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Abstract 8 

An ݊-bit comparator is a celebrated combinational circuit that compares two ݊-bit 9 

inputs ࢅ and ࢆ and produces three orthonormal outputs: G (indicating that ࢅ is 10 

strictly greater than ࢆ), E (indicating that ࢅ and ࢆ are equal or equivalent), and L 11 

(indicating that ࢅ is strictly less than ࢆ). The symbols ‘G’, ‘E’, and ‘L’ are 12 

deliberately chosen to convey the notions of ‘Greater than,’ ‘Equal to,’ and ‘Less 13 

than,’ respectively. This paper analyzes an ݊-bit comparator in the general case of 14 

arbitrary ݊ and visualizes the analysis for ݊ ൌ 4 on a regular and modular version 15 

of the 8-variable Karnaugh-map. The cases ݊ ൌ 3, 2, and 1 appear as special cases 16 

on 6-variable, 4-variable, and 2-variable submaps of the original map. The analysis 17 

is a tutorial exposition of many important concepts in switching theory including 18 

those of implicants, prime implicants, essential prime implicants, minimal sum, 19 

complete sum and disjoint sum of products (or probability-ready expressions). 20 
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1. Introduction 26 

Modern logic digital design handles real-life problems that involve very large 27 

numbers of variables, and hence are not amenable to solution via heuristic manual 28 

tools but are solvable only via computerized algorithms. However, there is one 29 

heuristic manual tool, namely, the Karnaugh map [1-23], that plays an 30 

indispensable role in logic design as it provides pictorial insight in demonstrating 31 



 

 

concepts, proving theorems, and understanding procedures by showing their details 32 

in small examples. The literature abounds with contributions that offer instructive 33 

and pedagogical expositions of the Karnaugh map and related logic design tools 34 

[24-30]. The purpose of this paper is to make yet another such contribution, as it 35 

provides a tutorial exposition of a regular and modular version of the Karnaugh 36 

map [31-34] and to utilize this version in presenting many important concepts of 37 

switching theory and logic design. This map version can be (theoretically) 38 

extended to an arbitrary large number of variables, and includes all maps of 39 

smaller sizes as special cases.  40 

The Karnaugh map is an enhanced form of the truth table [9], in which two 41 

dimensions (rather than one dimension) are used, and in which reflected binary 42 

ordering or grey ordering (as opposed to direct binary ordering) is employed. The 43 

݊-variable map consists of 2௡ cells, such that every cell has ݊ neighboring cells or 44 

logically adjacent cells. Two cells are (first) neighbors or (immediately) adjacent if 45 

their variable values except one are exactly the same. Such two cells are said to 46 

have a Hamming distance [35-43] of one or to differ in exactly one-bit position. 47 

The map is constructed such that any two logically adjacent cells are made also as 48 

visually adjacent as possible. In general, two logically adjacent cells appear as the 49 

mirror images with respect to boundary lines separating the internal and external 50 

domains of the variable in whose value the two cells differ (See Fig. 1). 51 

Typically, the Karnaugh map is conveniently used up to six variables [4]. There are 52 

occasions in which Karnaugh maps of eight variables are used, in which the 53 

rectangular shape of cells is abandoned to a triangular shape [44-48]. In this paper, 54 

however, we will use the aforementioned regular and modular form of the 55 

Karnaugh map that appeared earlier in [31-34], and is such that 56 

a) The rectangular shape of the cell is retained.   57 

b) The internal domain of the ሺ݊	 ൅ 	1ሻst variable is introduced to be centered 58 

around the boundary lines of the ሺ݊	– 	1ሻst variable (See Fig. 2). 59 

We note that the process outlined in (b) above can be, in theory, indefinitely 60 

continued. Hence, there is no theoretical upper bound on the size of the Karnaugh 61 

map constructed this way. However, as the number of variables increases, the size 62 

of the map increases exponentially, and its utility diminishes very quickly due to 63 

prohibitively increasing difficulty. 64 



 

 

As a demonstration of the usefulness of the aforementioned version of the 65 

Karnaugh map, we present its case of eight variables herein. We use this map to 66 

explore the design of a well-known combinational circuit, namely an ݊-bit digital 67 

magnitude comparator [49-51]. Note that we deal herein only with digital (as 68 

opposed to analogue) comparators. A digital comparator typically uses two ݊-bit 69 

inputs ܇ and ܈, and could possibly be  70 

1. An Identity Comparator, which has a single output ܧ such that ܧ ൌ 1 when 71 

ࢅ ൌ  i.e., when the two inputs match bit for bit. 72 ,ࢆ

2. A Magnitude Comparator, which has three orthonormal outputs ሼܩ, ,ܧ  ሽ, 73ܮ

namely ܩ ൌ 1 when ࢅ ൐ ܧ ,ࢆ ൌ 1 when ࢅ ൌ ܮ and ࢆ ൌ 1 when ࢅ ൏ ܼ.  74 

Note that a magnitude comparator includes an identity comparator as a special 75 

case. The magnitude comparator is a redundant circuit in the sense that any of its 76 

three outputs might be readily obtained from the other two. Digital 77 

Comparators are used widely in Analogue-to-Digital Converters (ADC) and to 78 

perform a variety of arithmetic operations in the Arithmetic Logic Units (ALU) of 79 

a digital computer.  80 

Karnaugh-map analysis of the digital magnitude comparator is employed herein to 81 

provide instructive and pedagogical exposition of many important concepts in 82 

logic design and switching theory including those of implicants, prime implicants, 83 

essential prime implicants, minimal sum, complete sum and disjoint sum of 84 

products (or probability-ready expressions). 85 

The organization of the rest of this paper is as follows. Section 2 presents a 86 

mathematical description of an ݊-bit magnitude digital comparator. Section 3 87 

derives expressions for the comparator outputs in minimal-sum or complete-sum 88 

form as well as in probability-ready form. Section 4 concludes the paper. To make 89 

the paper self-contained, five appendices are included. Appendix A explains basic 90 

concepts of Boolean minimization, Appendix B is about the complete sum.  91 

Appendix C defines probability-ready expressions. Appendix D briefly introduces 92 

the Boole-Shannon expansion. Appendix E deals with unate Boolean functions. 93 

 94 

2. Mathematical Description of an n-bit Comparator 95 



 

 

An n-bit comparator is a (combinational) circuit (shown in Fig. 3) that compares 96 

two n-bit inputs ܇ ൌ ሺY௡ିଵY௡ିଶ …YଵY଴ሻଶ and ܈ ൌ ሺZ௡ିଵZ௡ିଶ …ZଵZ଴ሻଶ such that 97 

܇      ൌ ∑ 		Y୩
௡ିଵ
௞ୀ଴ 2௞,                                   (1a) 98 

܈    ൌ ∑ 		Z୩
௡ିଵ
௞ୀ଴ 2௞.                                 (1b) 99 

The comparator has three 1-bit outputs, namely 100 

ܩ ൌ ሼ܇ ൐  ሽ,              (2a) 101܈

ܧ ൌ ሼ܇ ൌ  102	ሽ,              (2b)܈

ܮ ൌ ሼ܇ ൏  ሽ.              (2c) 103܈

The three variables G, E, and L form an orthonormal set, or in other words, they 104 

are mutually exclusive and exhaustive, i.e.,  105 

ܩ ∨ ܧ ∨ ܮ ൌ 1.                    (3a)	106 

ܧܩ ൌ ܮܧ ൌ ܮܩ ൌ 0.                      (3b) 107 

Consequently, these three variables are inter-related by the following equations. 108 

ܩ ൌ ܩ̅			,തܮതܧ ൌ ܧ	 ∨  109 (4a)                              ,ܮ

ܧ ൌ തܧ			,തܮܩ̅ ൌ ܩ	 ∨  110 (4b)                              	,ܮ

ܮ ൌ തܮ			,തܧܩ̅ ൌ ܩ	 ∨  111 (4c)                              .ܧ

Figure 4 is a display of the results above for two single-bit inputs ܇ ൌ ௞ܻ	and	܈ ൌ112 

ܼ௞. For this case, we simply obtain 113 

ܩ ൌ ௞ܻܼ௞തതത ൌ ሼ ௞ܻ ൐ ܼ௞ሽ ൌ ሼ ௞ܻ ൑ ܼ௞ሽതതതതതതതതതതതത ൌ ሼ ௞ܻ → ܼ௞തതതതതതതതതതതതሽ             (5a) 114 

ܧ ൌ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ ൌ ሼ ௞ܻ ⊙ ܼ௞ሽ ൌ ሼ ௞ܻ ≡ ܼ௞ሽ                      (5b) 115 

ܮ ൌ ௞ܻഥ 	ܼ௞ ൌ ሼ ௞ܻ ൏ ܼ௞ሽ ൌ ሼܼ௞ ൑ ௞ܻሽതതതതതതതതതതതത ൌ ሼܼ௞ → ௞ܻሽതതതതതതതതതതതതത   (5c) 116 

As seen from equations (5), the three variables ܩ, ,ܧ and	ܮ in the case of single-bit 117 

inputs are given by the functions 	ܶܫܤܫܪܰܫሺ ௞ܻ, ܼ௞ሻ, ܱܴܺܰሺ ௞ܻ, ܼ௞ሻ, and 118 

,ሺܼ௞ܶܫܤܫܪܰܫ 	 ௞ܻሻ. 119 

3. Derivation of the Comparator Equations 120 



 

 

In this section, we derive the explicit output equations for a 4-bit comparator, and 121 

then generalize our results to an ݊-bit one. by obtaining the output equations in 122 

terms of recursive relations and boundary conditions. Figure 5 is a flow chart that 123 

compares the bits ௞ܻ to the bits ܼ௞ (starting from the most significant bit and 124 

ending with the least significant one, i.e., for ݇ ൌ 3, 2, 1, and 0. As the flow chart 125 

indicates, the three outputs denoted as ܩସ, ,ସܧ  ସ are given by 126ܮ	݀݊ܽ

Gସ ൌ ଷܻܼଷതതത ∨ ሺ ଷܻഥ ܼଷതതത ∨ ଷܻܼଷሻሺ ଶܻܼଶതതത ∨ ሺ ଶܻഥ ܼଶതതത ∨ ଶܻܼଶሻሺ ଵܻܼଵതതത ∨ ሺ ଵܻഥܼଵതതത ∨ ଵܻܼଵሻ ଴ܻܼ଴തതതሻሻ  127 

         (6a) 128 

Eସ ൌ ⋀ 		ሺ ௠ܻതതതത	ܼ௠തതതത ∨ ௠ܻܼ௠ሻ
ଷ
௠ୀ଴        (6b) 129 

Lସ ൌ ଷܻഥ ܼଷ ∨ ሺ ଷܻഥ ܼଷതതത ∨ ଷܻܼଷሻሺ ଶܻഥ ܼଶ ∨ ሺ ଶܻഥ ܼଶതതത ∨ ଶܻܼଶሻሺ ଵܻഥܼଵ ∨ ሺ ଵܻഥܼଵതതത ∨ ଵܻܼଵሻ ଴ܻഥ ܼ଴ሻሻ  130 

         (6c) 131 

Equations (6) are demonstrated by the 8-variable Karnaugh map in Fig. 6, where 132 

the cells for which ܩସ ൌ 1 are entered by ܩ and given a light blue color, while the 133 

cells for which ܮସ ൌ 1 are entered by ܮ and given a pale red color, and the cells for 134 

which ܧସ ൌ 1 are entered by ܧ and left uncolored. The single map in Fig. 6 is 135 

obtained by combining three maps for the orthonormal variables ܩସ, ܮସ, and ܧସ.  136 

Both the cells for the functions ܩସ and ܮସ are covered by disjoint (non-overlapping 137 

loops). For each of these two functions, there is one 64-cell loop, two 16-cell 138 

loops, four 4-cell loops, and eight 1-cell loops. These loops come in four 139 

consecutive stages, with the loops in a succeeding stage doubling in number and 140 

diminishing to quarter size, compared to the loops in the preceding stage. 141 

Remarkable symmetry could be observed with respect to the main diagonal of the 142 

map. 143 

Figure 6 is, in a sense, a summary of the results of equations (6) (for the 4-bit 144 

comparator) demonstrated on an 8-variable Karnaugh map with inputs ܇ ൌ145 

ሺYଷYଶYଵY଴ሻଶ and ܈ ൌ ሺZଷZଶZଵZ଴ሻଶ. Though the analysis is intended for ݊ ൌ 4 on 146 

the 8-variable map, the cases ݊ ൌ 3, 2, and 1 appear as special cases on 6-variable, 147 

4-variable, and 2-variable submaps of the original map. The top left quarter of this 148 

map is a 6-variable submap representing a 3-bit comparator with inputs ܇ ൌ149 

ሺYଶYଵY଴ሻଶ and ܈ ൌ ሺZଶZଵZ଴ሻଶ. Again, the top left quarter of this submap is a 4-150 

variable submap representing a 2-bit comparator with inputs ܇ ൌ ሺYଵY଴ሻଶ and 151 



 

 

܈ ൌ ሺZଵZ଴ሻଶ. Finally, the top left quarter of this latter submap is a 2-variable 152 

submap representing a 1-bit comparator with inputs ܇ ൌ ሺY଴ሻଶ and ܈ ൌ ሺZ଴ሻଶ. 153 

The analysis above for ݊ ൌ 4 on the 8-variable map of Fig. 6 can also be extended 154 

to higher (encompassing) values of ݊. Figure 7 demonstrates the construction of 155 

the 2݊-variable map (for the ݊-bit comparator) from a 2ሺ݊ െ 1ሻ-variable map (for 156 

the ሺ݊ െ 1ሻ-bit comparator). Theoretically, such a construction can be inductively 157 

continued without limit. Therefore, one can easily imagine how the maps for 158 

݊ ൌ 5, 6, 7…  look like. The 2݊-variable map might be viewed as a map-159	.ܿݐ݁

entered map [52-54] with two map variables ௡ܻ and ܼ௡, and four major cells, each 160 

of which having the size of a 2ሺ݊ െ 1ሻ-variable map. The middle point of this new 161 

map is taken for a center of symmetry. Initially, the major cell ௡ܻതതത ܼ௡തതത is filled with 162 

the original 2ሺ݊ െ 1ሻ-variable map as it is. Next, the major cell ௡ܻܼ௡ is filled with 163 

the original 2ሺ݊ െ 1ሻ-variable map reflected with respect to the center of 164 

symmetry, while the major cell ௡ܻܼ௡തതത  is filled uniformly with a ′ܩ′ in each of its 165 

cells. Finally, the major cell ௡ܻതതത ܼ௡ is filled uniformly with an ′ܮ′ in each of its 166 

cells. In fact, one can start with a base case of the 2-variable map with inputs 167 

܇ ൌ ሺY଴ሻଶ and ܈ ൌ ሺZ଴ሻଶ, and use the recursive step suggested by Fig. 7 168 

repeatedly, so as to construct any desirable 2݊-variable map. 169 

Equations (6) constitute probability-ready expressions [55-60] (See Appendix C), 170 

and hence, can be converted, on a one-to one basis, to the corresponding 171 

expectation expressions  172 

Eሼܩସሽ ൌ173 

ሼܧ ଷܻሽܧሼܼଷതതതሽ ൅ ሺܧሼ ଷܻഥ ሽܧሼܼଷതതതሽ ൅ ሼܧ ଷܻሽܧሼܼଷሽሻሺܧሼ ଶܻሽܧሼܼଶതതതሽ ൅ ሺܧሼ ଶܻഥ ሽܧሼܼଶതതതሽ ൅174 

ሼܧ ଶܻሽܧሼܼଶሽሻሺܧሼ ଵܻሽܧሼܼଵതതതሽ ൅ ሺܧሼ ଵܻഥ ሽܧሼܼଵതതതሽ ൅ ሼܧ ଵܻሽܧሼܼଵሽሻܧሼ ଴ܻሽܧሼܼ଴തതതሽሻሻ.      (7a) 175 

 176 

ସሽܧሼܧ ൌ ⋀ 		ሺܧሼ ௠ܻതതതതሽܧሼ	ܼ௠തതതതሽ ൅ ሼܧ ௠ܻሽܧሼܼ௠ሽሻ
ଷ
௠ୀ଴ .                        (7b) 177 

	

Eሼܮସሽ ൌ178 

ሼܧ ଷܻഥ ሽܧሼܼଷሽ ൅ ሺܧሼ ଷܻഥ ሽܧሼܼଷതതതሽ ൅ ሼܧ ଷܻሽܧሼܼଷሽሻሺܧሼ ଶܻഥ ሽܧሼܼଶሽ ൅ ሺܧሼ ଶܻഥ ሽܧሼܼଶതതതሽ ൅179 

ሼܧ ଶܻሽܧሼܼଶሽሻሺܧሼ ଵܻഥ ሽܧሼܼଵሽ ൅ ሺܧሼ ଵܻഥ ሽܧሼܼଵതതതሽ ൅ ሼܧ ଵܻሽܧሼܼଵሽሻܧሼ ଴ܻഥ ሽܧሼܼ଴ሽሻሻ.         (7c) 180 

A generalization of equations (6) is possible via the following recursive relations 181 



 

 

G௞ ൌ ௞ܻܼ௞തതത ∨ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܩ௞ିଵ,                  1 ൑ ݇ ൑ ݊    (8a) 182 

௞ܧ ൌ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܧ௞ିଵ,      1 ൑ ݇ ൑ ݊  (8b) 183 

௞ܮ ൌ ௞ܻഥ ܼ௞ ∨ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܮ௞ିଵ.                  1 ൑ ݇ ൑ ݊    (8c) 184 

These recursive relations are used in conjunction with the boundary conditions 185 

଴ܩ ൌ ଴ܻܼ଴തതത,                                                         (9a) 186 

଴ܧ ൌ ଴ܻഥ 	ܼ଴തതത ∨ ଴ܻܼ଴,                                             (9b) 187 

଴ܮ ൌ ଴ܻഥ ܼ଴.                                    (9c) 188 

Equations (8) have a complete-sum version of the form 189 

௡ሻܩሺܵܥ ൌ ௞ܻܼ௞തതത ∨ ሺ ௞ܻ ∨ ܼ௞തതതሻ	ܵܥሺܩ௞ିଵሻ,            1 ൑ ݇ ൑ ݊    (10a) 190 

௞ሻܧሺܵܥ            ൌ ሺ ௞ܻഥ 	ܼ௞തതത ∨ ௞ܻܼ௞ሻ	ܵܥሺܧ௞ିଵሻ,                1 ൑ ݇ ൑ ݊     (10b) 191 

௞ሻܮሺܵܥ ൌ ௞ܻഥ ܼ௞ ∨ ሺ ௞ܻഥ ∨ ܼ௞ሻ	ܵܥሺܮ௞ିଵሻ.             1 ൑ ݇ ൑ ݊     (10a) 192 

Equations (10) are used together with a complete-sum version of (9), namely 193 

଴ሻܩሺܵܥ ൌ ଴ܻܼ଴തതത,       (11a) 194 

଴ሻܧሺܵܥ ൌ ଴ܻഥ 	ܼ଴തതത ∨ ଴ܻܼ଴,                 (11b) 195 

଴ሻܮሺܵܥ ൌ ଴ܻഥ ܼ଴.       (11c) 196 

Equations (8) and (9) are also probability-ready expressions [55-60] (See 197 

Appendix C) that are useful in signal-probability calculations [61-69] as they 198 

transform on a one-to-one basis to the probability domain, namely 199 

௞ሽܩሼܧ ൌ ሼܧ ௞ܻሽܧሼܼ௞തതതሽ ൅ ሺܧሼ ௞ܻഥ ሽܧሼܼ௞തതതሽ ൅ ሼܧ ௞ܻሽܧሼܼ௞ሽሻ	ܧሼܩ௞ିଵሽ,    (12a) 200 

௞ሽܧሼܧ ൌ ሺܧሼ ௞ܻഥ ሽܧሼ	ܼ௞തതതሽ ൅ ሼܧ ௞ܻሽܧሼܼ௞ሽሻ	ܧሼܧ௞ିଵሽ,           (12b) 201 

௞ሽܮሼܧ ൌ ሼܧ ௞ܻഥ ሽܧሼܼ௞ሽ ൅ ሺܧሼ ௞ܻഥ ሽܧሼ	ܼ௞തതതሽ ൅ ሼܧ ௞ܻሽܧሼܼ௞ሽሻ	ܧሼܮ௞ିଵሽ.             (12a) 202 

଴ሽܩሼܧ ൌ ሼܧ ଴ܻሽܧሼܼ଴തതതሽ,                           (13a) 203 

଴ሽܧሼܧ ൌ ሺܧሼ ଴ܻഥ ሽܧሼ	ܼ଴തതതሽ ൅ ሼܧ ଴ܻሽܧሼܼ଴ሽሻ,     (13b) 204 

଴ሽܮሼܧ ൌ ሼܧ ଴ܻഥ ሽܧሼܼ଴ሽ.                                                         (13c) 205 



 

 

Figure 8 displays all the prime implicants of ܩସ, each on a separate map. There are 206 

fifteen prime-implicant loops colored in dark blue to be distinguished from other 207 

asserted cells of ܩସ, which remain colored in light blue. Each of these loops 208 

(except the first) in an enlargement of one of the loops in Fig. 6 (entered with ܩ), 209 

so as to allow overlapping with earlier loops. Note that all fifteen loops pass 210 

through the cell at row 0 and column 15, which is the all-0 cell for ܈ and the all-1 211 

cell for ܇. These prime-implicant loops are all essential. They come in four 212 

consecutive stages, with the loops in a succeeding stage doubling in number and 213 

diminishing to half size, compared to the loops in the preceding stage. The function 214 

,ସ is a unate function with positive polarity in ଷܻܩ ଶܻ, ଵܻ	and	 ଴ܻ and with negative 215 

polarity in ܼଷ, ܼଶ, ܼଵ	and	ܼ଴ (See Appendix E). The minimal sum (or complete 216 

sum) for ܩସ is covered by one 64-cell loop, two 32-cell loops, four 16-cell loops, 217 

and eight 8-cell loops, and is given by 218 

ସܩ ൌ ଷܻܼଷതതത ∨  219 

ଷܻ ଶܻܼଶതതത ∨ ܼଷതതത ଶܻܼଶതതത ∨ 220 

ଷܻܼଶതതത ଵܻܼଵതതത ∨ ଷܻ ଶܻ ଵܻܼଵതതത ∨ ܼଷതതത ଶܻ ଵܻܼଵതതത ∨ ܼଷതതത	ܼଶതതത ଵܻܼଵതതത ∨ 221 

ଷܻܼଶതതത	ܼଵതതത ଴ܻܼ଴തതത ∨ ଷܻܼଶതതത ଵܻ ଴ܻܼ଴തതത ∨ ଷܻ ଶܻ ଵܻ ଴ܻܼ଴തതത ∨ ଷܻ ଶܻܼଵതതത ଴ܻܼ଴തതത ∨ ܼଷതതത ଶܻܼଵതതത ଴ܻܼ଴തതത ∨ ܼଷതതത ଷܻ ଶܻ ଴ܻܼ଴തതത ∨222 

ܼଷതതത	ܼଶതതത ଵܻ ଴ܻܼ଴തതത ∨ ܼଷതതത	ܼଶതതത	ܼଵതതത ଴ܻܼ଴തതത           (14a) 223 

 224 

ൌ ଷܻܼଷതതത ∨  225 

ሺ ଷܻ ∨ ܼଷതതതሻ ଶܻܼଶതതത ∨  226 

ሺ ଷܻ ∨ ܼଷതതതሻሺ ଶܻ ∨ ܼଶതതതሻ ଵܻܼଵതതത ∨  227 

ሺ ଷܻ ∨ ܼଷതതതሻሺ ଶܻ ∨ ܼଶതതതሻሺ ଵܻ ∨ ܼଵതതതሻ ଴ܻܼ଴തതത          (14b) 228 

 229 

Note that the factored expression (14b) might be obtained from (10a) and (11a). 230 

Similar analysis is possible for the function ܮସ. 231 

 232 

4. Conclusions 233 

This paper is a tutorial on the basic concepts of switching algebra, including 234 

Boolean minimization, the complete sum (Blake canonical form), probability-ready 235 



 

 

expressions, the Boole-Shannon expansion and unate Boolean functions. The topic 236 

explored in this tutorial is the design of a well-known combinational circuit, 237 

namely the ݊-bit digital magnitude comparator. The tool employed herein is a 238 

regular and modular version of the 8-variable Karnaugh-map, for which the case 239 

݊ ൌ 4 of the ݊-bit comparator is explored. The cases ݊ ൌ 3, 2, and 1 appear as 240 

special cases on 6-variable, 4-variable, and 2-variable submaps of the original map. 241 

The analysis for ݊ ൌ 4 on the 8-variable map is shown to be extendible 242 

(theoretically without limit) to higher (encompassing) values of ݊. 243 

 244 

Appendix A: Basic Concepts of Boolean Minimization 245 

This Appendix summarizes notions and concepts employed in the minimization of 246 

Boolean functions. Additional information is available in Lee [3], Muroga [4], 247 

Rushdi [5-7], Hill and Peterson [8], and Roth and Kinney [14]. 248 

The two literals of a Boolean variable ܺ௠ are its complemented form തܺ௠ and its 249 

uncomplemented one ܺ௠. A product (conjunction) of literals is called a term ܶሺࢄሻ 250 

if a literal for each variable appears in it at most once, i.e., a term is an irredundant 251 

product (conjunction). A redundant product can be reduced to a term by 252 

eliminating repeated appearances of a literal through employment of idempotency 253 

of ‘AND.’ The constant 1 is the multiplication (ANDing) identity and is the 254 

product or term of no literals. The dual of a term is the irredundant sum 255 

(disjunction), called an alterm. The constant 0 is the addition (ORing) identity and 256 

is the sum or alterm of no literals. The constant 1 is not an alterm and the constant 257 

0 is not a term. A term ܶሺࢄሻ is an implicant of a function ݂ሺࢄሻ (denoted by 258 

ܶሺࢄሻ → ݂ሺࢄሻ or ܶሺࢄሻ ൑ ݂ሺࢄሻ) if every ܶሺࢄሻ satisfying ሼܶሺࢄሻ ൌ 1ሽ also satisfies 259 

ሼ݂ሺࢄሻ ൌ 1ሽ, while the converse is not necessarily true. A term/alterm ௜ܶሺࢄሻ is said 260 

to subsume another term/alterm ௝ܶሺࢄሻ if the set of literals of ௝ܶሺࢄሻ is a subset of 261 

that of ௜ܶሺࢄሻ (i.e., the literals of ௜ܶሺࢄሻ include those of ௝ܶሺࢄሻ).  262 

A prime implicant ܲሺࢄሻ of a Boolean function ݂ሺࢄሻ is an implicant of ݂ሺࢄሻ such 263 

that no other term subsumed by it is an implicant of ݂ሺࢄሻ. An irredundant 264 

disjunctive form ܨܦܫሺ݂ሺࢄሻሻ of a Boolean function ݂ሺࢄሻ is a disjunction of some 265 

of its prime implicants that expresses ݂ሺࢄሻ but ceases to do so upon the removal of 266 

one of these prime implicants. A minimal sum ܵܯሺ݂ሺࢄሻሻ (minimal irredundant 267 



 

 

form ܨܫܯሺ݂ሺࢄሻሻ) of a Boolean function ݂ሺࢄሻ is an irredundant disjunctive form 268 

for the function with the minimum number of prime implicants such that the total 269 

number of their literals is minimum.  270 

An essential (core) prime implicant of ݂ሺࢄሻ is a prime implicant that appears in 271 

every irredundant disjunctive form for ݂ሺࢄሻ. For every essential prime implicant, 272 

there exists an asserted minterm of ݂ሺࢄሻ that subsumes it and does not subsume 273 

any other prime implicant. This means that the Karnaugh-map loop covering an 274 

essential prime implicant is the only loop that covers the cell of this asserted 275 

minterm. An absolutely eliminable prime implicant of ݂ሺࢄሻ is a prime implicant 276 

that does not appear in any irredundant disjunctive form for ݂ሺࢄሻ. A conditionally 277 

eliminable prime implicant of ݂ሺࢄሻ is a prime implicant that appears in some 278 

irredundant disjunctive form(s) for ݂ሺࢄሻ, but that does not appear in other 279 

irredundant disjunctive form(s)  for ݂ሺࢄሻ. 280 

 281 

Appendix B: The Complete Sum (Blake Canonical Form) 282 

The Complete Sum ܵܥሺ݂ሺࢄሻሻ of a Boolean function ݂ሺࢄሻ (also called its Blake 283 

Canonical Form ܨܥܤሺ݂ሺࢄሻሻ) is the disjunction (ORing) of all its prime 284 

implicants, and nothing else [70-78]. The complete sum is a closure, unique and 285 

canonical formula for ݂ሺࢄሻ. It is the minimal or absorptive special case of a 286 

syllogistic formula of ݂ሺࢄሻ, where a syllogistic formula is defined as a sum-of-287 

products formula, whose terms include, but are not necessarily confined to, all the 288 

prime implicants of ݂ሺࢄሻ. Complete-sum construction usually requires the two 289 

operations of: (a) absorbing a term by another, and (b) generating the consensus of 290 

two ORed terms. A brief explanation of these operations follows. 291 

B.1. Absorbing a Term by Another 292 

If a term ଵܶሺࢄሻ subsumes (implies) another ଶܶሺࢄሻ,  then the disjunction ( ଵܶሺࢄሻ ∨293 

ଶܶሺࢄሻ) could simply be rewritten as ଶܶሺࢄሻ, viz.  294 

ଵܶሺࢄሻ ∨ ଶܶሺࢄሻ ൌ 	 ଶܶሺࢄሻ.                                                 (B.1) 295 

The deletion of ଵܶሺࢄሻ in (B.1) is called absorption of the subsuming term ଵܶሺࢄሻ in 296 

the subsumed term ଶܶሺࢄሻ. For example, the term ܻܼܹܺ̅ subsumes each of the 297 

sixteen terms ܻܼܹܺ̅, ܻܼܹ̅, ܼܹܺ̅, ܻܹܺ, ܻܼܺ̅, ܼܹ̅, ܻܹ,ܹܺ, ܻܼ̅, ܼܺ̅, ܻܺ, ܹ, ܼ̅, 298 



 

 

ܻ, ܺ, and 1. Hence, it could be deleted if it is ORed with any of them. The 299 

complete sum is an absorptive syllogistic formula, i.e., it is a syllogistic formula in 300 

which no term subsumes another. 301 

B.2. Generating the Consensus of Two ORed Terms 302 

Two terms ଵܶሺࢄሻ and ଶܶሺࢄሻ have a consensus if and only if they have exactly one 303 

opposition, i.e., exactly one variable that appears complemented (	 തܺ௠) in one term 304 

(say ଵܶሺࢄሻ) and appears uncomplemented (	ܺ௠) in the other term. In such a case, 305 

the consensus is the ANDing of the remaining literals of the two terms, i.e.  306 

ሺݏݑ݊݁ݏ݊݋ܿ ଵܶሺࢄሻ	, ଶܶሺࢄሻሻ ൌ ሺ ଵܶሺࢄሻ	/	 തܺ௠ሻ	˄	ሺ ଶܶሺࢄሻ	/	ܺ௠ሻ,                     (B.2) 307 

where ሺ݂/ݐሻ denotes the Boolean quotient of the function ݂ by the term ݐ, i.e., the 308 

restriction of ݂ when ݐ is asserted [59, 70, 78], viz. 309 

݂ ⁄ݐ ൌ ሾ݂ሿ௧ୀଵ.                                                        (B.3) 310 

When two terms have a consensus, their disjunction can be augmented by this 311 

consensus, i.e.  312 

ଵܶሺࢄሻ 	∨ 	 ଶܶሺࢄሻ ൌ 	 ଵܶሺࢄሻ ∨ 	 ଶܶሺࢄሻ 	∨ ሺݏݑ݊݁ݏ݊݋ܿ	 ଵܶሺࢄሻ	, ଶܶሺࢄሻሻ.             (B.4) 313 

For example, the terms ܤܣത  and ܥܤ have a single opposition and are represented on 314 

the Karnaugh map by two disjoint loops sharing a border, and hence their 315 

disjunction can be augmented by their consensus ሺܤܣത/ܤതሻ	˄	ሺܤ/ܥܤሻ ൌ  which 316 ,ܥܣ

is a loop extending across the common border between the original loops and 317 

covering the part ܤܣതܥ of ܤܣത	and the part ܥܤܣ of ܥܤ. By contrast, the two terms 318 ܣ 

and ܥܤ have zero opposition, and consequently non-disjoint or overlapping loops, 319 

and possess zero or no consensus. The two terms ܤܣത  and ̅ܤܣ have more than one 320 

opposition, and consequently disjoint far-away loops, and again possess zero or no 321 

consensus [74]. 322 

The complete-sum formula ܵܥሺ݂ሻ	may be generated by a two-step iterative-323 

consensus procedure, in which (a) a syllogistic formula F for fሺࢄሻ is found by 324 

continually comparing terms and adding their consensuses (if any) to the current 325 

formula of fሺࢄሻ, and (b) the resulting formula is converted to an absorptive one 326 

 ሻ, again by continually comparing terms and deleting subsuming terms by 327ܨሺܵܤܣ

absorbing them in their subsumed terms. A streamlined algorithmic version of 328 

iterative consensus is the Blake-Tison Method, which produces the complete sum 329 



 

 

by performing explicit consensus generation with respect to each bi-form variable, 330 

and following this by absorption. Alternatively, a syllogistic formula for the 331 

function might be produced (without explicit consensus generation) through 332 

multiplying out any suitable product-of-sums (pos) expression for the function to 333 

produce a sum-of-products (sop) expression [77].  334 

Appendix C: Probability-Ready Expressions 335 

A Probability-Ready Expression [55-60] is a random expression that can be directly 336 

transformed, on a one-to-one basis, to its statistical expectation (its probability of 337 

being equal to 1) by replacing all logic variables by their statistical expectations, and 338 

also replacing logical multiplication and addition (ANDing and ORing) by their 339 

arithmetic counterparts. A logic expression is a PRE if  340 

a) all ORed terms are disjoint (mutually exclusive), and  341 

b) all ANDed sums (alterms) are statistically independent. 342 

 343 

 344 

Appendix D: The Boole-Shannon Expansion  		 345 

An effective way for converting a Boolean formula into a PRE form is to (repeatedly) 346 

employ the Boole-Shannon Expansion [59, 70], which takes the following form 347 

when implemented w.r.t. a single variable ܺ୩	 348 

݂ሺࢄሻ 	ൌ 	ሺ തܺ௞ 	∧ 	݂ሺ0|ࢄ୩ሻሻ 	∨ 	 ሺܺ୩ 	∧ 	݂ሺ1|܆୩ሻሻ,                                  (D.1) 349 

This Boole-Shannon Expansion expresses the Boolean function ݂ሺࢄሻ in terms of its 350 

two subfunctions ݂ሺ0|ࢄ୩ሻ and	݂ሺ1|ࢄ୩ሻ. These subfunctions are equal to the 351 

Boolean quotients ݂ሺࢄሻ/ തܺ௞ and ݂ሺࢄሻ/ܺ୩, and hence are obtained by restricting X௞ 352 

in the expression ݂ሺࢄሻ to 0 and 1, respectively. If ݂ሺࢄሻ is a sop expression of ݊ 353 

variables, the two subfunctions ݂ሺ0|ࢄ୩ሻ and ݂ሺ1|ࢄ୩ሻ are functions of at most 354 

ሺ݊ െ 1ሻ variables. If the Boole-Shannon expansion is applied in sequence to the ݊ 355 

variables of ݂ሺࢄሻ, the expansion tree is a complete binary tree (usually called a 356 

Binary Decision Diagram) of 2n leaves. These leaves are functions of no variables, 357 

or constants, and equal the entries of a corresponding conventional Karnaugh map of 358 

݂ሺࢄሻ	[79]. Sibling nodes (nodes at the same level) of this expansion tree constitute 359 

the entries of a variable-entered (or a map-entered) Karnaugh map of ݂ሺࢄሻ	[79]. 360 

 361 

Appendix E:  Unate Boolean Functions 362 

A Boolean function ݂ሺࢄሻ ൌ 	݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞, ܺ௞ାଵ, … , ܺ௡ሻ is called unate if 363 

and only if it can be represented as a normal (sum-of-products or product-of-sums) 364 



 

 

formula in which no variable appears both complemented and un-complemented, 365 

i.e., every variable is mono-form and no variable is bi-form. This Boolean function 366 

is called positive in its argument ܺ௞, if there exists a normal representation of the 367 

function in which ܺ௞ does not appear complemented. This happens if and only if 368 

every occurrence of the literal തܺ௞ is redundant and can be eliminated, i.e., if and 369 

only if there exist functions ଵ݂ and ଶ݂ (independent of ܺ௞) such that [80-86] 370 

 371 

݂ሺࢄሻ ൌ ܺ௞		 ଵ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ,… , ܺ௡ሻ 	∨		 ଶ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ,… , ܺ௡ሻ.                     372 

(E.1)  373 

A Boolean function ݂ሺࢄሻ is called negative in its argument ܺ௞, if there exists a 374 

normal representation of the function in which ܺ௞ does not appear un-375 

complemented. This happens if and only if every occurrence of the literal ܺ௞ is 376 

redundant and can be eliminated, i.e., if and only if there exist functions ଷ݂ and ସ݂ 377 

(independent of ܺ௞) such that [80-86] 378 

 379 

݂ሺࢄሻ ൌ 		 ଷ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ, … , ܺ௡ሻ 	∨		 തܺ௞		 ସ݂ሺ ଵܺ, ܺଶ, … , ܺ௞ିଵ, ܺ௞ାଵ, … , ܺ௡ሻ.                     380 

(E.2)  381 

If the function ݂ሺࢄሻ is positive in its argument ܺ௞, then its subfunctions are 382 

݂ሺ1|ࢄ୩ሻ ൌ ݂ሺࢄሻ/ܺ௞ ൌ  ଵ݂ ∨	 ଶ݂ and ݂ሺ0|ࢄ୩ሻ ൌ ݂ሺࢄሻ/ തܺ௞ ൌ  ଶ݂, which means that 383 

݂ሺ0|ࢄ୩ሻ ൑ 	݂ሺ1|ࢄ୩ሻ. Similarly, if the function ݂ሺࢄሻ is negative in its argument 384 

ܺ௞, then its subfunctions are ݂ሺ1|ࢄ୩ሻ ൌ ݂ሺࢄሻ/ܺ௞ ൌ  ଷ݂ and ݂ሺ0|ࢄ୩ሻ ൌ ݂ሺࢄሻ/385 

തܺ௞ ൌ  ଷ݂ ∨ 	 ସ݂, which means that ݂ሺ1|ࢄ୩ሻ ൑ 	݂ሺ0|ࢄ୩ሻ. 386 

All threshold (linearly-separable) functions are unate, but the converse is not true 387 

[87-91]. The function  ଵܺܺଶ ∨ ܺଷܺସ  is an example of a unate function that is not 388 

threshold. All the prime implicants of a unate function are essential, so that it has a 389 

single irredundant disjunctive form, which serves as both its (unique) minimal sum 390 

and its complete sum. 391 

 392 
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 623 

 624 

Fig. 1. The general layout of the eight-variable Karnaugh map used herein. The cell 625 

colored in green (column 15 and row 0) represents the minterm 626 

XଵXଶതതതXଷXସതതതXହX଺തതതX଻X଼തതത	or the bit sequence 10101010. Its eight logically adjacent or 627 

neighboring cells are highlighted in yellow. Only four of these cells are visually 628 

adjacent to the original cell when the map is viewed to lie on a torus. 629 

  630 



 

 

 631 

 632 

Fig. 2. The eight-variable Karnaugh map of Fig. 1. There are two borders of the 633 

variable Xଷ (separating its internal domain (Xଷ ൌ 1) and external domain (Xଷ ൌ634 

0)), which are highlighted in bold. There are two internal regions for the variable 635 

Xହ (colored) which are centered around these borders.  636 
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 650 

Fig. 3. A comparator is a combinational circuit that compares two n-bit inputs 651 ܇ 

and ܈ and produces three orthonormal outputs ܩ ൌ ሼ܇ ൐ ܧ ,ሽ܈ ൌ ሼ܇ ൌ  ሽ and 652܈

ܮ ൌ ሼ܇ ൏ ܩ ሽ such that܈ ∨ ܧ ∨ ܮ ൌ ܧܩ ,1 ൌ ܮܧ ൌ ܩܮ ൌ 0, and consequently 653 

ܩ ൌ ,തܮതܧ ܧ ൌ ,തܮܩ̅ and	ܮ ൌ  654	ത.ܧܩ̅

  655 

Comparator 
	܇

	܈

ܩ ൌ ሼ܇ ൐ ሽ܈

ܧ ൌ ሼ܇ ൌ ሽ܈

ܮ ൌ ሼ܇ ൏ ሽ܈
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 657 

   
  

ሼ ௞ܻഥ ܼ௞തതത ൌ 1ሽ → ሼܧ ൌ 1ሽ 
 
ሼ ௞ܻܼ௞തതത ൌ 1ሽ ≡ ሼܩ ൌ 1ሽ 

  
ሼ ௞ܻഥ ܼ௞ ൌ 1ሽ ≡ ሼܮ ൌ 1ሽ 

 
ሼ ௞ܻܼ௞ ൌ 1ሽ → ሼܧ ൌ 1ሽ 

 658 

Fig. 4. Karnaugh map for two single-bit inputs ௞ܻ	and	ܼ௞. Note that ሼܧ ൌ 1ሽ ≡659 

ሼ ௞ܻഥ ܼ௞തതത ൌ 1ሽ ∨ ሼ ௞ܻܼ௞ ൌ 1ሽ ≡ ሼ ௞ܻഥ ܼ௞തതത ∨ ௞ܻܼ௞ ൌ 1ሽ. 660 
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Y୩

Z୩	



 

 

 664 

Fig. 5. A flow chart depicting the comparison of a four-bit input ܇ ൌ ሺYଷYଶYଵY଴ሻଶ 665 

to another four-bit input ܈ ൌ ሺZଷZଶZଵZ଴ሻଶ. The comparator starts by comparing 666 

the highest-order or most-significant bits (MSB) first. If equality exists ሺYଷ 	ൌ 	 Zଷሻ, 667 

then the comparator compares the next lower bits and so on until it reaches the 668 

lowest-order or least-significant bits (LSB). If equality still exists then the two 669 

numbers are defined as being equal (ࢅ ൌ  If inequality is detected at any stage 670 .(ࢆ

(either Y୩	 ൐ 	Z୩		ݎ݋		Y୩	 ൏ 	Z୩) the relationship between the two numbers 	ࢅ	and	671 ࢆ 

is determined (respectively as ࢅ ൐ ࢅ		ݎ݋		ࢆ	 ൏  and no further comparison is 672 (ࢆ

needed. 673 

 674 



 

 

 675 

 676 

Fig. 6. A summary of the results of equations (6) (for the 4-bit comparator) 677 

demonstrated on an 8-variable Karnaugh map with inputs ܇ ൌ ሺYଷYଶYଵY଴ሻଶ and 678 

܈ ൌ ሺZଷZଶZଵZ଴ሻଶ. The top left quarter of this map is a 6-variable submap 679 

representing a 3-bit comparator. Again, the top left quarter of this submap is a 4-680 

variable submap representing a 2-bit comparator. Finally, the top left quarter of 681 

this latter submap is a 1-variable submap representing a 1-bit comparator. 682 

Remarkable symmetry could be observed with respect to the main diagonal of the 683 

map. 684 
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Fig. 7. Construction of the 2݊-variable map (for the ݊-bit comparator) from the 699 

2ሺ݊ െ 1ሻ-variable map (for the ሺ݊ െ 1ሻ-bit comparator). Theoretically, such a 700 

construction can be inductively continued without limit. 701 
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(c1) YଷZതଶYଵZതଵ 

 
 

 

 
(c2) YଷYଶYଵZതଵ 

 
 

 

 
(c3) ZതଷYଶYଵZതଵ 

 

 
(c4) ZതଷZതଶYଵZതଵ 
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(d1) YଷZതଶZതଵY଴Zത଴  

 
 
 

 
(d2) YଷZതଶYଵY଴Zത଴  

 
 
 

 
(d3) YଷYଶYଵY଴Zത଴  

 
 

 
(d4) YଷYଶZതଵY଴Zത଴  

 

 714 



 

 

 715 

 716 

 
(d5) ZതଷYଶZതଵY଴Zത଴  

 
 

 
(d6) ZതଷYଶYଵY଴Zത଴  

 

 
(d7) ZതଷZതଶYଵY଴Zത଴ 

 
(d8) ZതଷZതଶZതଵY଴Zത଴ 

Fig. 8. A complete sum (and also a minimal sum) for Gସ given by loops on fifteen maps. Note 717 

that this coverage proves that G is a unate function (with a positive polarity in Y୩ ሺ0 ൑ ݇ ൑ 3ሻ 718 

and a negative polarity in Z୩	ሺ0 ൑ ݇ ൑ 3ሻ. Note that all loops pass through the shaded cell 719 

ሺYଷYଶYଵY଴ZଷZଶZଵZ଴ሻ ൌ ሺ11110000ሻ, which is the all-1 cell for ܇ and the all-0 cell for ܈. Each 720 

of the fifteen loops in this figure is an essential prime-implicant loop, since it is the only loop 721 

covering some of its cells. For example, the loop ZതଷZതଶZതଵY଴Zത଴	in (d8) is the only PI loop covering 722 



 

 

the cell YഥଷZതଷYഥଶ	ZതଶYഥଵZതଵY଴Zത଴ (labelled with G). This cell has three asserted neighbors only, and if 723 

it could be covered by an 8-cell loop (which is the case herein), such a loop would be an essential 724 

PI loop. 725 


