௞തതത ∨ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܩ௞ିଵ, 1 ൑ ݇ ൑ ݊ (8a) 182

௞ܧ ൌ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܧ௞ିଵ, 1 ൑ ݇ ൑ ݊ (8b) 183

௞ܮ ൌ ௞ܻഥ ܼ௞ ∨ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܮ௞ିଵ. 1 ൑ ݇ ൑ ݊ (8c) 184

These recursive relations are used in conjunction with the boundary conditions 185

଴ܩ ൌ ଴ܻܼ଴തതത, (9a) 186

଴ܧ ൌ ଴ܻഥ 	ܼ଴തതത ∨ ଴ܻܼ଴, (9b) 187

଴ܮ ൌ ଴ܻഥ ܼ଴. (9c) 188

Equations (8) have a complete-sum version of the form 189

௡ሻܩሺܵܥ ൌ ௞ܻܼ௞തതത ∨ ሺ ௞ܻ ∨ ܼ௞തതതሻ	ܵܥሺܩ௞ିଵሻ, 1 ൑ ݇ ൑ ݊ (10a) 190

௞ሻܧሺܵܥ ൌ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܵܥሺܧ௞ିଵሻ, 1 ൑ ݇ ൑ ݊ (10b) 191

௞ሻܮሺܵܥ ൌ ௞ܻഥ ܼ௞ ∨ ሺ ௞ܻഥ ∨ ܼ௞ሻ	ܵܥሺܮ௞ିଵሻ. 1 ൑ ݇ ൑ ݊ (10a) 192

Equations (10) are used together with a complete-sum version of (9), namely 193

଴ሻܩሺܵܥ ൌ ଴ܻܼ଴തതത, (11a) 194

଴ሻܧሺܵܥ ൌ ଴ܻഥ 	ܼ଴തതത ∨ ଴ܻܼ଴, (11b) 195

଴ሻܮሺܵܥ ൌ ଴ܻഥ ܼ଴. (11c) 196

Equations (8) and (9) are also probability-ready expressions [55-60] (See 197

Appendix C) that are useful in signal-probability calculations [61-69] as they 198

transform on a one-to-one basis to the probability domain, namely 199

௞ሽܩሼܧ ൌ ሼܧ ௞ܻሽܧሼܼ௞തതതሽ ൅ ሺܧሼ ௞ܻഥ ሽܧሼܼ௞തതതሽ ൅ ሼܧ ௞ܻሽܧሼܼ௞ሽሻ	ܧሼܩ௞ିଵሽ, (12a) 200

௞ሽܧሼܧ ൌ ሺܧሼ ௞ܻഥ ሽܧሼ	ܼ௞തതതሽ ൅ ሼܧ ௞ܻሽܧሼܼ௞ሽሻ	ܧሼܧ௞ିଵሽ, (12b) 201

௞ሽܮሼܧ ൌ ሼܧ ௞ܻഥ ሽܧሼܼ௞ሽ ൅ ሺܧሼ ௞ܻഥ ሽܧሼ	ܼ௞തതതሽ ൅ ሼܧ ௞ܻሽܧሼܼ௞ሽሻ	ܧሼܮ௞ିଵሽ. (12a) 202

଴ሽܩሼܧ ൌ ሼܧ ଴ܻሽܧሼܼ଴തതതሽ, (13a) 203

଴ሽܧሼܧ ൌ ሺܧሼ ଴ܻഥ ሽܧሼ	ܼ଴തതതሽ ൅ ሼܧ ଴ܻሽܧሼܼ଴ሽሻ, (13b) 204

଴ሽܮሼܧ ൌ ሼܧ ଴ܻഥ ሽܧሼܼ଴ሽ. (13c) 205

Figure 8 displays all the prime implicants of ܩସ, each on a separate map. There are 206

fifteen prime-implicant loops colored in dark blue to be distinguished from other 207

asserted cells of ܩସ, which remain colored in light blue. Each of these loops 208

(except the first) in an enlargement of one of the loops in Fig. 6 (entered with ܩ), 209

so as to allow overlapping with earlier loops. Note that all fifteen loops pass 210

through the cell at row 0 and column 15, which is the all-0 cell for ܈ and the all-1 211

cell for ܇. These prime-implicant loops are all essential. They come in four 212

consecutive stages, with the loops in a succeeding stage doubling in number and 213

diminishing to half size, compared to the loops in the preceding stage. The function 214

,ସ is a unate function with positive polarity in ଷܻܩ ଶܻ, ଵܻ	and	 ଴ܻ and with negative 215

polarity in ܼଷ, ܼଶ, ܼଵ	and	ܼ଴ (See Appendix E). The minimal sum (or complete 216

sum) for ܩସ is covered by one 64-cell loop, two 32-cell loops, four 16-cell loops, 217

and eight 8-cell loops, and is given by 218

ସܩ ൌ ଷܻܼଷതതത ∨ 219

ଷܻ ଶܻܼଶതതത ∨ ܼଷതതത ଶܻܼଶതതത ∨ 220

ଷܻܼଶതതത ଵܻܼଵതതത ∨ ଷܻ ଶܻ ଵܻܼଵതതത ∨ ܼଷതതത ଶܻ ଵܻܼଵതതത ∨ ܼଷതതത	ܼଶതതത ଵܻܼଵതതത ∨ 221

ଷܻܼଶതതത	ܼଵതതത ଴ܻܼ଴തതത ∨ ଷܻܼଶതതത ଵܻ ଴ܻܼ଴തതത ∨ ଷܻ ଶܻ ଵܻ ଴ܻܼ଴തതത ∨ ଷܻ ଶܻܼଵതതത ଴ܻܼ଴തതത ∨ ܼଷതതത ଶܻܼଵതതത ଴ܻܼ଴തതത ∨ ܼଷതതത ଷܻ ଶܻ ଴ܻܼ଴തതത ∨222

ܼଷതതത	ܼଶതതത ଵܻ ଴ܻܼ଴തതത ∨ ܼଷതതത	ܼଶതതത	ܼଵതതത ଴ܻܼ଴തതത (14a) 223

 224

ൌ ଷܻܼଷതതത ∨ 225

ሺ ଷܻ ∨ ܼଷതതതሻ ଶܻܼଶതതത ∨ 226

ሺ ଷܻ ∨ ܼଷതതതሻሺ ଶܻ ∨ ܼଶതതതሻ ଵܻܼଵതതത ∨ 227

ሺ ଷܻ ∨ ܼଷതതതሻሺ ଶܻ ∨ ܼଶതതതሻሺ ଵܻ ∨ ܼଵതതതሻ ଴ܻܼ଴തതത (14b) 228

 229

Note that the factored expression (14b) might be obtained from (10a) and (11a). 230

Similar analysis is possible for the function ܮସ. 231

 232

4. Conclusions 233

This paper is a tutorial on the basic concepts of switching algebra, including 234

Boolean minimization, the complete sum (Blake canonical form), probability-ready 235

expressions, the Boole-Shannon expansion and unate Boolean functions. The topic 236

explored in this tutorial is the design of a well-known combinational circuit, 237

namely the ݊-bit digital magnitude comparator. The tool employed herein is a 238

regular and modular version of the 8-variable Karnaugh-map, for which the case 239

݊ ൌ 4 of the ݊-bit comparator is explored. The cases ݊ ൌ 3, 2, and 1 appear as 240

special cases on 6-variable, 4-variable, and 2-variable submaps of the original map. 241

The analysis for ݊ ൌ 4 on the 8-variable map is shown to be extendible 242

(theoretically without limit) to higher (encompassing) values of ݊. 243

 244

Appendix A: Basic Concepts of Boolean Minimization 245

This Appendix summarizes notions and concepts employed in the minimization of 246

Boolean functions. Additional information is available in Lee [3], Muroga [4], 247

Rushdi [5-7], Hill and Peterson [8], and Roth and Kinney [14]. 248

The two literals of a Boolean variable ܺ௠ are its complemented form തܺ௠ and its 249

uncomplemented one ܺ௠. A product (conjunction) of literals is called a term ܶሺࢄሻ 250

if a literal for each variable appears in it at most once, i.e., a term is an irredundant 251

product (conjunction). A redundant product can be reduced to a term by 252

eliminating repeated appearances of a literal through employment of idempotency 253

of ‘AND.’ The constant 1 is the multiplication (ANDing) identity and is the 254

product or term of no literals. The dual of a term is the irredundant sum 255

(disjunction), called an alterm. The constant 0 is the addition (ORing) identity and 256

is the sum or alterm of no literals. The constant 1 is not an alterm and the constant 257

0 is not a term. A term ܶሺࢄሻ is an implicant of a function ݂ሺࢄሻ (denoted by 258

ܶሺࢄሻ → ݂ሺࢄሻ or ܶሺࢄሻ ൑ ݂ሺࢄሻ) if every ܶሺࢄሻ satisfying ሼܶሺࢄሻ ൌ 1ሽ also satisfies 259

ሼ݂ሺࢄሻ ൌ 1ሽ, while the converse is not necessarily true. A term/alterm ௜ܶሺࢄሻ is said 260

to subsume another term/alterm ௝ܶሺࢄሻ if the set of literals of ௝ܶሺࢄሻ is a subset of 261

that of ௜ܶሺࢄሻ (i.e., the literals of ௜ܶሺࢄሻ include those of ௝ܶሺࢄሻ). 262

A prime implicant ܲሺࢄሻ of a Boolean function ݂ሺࢄሻ is an implicant of ݂ሺࢄሻ such 263

that no other term subsumed by it is an implicant of ݂ሺࢄሻ. An irredundant 264

disjunctive form ܨܦܫሺ݂ሺࢄሻሻ of a Boolean function ݂ሺࢄሻ is a disjunction of some 265

of its prime implicants that expresses ݂ሺࢄሻ but ceases to do so upon the removal of 266

one of these prime implicants. A minimal sum ܵܯሺ݂ሺࢄሻሻ (minimal irredundant 267

form ܨܫܯሺ݂ሺࢄሻሻ) of a Boolean function ݂ሺࢄሻ is an irredundant disjunctive form 268

for the function with the minimum number of prime implicants such that the total 269

number of their literals is minimum. 270

An essential (core) prime implicant of ݂ሺࢄሻ is a prime implicant that appears in 271

every irredundant disjunctive form for ݂ሺࢄሻ. For every essential prime implicant, 272

there exists an asserted minterm of ݂ሺࢄሻ that subsumes it and does not subsume 273

any other prime implicant. This means that the Karnaugh-map loop covering an 274

essential prime implicant is the only loop that covers the cell of this asserted 275

minterm. An absolutely eliminable prime implicant of ݂ሺࢄሻ is a prime implicant 276

that does not appear in any irredundant disjunctive form for ݂ሺࢄሻ. A conditionally 277

eliminable prime implicant of ݂ሺࢄሻ is a prime implicant that appears in some 278

irredundant disjunctive form(s) for ݂ሺࢄሻ, but that does not appear in other 279

irredundant disjunctive form(s) for ݂ሺࢄሻ. 280

 281

Appendix B: The Complete Sum (Blake Canonical Form) 282

The Complete Sum ܵܥሺ݂ሺࢄሻሻ of a Boolean function ݂ሺࢄሻ (also called its Blake 283

Canonical Form ܨܥܤሺ݂ሺࢄሻሻ) is the disjunction (ORing) of all its prime 284

implicants, and nothing else [70-78]. The complete sum is a closure, unique and 285

canonical formula for ݂ሺࢄሻ. It is the minimal or absorptive special case of a 286

syllogistic formula of ݂ሺࢄሻ, where a syllogistic formula is defined as a sum-of-287

products formula, whose terms include, but are not necessarily confined to, all the 288

prime implicants of ݂ሺࢄሻ. Complete-sum construction usually requires the two 289

operations of: (a) absorbing a term by another, and (b) generating the consensus of 290

two ORed terms. A brief explanation of these operations follows. 291

B.1. Absorbing a Term by Another 292

If a term ଵܶሺࢄሻ subsumes (implies) another ଶܶሺࢄሻ, then the disjunction (ଵܶሺࢄሻ ∨293

ଶܶሺࢄሻ) could simply be rewritten as ଶܶሺࢄሻ, viz. 294

ଵܶሺࢄሻ ∨ ଶܶሺࢄሻ ൌ 	 ଶܶሺࢄሻ. (B.1) 295

The deletion of ଵܶሺࢄሻ in (B.1) is called absorption of the subsuming term ଵܶሺࢄሻ in 296

the subsumed term ଶܶሺࢄሻ. For example, the term ܻܼܹܺ̅ subsumes each of the 297

sixteen terms ܻܼܹܺ̅, ܻܼܹ̅, ܼܹܺ̅, ܻܹܺ, ܻܼܺ̅, ܼܹ̅, ܻܹ,ܹܺ, ܻܼ̅, ܼܺ̅, ܻܺ, ܹ, ܼ̅, 298

ܻ, ܺ, and 1. Hence, it could be deleted if it is ORed with any of them. The 299

complete sum is an absorptive syllogistic formula, i.e., it is a syllogistic formula in 300

which no term subsumes another. 301

B.2. Generating the Consensus of Two ORed Terms 302

Two terms ଵܶሺࢄሻ and ଶܶሺࢄሻ have a consensus if and only if they have exactly one 303

opposition, i.e., exactly one variable that appears complemented (തܺ௠) in one term 304

(say ଵܶሺࢄሻ) and appears uncomplemented (ܺ௠) in the other term. In such a case, 305

the consensus is the ANDing of the remaining literals of the two terms, i.e. 306

ሺݏݑ݊݁ݏ݊݋ܿ ଵܶሺࢄሻ	, ଶܶሺࢄሻሻ ൌ ሺ ଵܶሺࢄሻ	/	 തܺ௠ሻ	˄	ሺ ଶܶሺࢄሻ	/	ܺ௠ሻ, (B.2) 307

where ሺ݂/ݐሻ denotes the Boolean quotient of the function ݂ by the term ݐ, i.e., the 308

restriction of ݂ when ݐ is asserted [59, 70, 78], viz. 309

݂ ⁄ݐ ൌ ሾ݂ሿ௧ୀଵ. (B.3) 310

When two terms have a consensus, their disjunction can be augmented by this 311

consensus, i.e. 312

ଵܶሺࢄሻ 	∨ 	 ଶܶሺࢄሻ ൌ 	 ଵܶሺࢄሻ ∨ 	 ଶܶሺࢄሻ 	∨ ሺݏݑ݊݁ݏ݊݋ܿ	 ଵܶሺࢄሻ	, ଶܶሺࢄሻሻ. (B.4) 313

For example, the terms ܤܣത and ܥܤ have a single opposition and are represented on 314

the Karnaugh map by two disjoint loops sharing a border, and hence their 315

disjunction can be augmented by their consensus ሺܤܣത/ܤതሻ	˄	ሺܤ/ܥܤሻ ൌ which 316 ,ܥܣ

is a loop extending across the common border between the original loops and 317

covering the part ܤܣതܥ of ܤܣത	and the part ܥܤܣ of ܥܤ. By contrast, the two terms 318 ܣ

and ܥܤ have zero opposition, and consequently non-disjoint or overlapping loops, 319

and possess zero or no consensus. The two terms ܤܣത and ̅ܤܣ have more than one 320

opposition, and consequently disjoint far-away loops, and again possess zero or no 321

consensus [74]. 322

The complete-sum formula ܵܥሺ݂ሻ	may be generated by a two-step iterative-323

consensus procedure, in which (a) a syllogistic formula F for fሺࢄሻ is found by 324

continually comparing terms and adding their consensuses (if any) to the current 325

formula of fሺࢄሻ, and (b) the resulting formula is converted to an absorptive one 326

 ሻ, again by continually comparing terms and deleting subsuming terms by 327ܨሺܵܤܣ

absorbing them in their subsumed terms. A streamlined algorithmic version of 328

iterative consensus is the Blake-Tison Method, which produces the complete sum 329

by performing explicit consensus generation with respect to each bi-form variable, 330

and following this by absorption. Alternatively, a syllogistic formula for the 331

function might be produced (without explicit consensus generation) through 332

multiplying out any suitable product-of-sums (pos) expression for the function to 333

produce a sum-of-products (sop) expression [77]. 334

Appendix C: Probability-Ready Expressions 335

A Probability-Ready Expression [55-60] is a random expression that can be directly 336

transformed, on a one-to-one basis, to its statistical expectation (its probability of 337

being equal to 1) by replacing all logic variables by their statistical expectations, and 338

also replacing logical multiplication and addition (ANDing and ORing) by their 339

arithmetic counterparts. A logic expression is a PRE if 340

a) all ORed terms are disjoint (mutually exclusive), and 341

b) all ANDed sums (alterms) are statistically independent. 342

 343

 344

Appendix D: The Boole-Shannon Expansion 		 345

An effective way for converting a Boolean formula into a PRE form is to (repeatedly) 346

employ the Boole-Shannon Expansion [59, 70], which takes the following form 347

when implemented w.r.t. a single variable ܺ୩	 348

݂ሺࢄሻ 	ൌ 	ሺ തܺ௞ 	∧ 	݂ሺ0|ࢄ୩ሻሻ 	∨ 	 ሺܺ୩ 	∧ 	݂ሺ1|܆୩ሻሻ, (D.1) 349

This Boole-Shannon Expansion expresses the Boolean function ݂ሺࢄሻ in terms of its 350

two subfunctions ݂ሺ0|ࢄ୩ሻ and	݂ሺ1|ࢄ୩ሻ. These subfunctions are equal to the 351

Boolean quotients ݂ሺࢄሻ/ തܺ௞ and ݂ሺࢄሻ/ܺ୩, and hence are obtained by restricting X௞ 352

in the expression ݂ሺࢄሻ to 0 and 1, respectively. If ݂ሺࢄሻ is a sop expression of ݊ 353

variables, the two subfunctions ݂ሺ0|ࢄ୩ሻ and ݂ሺ1|ࢄ୩ሻ are functions of at most 354

ሺ݊ െ 1ሻ variables. If the Boole-Shannon expansion is applied in sequence to the ݊ 355

variables of ݂ሺࢄሻ, the expansion tree is a complete binary tree (usually called a 356

Binary Decision Diagram) of 2n leaves. These leaves are functions of no variables, 357

or constants, and equal the entries of a corresponding conventional Karnaugh map of 358

݂ሺࢄሻ	[79]. Sibling nodes (nodes at the same level) of this expansion tree constitute 359

the entries of a variable-entered (or a map-entered) Karnaugh map of ݂ሺࢄሻ	[79]. 360

 361

Appendix E: Unate Boolean Functions 362

A Boolean function ݂ሺࢄሻ ൌ 	݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞, ܺ௞ାଵ, … , ܺ௡ሻ is called unate if 363

and only if it can be represented as a normal (sum-of-products or product-of-sums) 364

formula in which no variable appears both complemented and un-complemented, 365

i.e., every variable is mono-form and no variable is bi-form. This Boolean function 366

is called positive in its argument ܺ௞, if there exists a normal representation of the 367

function in which ܺ௞ does not appear complemented. This happens if and only if 368

every occurrence of the literal തܺ௞ is redundant and can be eliminated, i.e., if and 369

only if there exist functions ଵ݂ and ଶ݂ (independent of ܺ௞) such that [80-86] 370

 371

݂ሺࢄሻ ൌ ܺ௞		 ଵ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ,… , ܺ௡ሻ 	∨		 ଶ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ,… , ܺ௡ሻ. 372

(E.1) 373

A Boolean function ݂ሺࢄሻ is called negative in its argument ܺ௞, if there exists a 374

normal representation of the function in which ܺ௞ does not appear un-375

complemented. This happens if and only if every occurrence of the literal ܺ௞ is 376

redundant and can be eliminated, i.e., if and only if there exist functions ଷ݂ and ସ݂ 377

(independent of ܺ௞) such that [80-86] 378

 379

݂ሺࢄሻ ൌ 		 ଷ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ, … , ܺ௡ሻ 	∨		 തܺ௞		 ସ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ, … , ܺ௡ሻ. 380

(E.2) 381

If the function ݂ሺࢄሻ is positive in its argument ܺ௞, then its subfunctions are 382

݂ሺ1|ࢄ୩ሻ ൌ ݂ሺࢄሻ/ܺ௞ ൌ ଵ݂ ∨	 ଶ݂ and ݂ሺ0|ࢄ୩ሻ ൌ ݂ሺࢄሻ/ തܺ௞ ൌ ଶ݂, which means that 383

݂ሺ0|ࢄ୩ሻ ൑ 	݂ሺ1|ࢄ୩ሻ. Similarly, if the function ݂ሺࢄሻ is negative in its argument 384

ܺ௞, then its subfunctions are ݂ሺ1|ࢄ୩ሻ ൌ ݂ሺࢄሻ/ܺ௞ ൌ ଷ݂ and ݂ሺ0|ࢄ୩ሻ ൌ ݂ሺࢄሻ/385

തܺ௞ ൌ ଷ݂ ∨ 	 ସ݂, which means that ݂ሺ1|ࢄ୩ሻ ൑ 	݂ሺ0|ࢄ୩ሻ. 386

All threshold (linearly-separable) functions are unate, but the converse is not true 387

[87-91]. The function ଵܺܺଶ ∨ ܺଷܺସ is an example of a unate function that is not 388

threshold. All the prime implicants of a unate function are essential, so that it has a 389

single irredundant disjunctive form, which serves as both its (unique) minimal sum 390

and its complete sum. 391

 392

References 393

[1] Karnaugh, M. (1953). The map method for synthesis of combinational logic 394

circuits. Transactions of the American Institute of Electrical Engineers, Part I: 395

Communication and Electronics, 72(5), 593-599. 396

[2] Hurley, R. B., (1963). Probability maps, IEEE Transactions on Reliability, R-12(3): 39-44. 397

[3] Lee, S. C. (1978). Modern Switching Theory and Digital Design, Prentice-Hall, Englewood 398

Cliffs, New Jersey, NJ, USA. 399

[4] Muroga, S., (1979). Logic Design and Switching Theory, John Wiley, New York, NY, USA. 400

[5] Rushdi, A. M. (1983). Symbolic reliability analysis with the aid of variable-entered Karnaugh 401

maps, IEEE Transactions on Reliability, R-32(2): 134-139. 402

[6] Rushdi, A. M. (1986). Map differentiation of switching functions. Microelectronics and 403

Reliability, 26(5), 891-907. 404

[7] Rushdi, A. M. (1987). Improved variable-entered Karnaugh map procedures. Computers & 405

electrical engineering, 13(1), 41-52. 406

[8] Hill, F. J., & Peterson, G. R. (1993). Computer Aided Logical Design with Emphasis on 407

VLSI, 4th Edition, Wiley, New York, NY, USA. 408

[9] Rushdi, A. M. A., (1997). Karnaugh map, Encyclopedia of Mathematics, Supplement 409

Volume I, M. Hazewinkel (Editor), Boston, Kluwer Academic Publishers, pp. 327-328. 410

Available at http://eom.springer.de/K/k110040.html. 411

[10] Rushdi, A. M., & Al-Yahya, H. A. (2000). A Boolean minimization procedure using the 412

variable-entered Karnaugh map and the generalized consensus concept. International Journal 413

of Electronics, 87(7), 769-794. 414

[11] Rushdi, A. M., & Al-Yahya, H. A. (2001). Further improved variable-entered Karnaugh 415

map procedures for obtaining the irredundant forms of an incompletely-specified switching 416

function. Journal of King Abdulaziz University: Engineering Sciences, 13(1), 111-152. 417

[12] Rushdi, A. M., & Al-Yahya, H. A. (2001). Derivation of the complete sum of a switching 418

function with the aid of the variable-entered Karnaugh map. Journal of King Saud 419

University-Engineering Sciences, 13(2), 239-268. 420

[13] Rushdi, A. M., & Al-Yahya, H. A. (2002). Variable-entered Karnaugh map procedures for 421

obtaining the irredundant disjunctive forms of a switching function from its complete 422

sum. Journal of King Saud University-Engineering Sciences, 14(1), 13-26. 423

[14] Roth, C. & Kinney, L., (2014). Fundamentals of Logic Design,7th Edition, Cengage 424

Learning, Stamford, CT, USA. 425

[15] Rushdi, A. M. A., & Ghaleb, F. A. M. (2014). The Walsh spectrum and the real transform 426

of a switching function: A review with a Karnaugh-map perspective. Journal of Engineering 427

and Computer Sciences, Qassim University, 7(2), 73-112. 428

[16] Fabricius, E. D. (2017). Modern Digital Design and Switching Theory. CRC Press. 429

[17] Cavanagh, J. (2017). Digital Design and Verilog HDL Fundamentals. CRC Press. 430

[18] Rushdi, A. M. A., & Badawi, R. M. S. (2017). Karnaugh-map utilization in Boolean 431

analysis: The case of war termination. Journal of Qassim University: Engineering and 432

Computer Sciences, 10(1), 53-88. 433

[19] Deschamps, J. P., Valderrama, E., & Terés, L. (2017). Digital systems: From Logic Gates 434

to Processors. Springer. 435

[20] Rushdi, A. M. A., & Badawi, R. M. S. (2017). Karnaugh map utilization in Coincidence 436

Analysis, Journal of King Abdulaziz University: Faculty of Computers and Information 437

Technology, 6(1-2) 37-44. 438

[21] Rushdi, A. M. A. (2018). Utilization of Karnaugh maps in multi-value qualitative 439

comparative analysis, International Journal of Mathematical, Engineering and Management 440

Sciences (IJMEMS), 3(1), 28-46. 441

[22] Rushdi, R. A., & Rushdi, A. M. (2018). Karnaugh-map utility in medical studies: The 442

case of Fetal Malnutrition. International Journal of Mathematical, Engineering and 443

Management Sciences (IJMEMS), 3(3), 220-244. 444

[23] Rushdi, A. M. A., & Badawi, R. M. S. (2019). Computer engineers look at Qualitative 445

Comparative Analysis. International Journal of Mathematical, Engineering and 446

Management Sciences (IJMEMS), 4(3). 447

[24] Roth, C. H. (1993, November). Computer aids for teaching logic design. In Proceedings 448

of IEEE Frontiers in Education Conference-FIE'93 (pp. 188-191). IEEE. 449

[25] Hacker, C., & Sitte, R. (2004). Interactive teaching of elementary digital logic design 450

with WinLogiLab. IEEE Transactions on Education, 47(2), 196-203. 451

[26] Solairaju, A., & Periyasamy, R. (2011). Optimal Boolean function simplification through 452

K-map using object-oriented algorithm. International Journal of Computer 453

Applications, 15(7), 28-32. 454

[27] Baneres, D., Clarisó, R., Jorba, J., & Serra, M. (2014). Experiences in digital circuit 455

design courses: A self-study platform for learning support. IEEE Transactions on Learning 456

Technologies, 7(4), 360-374. 457

[28] Battistella, P., & von Wangenheim, C. G. (2016). Games for teaching computing in higher 458

education–a systematic review. IEEE Technology and Engineering Education, 9(1), 8-30. 459

[29] Rushdi, A. M., Zagzoog, S. S. (2018). Derivation of all particular solutions of a ‘big’ 460

Boolean equation with applications in digital design. . Current Journal of Applied Science 461

and Technology. 27(3), 1-16. 462

[30] Salhi, Y. (2018, September). Approaches for enumerating all the essential prime 463

implicants. In International Conference on Artificial Intelligence: Methodology, Systems, and 464

Applications (pp. 228-239). Springer, Cham. 465

[31] Halder, A. K. (1982). Karnaugh map extended to six or more variables. Electronics 466

Letters, 18(20), 868-870. 467

[32] Motil, J. M. (2017). Views of digital logic & probability via sets, numberings. Available 468

at: http://www.csun.edu/~jmotil/ccSetNums2.pdf. 469

[33] Rushdi, A. M., Zagzoog, S. S. & Balamesh, A. S. (2019). Derivation of a scalable 470

solution for the problem of factoring an n-bit integer, Journal of Advances in Mathematics 471

and Computer Science, 30(1), 1-22. 472

[34] Rushdi, A. M. A., & Alsayegh, A. B., Reliability analysis of a commodity-supply multi-473

state system using the map method, , Journal of Advances in Mathematics and Computer 474

Science, 31(2), 1-17. 475

[35] Fantauzzi, G. (1968, April). Application of Karnaugh maps to Maitra cascades. 476

In Proceedings of the April 30--May 2, 1968, spring joint computer conference (pp. 291-477

296). ACM. 478

[36] Edwards, C. R., & Hurst, S. L. (1978). A digital synthesis procedure under function 479

symmetries and mapping methods. IEEE Transactions on Computers, C-27(11), 985-997. 480

[37] Heiss, M. (1990). Error-detecting unit-distance code. IEEE Transactions on 481

Instrumentation and Measurement, 39(5), 730-734. 482

[38] Pomeranz, I., & Reddy, S. M. (1999). Pattern sensitivity: A property to guide test 483

generation for combinational circuits. In Proceedings Eighth Asian Test Symposium 484

(ATS'99) (pp. 75-80). IEEE. 485

[39] Tabandeh, M. (2012). Application of Karnaugh map for easy generation of error 486

correcting codes. Scientia Iranica, 19(3), 690-695. 487

[40] El-Maleh, A. H., & Oughali, F. C. (2014). A generalized modular redundancy scheme for 488

enhancing fault tolerance of combinational circuits. Microelectronics Reliability, 54(1), 316-489

326. 490

[41] Pezeshkpour, P., & Tabandeh, M. (2015). Data bits in Karnaugh map and increasing map 491

capability in error correcting, pp. 1-8. arXiv preprint arXiv:1502.02253. 492

[42] Rushdi, A. M. A., & Ba-Rukab, O. M. (2017). Map calculation of the Shapley-Shubik 493

voting powers: An example of the European Economic Community. International Journal of 494

Mathematical, Engineering and Management Sciences (IJMEMS), 2(1), 17-29. 495

[43] Rushdi, A. M. A., & Ba-Rukab, O. M. (2017). Calculation of Banzhaf voting indices 496

utilizing variable-entered Karnaugh maps. British Journal Mathematics and Computer 497

Science, 20(4), 1-17. 498

[44] Rushdi, A. M., and Al-Khateeb, D. L., A review of methods for system reliability 499

analysis: A Karnaugh-map perspective, Proceedings of the First Saudi Engineering 500

Conference, Jeddah, Saudi Arabia, vol. 1, pp. 57-95, (1983). 501

[45] Rushdi, A. M., Overall reliability analysis for computer-communication networks, 502

Proceedings of the Seventh National Computer Conference, Riyadh, Saudi Arabia, pp. 23-38, 503

(1984). 504

[46] Rushdi, A. M., On reliability evaluation by network decomposition, IEEE Transactions 505

on Reliability, R-33(5): 379-384, (1984), Corrections: ibid, R-34(4): 319 (1985). 506

[47] Rushdi, A. M. A., & Zagzoog, S. S. (2018). Design of a digital circuit for integer 507

factorization via solving the inverse problem of logic. Journal of Advances in Mathematics 508

and Computer Science, 26(3), 1-14. 509

[48] Rushdi, A. M., Zagzoog, S. S., & Balamesh, A. S. (2018). Design of a hardware circuit 510

for integer factorization using a big Boolean algebra. Journal of Advances in Mathematics 511

and Computer Science, 27(1), 1-25. 512

[49] Taylor, F. J., Gill, R., Joseph, J., & Radke, J. (1988). A 20 bit logarithmic number system 513

processor. IEEE Transactions on Computers, 37(2), 190-200. 514

[50] Thapliyal, H., Ranganathan, N., & Ferreira, R. (2010, August). Design of a comparator 515

tree based on reversible logic. In 10th IEEE International Conference on 516

Nanotechnology (pp. 1113-1116). IEEE. 517

[51] Morrison, M., Lewandowski, M., & Ranganathan, N. (2012, August). Design of a tree-518

based comparator and memory unit based on a novel reversible logic structure. In 2012 IEEE 519

Computer Society Annual Symposium on VLSI (pp. 231-236). IEEE. 520

[52] Rushdi, A. M. (1987). Logic design of NAND (NOR) circuits by the entered-map-521

factoring method. Microelectronics Reliability, 27(4), 693-701. 522

[53] Rushdi, A. M., & Ba-Rukab, O. M. (2007). A purely map procedure for two-level 523

multiple-output logic minimization. International Journal of Computer Mathematics, 84(1), 524

1-10. 525

[54] Rushdi, A. M., & Ba-Rukab, O. M. (2004). A map procedure for two-level multiple-526

output logic minimization. In Proceedings of the Seventeenth National Computer 527

Conference (pp. 521-532). 528

[55] Rushdi, A. M., and Goda, A. S., Symbolic reliability analysis via Shannon's expansion 529

and statistical independence, Microelectronics and Reliability, 25(6): 1041-1053, (1985). 530

[56] Rushdi, A. M., and AbdulGhani A. A., A comparison between reliability analyses based 531

primarily on disjointness or statistical independence, Microelectronics and Reliability, 33: 532

965-978, (1993). 533

[57] Rushdi, A. M. A., & Hassan A. K. (2015). Reliability of migration between habitat 534

patches with heterogeneous ecological corridors, Ecological modelling, 304, 1-10. 535

[58] Rushdi, A. M. A., & Hassan A. K. (2016). An exposition of system reliability analysis 536

with an ecological perspective, Ecological Indicators, 63, 282-295. 537

[59] Rushdi, A. M., & Rushdi, M. A. (2017). Switching-Algebraic Analysis of System 538

Reliability, Chapter 6 in M. Ram and P. Davim (Editors), Advances in Reliability and System 539

Engineering, Management and Industrial Engineering Series, Springer International 540

Publishing, Cham, Switzerland, 139-161. 541

[60] Rushdi, A. M., & Alturki, A. M. (2018). Novel representations for a coherent threshold 542

reliability system: A tale of eight signal flow graphs. Turkish Journal of Electrical Engineering & 543

Computer Sciences, 26(1), 257-269. 544

[61] Parker, K. P., and E. J. McCluskey, Probabilistic treatment of general combinational networks, 545

IEEE Transactions on Computers, C-24(6): 668-670, (1975). 546

[62] Ogus, R. C., The probability of a correct output from a combinational circuit, IEEE 547

Transactions on Computers, C-24(5): 534-544, (1975). 548

[63] McCluskey, E. J., K. P. Parker, and J. J. Shedletsky, Boolean network probabilities and 549

network design, IEEE Transactions on Computers, 27 (2): 187-189, (1978). 550

[64] Krishnamurthy, B., and I. G. Tollis, Improved techniques for estimating signal probabilities. 551

IEEE Transactions on Computers, 38 (7): 1041-1045, (1989). 552

[65] Ercolani, S., M. Favalli, M. Damiani, P. Olivo, and B. Ricco, Estimate of signal probability in 553

combinational logic networks, Proceedings of the 1st IEEE European Test Conference, 132-138, 554

(1989). 555

[66] Jiang, Y., Y. Tang, Y. Wang, and Y. Savaria, Evaluating the output probability of Boolean 556

functions without floating point operations, IEEE Canadian Conference on Electrical and 557

Computer Engineering, 1: 433-437, (1999). 558

[67] Franco, D. T., M. C. Vasconcelos, L. Naviner, and J. F. Naviner, Signal probability for 559

reliability evaluation of logic circuits, Microelectronics Reliability, 48 (8): 1586-1591, (2008). 560

[68] Han, J., H. Chen, E. Boykin, and J. Fortes, Reliability evaluation of logic circuits using 561

probabilistic gate models, Microelectronics Reliability, 51 (2): 468-476, (2011). 562

[69] Qian, W., M. D. Riedel, H. Zhou, and J. Bruck, Transforming probabilities with combinational 563

logic. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30 (9): 564

1279-1292 (2011). 565

[70] Brown, F. M., 1990. Boolean Reasoning: The Logic of Boolean Equations, Kluwer 566

Academic Publishers, Boston, USA. 567

[71] Rushdi, AM, Ba-Rukab, OM. Map derivation of the closures for dependency and 568

attribute sets and all candidate keys for a relational database, Journal of King Abdulaziz 569

University: Engineering Sciences 2014; 25(2): 3-34. 570

[72] Rushdi, A. M. A., & Albarakati, H. M. (2014). Construction of general subsumptive 571

solutions of Boolean equations via complete-sum derivation. Journal of Mathematics and 572

statistics, 10(2), 155-168. 573

[73] Rushdi, AM, Alshehri, TM, Zarouan, M, Rushdi, MA. Utilization of the Modern 574

Syllogistic Method in the exploration of hidden aspects in engineering ethical dilemmas. 575

Journal of King Abdulaziz University: Computers and Information Technology 2014, 3(1): 576

73-127. 577

[74] Rushdi, AM, Zarouan, M, Alshehri, TM, Rushdi, MA. The incremental version of the 578

Modern Syllogistic Method. Journal of King Abdulaziz University: Engineering Sciences 579

2015; 26(1): 25-51. 580

[75] Rushdi, A. M., & Rushdi, M. A. (2015). Utilization of the modern syllogistic method in 581

the service of academic advising. In Proceedings of KAU Conference on Academic Advising 582

in Higher Education (pp. 228-241). 583

[76] Rushdi, AM, and Rushdi, MA. Switching-algebraic algorithmic derivation of candidate 584

keys in relational databases, Proceedings of the IEEE International Conference on Emerging 585

Trends in Communication Technologies (ICETCT-2016), 2016. 586

[77] Rushdi, A. M. & Rushdi, M. A. (2018). Mathematics and Examples of the Modern Syllogistic 587

Method of Propositional Logic, Chapter 6 (pp. 123-167) in Ram, M. (Editor), Mathematics Applied 588

in Information Systems, Bentham Science Publishers, Emirate of Sharjah, United Arab Emirates. 589

[78] Rushdi, A. M. A., & Ghaleb, F. A. M. (2019). Novel Characterizations of the JK 590

Bistables (Flip Flops). Journal of Engineering Research and Reports, 4(3), 1-20 591

[79] Rushdi, A. M. A., & Ghaleb, F. A. M. (2016). A tutorial exposition of semi-tensor 592

products of matrices with a stress on their representation of Boolean functions. Journal of 593

King Abdulaziz University: Faculty of Computers and Information Technology, 5(1-2), 3-41. 594

[80] McNaughton, R. (1961). Unate truth functions. IRE Transactions on Electronic Computers, (1), 595

1-6. 596

[81] Choudhury, A., Sarma, D., & Das, S. R. (1967). Minimal Third-order Expressions of Boolean 597

Unate Functions. International Journal of Control, 6(5), 447-459. 598

[82] Fisher, L. T. (1974). Unateness properties of AND-EXCLUSIVE-OR logic circuits. IEEE 599

Transactions on Computers, C-24(2), 166-172. 600

[83] Thayse, A., & Deschamps, J. P. (1977). Logic properties of unate discrete and switching 601

functions. IEEE Transactions on Computers, C-26(12), 1202-1212. 602

[84] Srivatsa, S. K., & Biswas, N. N. (1977). Karnaugh map analysis and synthesis of threshold 603

functions. International Journal of Systems Science, 8(12), 1385-1399. 604

[85] Hansen, P., & Simeone, B. (1986). Unimodular functions. Discrete Applied 605

Mathematics, 14(3), 269-281. 606

[86] Feigelson, A., & Hellerstein, L. (1997). The forbidden projections of unate functions. Discrete 607

Applied Mathematics, 77(3), 221-236. 608

[87] Muroga, S., Tsuboi, T., & Baugh, C. R. (1970). Enumeration of threshold functions of eight 609

variables. IEEE Transactions on Computers, C-19(9), 818-825. 610

[88] Rushdi, A. M. (1990). Threshold systems and their reliability. Microelectronics and 611

Reliability, 30(2), 299-312. 612

[89] Zhang, R., Gupta, P., Zhong, L., & Jha, N. K. (2005). Threshold network synthesis and 613

optimization and its application to nanotechnologies. IEEE Transactions on Computer-Aided 614

Design of Integrated Circuits and Systems, 24(1), 107-118. 615

[90] Subirats, J. L., Jerez, J. M., & Franco, L. (2008). A new decomposition algorithm for threshold 616

synthesis and generalization of Boolean functions. IEEE Transactions on Circuits and Systems I: 617

Regular Papers, 55(10), 3188-3196. 618

[91] Rushdi, A. M. A., & Alturki, A. M. (2015). Reliability of coherent threshold systems. Journal 619

of Applied Sciences, 15(3), 431-443. 620

 621

 622

 623

 624

Fig. 1. The general layout of the eight-variable Karnaugh map used herein. The cell 625

colored in green (column 15 and row 0) represents the minterm 626

XଵXଶതതതXଷXସതതതXହX଺തതതX଻X଼തതത	or the bit sequence 10101010. Its eight logically adjacent or 627

neighboring cells are highlighted in yellow. Only four of these cells are visually 628

adjacent to the original cell when the map is viewed to lie on a torus. 629

 630

 631

 632

Fig. 2. The eight-variable Karnaugh map of Fig. 1. There are two borders of the 633

variable Xଷ (separating its internal domain (Xଷ ൌ 1) and external domain (Xଷ ൌ634

0)), which are highlighted in bold. There are two internal regions for the variable 635

Xହ (colored) which are centered around these borders. 636

 637

 638

 639

 640

 641

 642

 643

 644

 645

 646

 647

 648

 649

 650

Fig. 3. A comparator is a combinational circuit that compares two n-bit inputs 651 ܇

and ܈ and produces three orthonormal outputs ܩ ൌ ሼ܇ ൐ ܧ ,ሽ܈ ൌ ሼ܇ ൌ ሽ and 652܈

ܮ ൌ ሼ܇ ൏ ܩ ሽ such that܈ ∨ ܧ ∨ ܮ ൌ ܧܩ ,1 ൌ ܮܧ ൌ ܩܮ ൌ 0, and consequently 653

ܩ ൌ ,തܮതܧ ܧ ൌ ,തܮܩ̅ and	ܮ ൌ 654	ത.ܧܩ̅

 655

Comparator
	܇

	܈

ܩ ൌ ሼ܇ ൐ ሽ܈

ܧ ൌ ሼ܇ ൌ ሽ܈

ܮ ൌ ሼ܇ ൏ ሽ܈

 656

 657

ሼ ௞ܻഥ ܼ௞തതത ൌ 1ሽ → ሼܧ ൌ 1ሽ

ሼ ௞ܻܼ௞തതത ൌ 1ሽ ≡ ሼܩ ൌ 1ሽ

ሼ ௞ܻഥ ܼ௞ ൌ 1ሽ ≡ ሼܮ ൌ 1ሽ

ሼ ௞ܻܼ௞ ൌ 1ሽ → ሼܧ ൌ 1ሽ

 658

Fig. 4. Karnaugh map for two single-bit inputs ௞ܻ	and	ܼ௞. Note that ሼܧ ൌ 1ሽ ≡659

ሼ ௞ܻഥ ܼ௞തതത ൌ 1ሽ ∨ ሼ ௞ܻܼ௞ ൌ 1ሽ ≡ ሼ ௞ܻഥ ܼ௞തതത ∨ ௞ܻܼ௞ ൌ 1ሽ. 660

 661

 662

 663

Y୩

Z୩	

 664

Fig. 5. A flow chart depicting the comparison of a four-bit input ܇ ൌ ሺYଷYଶYଵY଴ሻଶ 665

to another four-bit input ܈ ൌ ሺZଷZଶZଵZ଴ሻଶ. The comparator starts by comparing 666

the highest-order or most-significant bits (MSB) first. If equality exists ሺYଷ 	ൌ 	 Zଷሻ, 667

then the comparator compares the next lower bits and so on until it reaches the 668

lowest-order or least-significant bits (LSB). If equality still exists then the two 669

numbers are defined as being equal (ࢅ ൌ If inequality is detected at any stage 670 .(ࢆ

(either Y୩	 ൐ 	Z୩		ݎ݋		Y୩	 ൏ 	Z୩) the relationship between the two numbers 	ࢅ	and	671 ࢆ

is determined (respectively as ࢅ ൐ ࢅ		ݎ݋		ࢆ	 ൏ and no further comparison is 672 (ࢆ

needed. 673

 674

 675

 676

Fig. 6. A summary of the results of equations (6) (for the 4-bit comparator) 677

demonstrated on an 8-variable Karnaugh map with inputs ܇ ൌ ሺYଷYଶYଵY଴ሻଶ and 678

܈ ൌ ሺZଷZଶZଵZ଴ሻଶ. The top left quarter of this map is a 6-variable submap 679

representing a 3-bit comparator. Again, the top left quarter of this submap is a 4-680

variable submap representing a 2-bit comparator. Finally, the top left quarter of 681

this latter submap is a 1-variable submap representing a 1-bit comparator. 682

Remarkable symmetry could be observed with respect to the main diagonal of the 683

map. 684

 685

 686

 687

 688

 689

 690

 691

 692

 693

 694

 695

 696

 697

 698

Fig. 7. Construction of the 2݊-variable map (for the ݊-bit comparator) from the 699

2ሺ݊ െ 1ሻ-variable map (for the ሺ݊ െ 1ሻ-bit comparator). Theoretically, such a 700

construction can be inductively continued without limit. 701

 702

The 2ሺ݊ െ 1ሻ-variable
map as it is

A map with all cells
filled with ܩ

A map with all cells
filled with ܮ

The 2ሺ݊ െ 1ሻ-variable
map reflected with

respect to the center of
symmetry

Z୬	

Y୬

 703

 704

(a) YଷZതଷ

(b1) YଷYଶZതଶ

(b2) ZതଷYଶZതଶ

 705

 706

 707

 708

(c1) YଷZതଶYଵZതଵ

(c2) YଷYଶYଵZതଵ

(c3) ZതଷYଶYଵZതଵ

(c4) ZതଷZതଶYଵZതଵ

 709

 710

 711

 712

 713

(d1) YଷZതଶZതଵY଴Zത଴

(d2) YଷZതଶYଵY଴Zത଴

(d3) YଷYଶYଵY଴Zത଴

(d4) YଷYଶZതଵY଴Zത଴

 714

 715

 716

(d5) ZതଷYଶZതଵY଴Zത଴

(d6) ZതଷYଶYଵY଴Zത଴

(d7) ZതଷZതଶYଵY଴Zത଴

(d8) ZതଷZതଶZതଵY଴Zത଴

Fig. 8. A complete sum (and also a minimal sum) for Gସ given by loops on fifteen maps. Note 717

that this coverage proves that G is a unate function (with a positive polarity in Y୩ ሺ0 ൑ ݇ ൑ 3ሻ 718

and a negative polarity in Z୩	ሺ0 ൑ ݇ ൑ 3ሻ. Note that all loops pass through the shaded cell 719

ሺYଷYଶYଵY଴ZଷZଶZଵZ଴ሻ ൌ ሺ11110000ሻ, which is the all-1 cell for ܇ and the all-0 cell for ܈. Each 720

of the fifteen loops in this figure is an essential prime-implicant loop, since it is the only loop 721

covering some of its cells. For example, the loop ZതଷZതଶZതଵY଴Zത଴	in (d8) is the only PI loop covering 722

the cell YഥଷZതଷYഥଶ	ZതଶYഥଵZതଵY଴Zത଴ (labelled with G). This cell has three asserted neighbors only, and if 723

it could be covered by an 8-cell loop (which is the case herein), such a loop would be an essential 724

PI loop. 725

