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 4 

Abstract: The development of higher education is an extremely important issue. It is the 5 

source of the country's technological innovation and the realization of innovation and 6 

development, especially in China, where higher education is still at an exploratory stage. 7 

Aiming at the shortcoming that the classical DGM (1,1) model accumulates the raw data 8 

series with the weight of constant 1, this paper proposes an adaptive variable weight 9 

accumulation optimization DGM (1,1) model, abbreviated as AVWA-DGM (1,1) model. 10 

Taking the enrollment numbers of postgraduate, master degree, undergraduate and junior 11 

college student and undergraduates students in China as numerical examples, the DGM (1,1) 12 

model and AVWA-DGM (1,1) model are established to simulate and predict respectively, and 13 

the weighted coefficients of AVWA-DGM (1,1) model are optimized and solved by particle 14 

swarm algorithm. The results show that the AVWA-DGM(1,1) model has higher simulation 15 

and prediction accuracy than the classical DGM(1,1) model in the four numerical examples 16 

provided in this paper. It can be seen that the adaptive accumulation of the original data 17 

sequence by the particle swarm optimization algorithm can make the first order accumulation 18 

sequence more in line with the requirements of the DGM (1,1) model on the data features, 19 

thereby improving the simulation and prediction accuracy. 20 

Key words: Chinese higher education; DGM(1,1) model; AVWA-DGM(1,1) model; Particle 21 

swarm optimization; Adaptive variable weight accumulation 22 

 23 

1 Introduction 24 

 25 
The development of higher education is a concentrated expression of national talent 26 

competition and scientific and technological competition, and is the core element for 27 

implementing innovation-driven development and building an innovative country. Since 28 

China's higher education resumed college entrance examination enrollment and postgraduate 29 

education enrollment in 1978, China's higher education has experienced a series of 30 

extraordinary developments, and at the same time has harvested many achievements and 31 

made significant contributions to the development of all aspects of China. According to the 32 

data of the Ministry of Education of China, The enrollment scale of undergraduate and junior 33 

college students has reached 7.909 million in 2018. According to the National Graduate 34 

Enrollment Survey Report of 2019, the number of master degree students in the national 35 

masters reached 2.9 million in 2019, an increase of a record high. Facing the rapid 36 

development of higher education in China, scientifically and reasonably predicting the 37 

enrollment scale of higher education in the future will further benefit the formulation of 38 

higher education system and resource allocation in China, and provide enlightenment for the 39 

future development of the country. 40 

The impact of changes in the scale of education on the development of national education is 41 



 

 

of universal significance. Therefore, many scholars at home and abroad have studied and 42 

discussed this and proposed many prediction models. Such as support vector machine [1, 2, 3], 43 

neural network [4, 5], time series analysis [6, 7, 8], gray prediction model [9,10,11,12]. 44 

Among these prediction models, the gray model has received extensive attention because of 45 

its simple calculation and less sample data. 46 

The grey system theory was first proposed by Professor Deng in 1982 [13], which plays a 47 

crucial role in dealing with the "small sample" and "poor information" issues. Among them, 48 

the grey prediction model is the core part of the grey theory. In the predictive model, the GM 49 

(1,1) model is the most classic. At present, the grey prediction model and its improved model 50 

have been widely used in various aspects of society, such as energy [14,15], agriculture [16],              51 

technology [17], environment [18] and medical [19].In view of this, the majority of experts 52 

and scholars are constantly improving and optimizing it. For example, Wu et al. [20] proposed 53 

a fractional-order grey prediction model, which optimizes the defect that the first-order 54 

accumulation of the grey model can only be an integer. Cui et al. [21] proposed a new grey 55 

prediction model and applied it to predict the yield of the concave soil and the CSI 300 index. 56 

Luo et al. [22] and Wei et al. [23] studied the GMP (1, 1, N) model with polynomial, where 57 

the grey action quantity is 0 1
N

Nt t     . Chen and Yu [24] proposed a method to 58 

improve the grey action quantity in the NGM (1,1, k, c) model with bt c . Next, Qian et al. 59 

[25] proposed a new GM (1,1, tα) model with a gray action quantity of bt c   and used it to 60 

predict ground settlement. In recent years, the GM (1, N) model and its promotion model 61 

have also received extensive attention. For example, Tien [26, 27], Zeng et al. [28, 29], Wang 62 

et al. [30], Ma et al. [31, 32]. However, when the above model performs first-order 63 

accumulation processing on the raw data, the weight coefficient of the raw data is constant 1. 64 

In response to this problem, some scholars [33, 34, 35, 36] improve the prediction accuracy of 65 

the model by establishing different buffer operators to process the raw data. Some scholars 66 

[37, 38, 39] make the raw data smoother based on different data transformation techniques. 67 

The effect is also significant. 68 

Based on the above literature review, this paper proposes a discrete grey prediction model 69 

with adaptive variable weight accumulation, which is abbreviated as AVWA-DGM (1,1) 70 

model, and applies the enrollment numbers of postgraduate students, master degree students, 71 

undergraduate and junior college students and undergraduate students in China as example 72 

data to make simulation and prediction. The calculation results show that the 73 

AVWA-DGM(1,1) model is superior to the classical DGM(1,1) model.  74 

 75 

2 Traditional DGM (1,1) model 76 

 77 

Let               0 0 0 01 , 2 , , X x x x n  as a non-negative raw sequence. For satisfying a 78 

smooth conditional sequence, a grey differential equation can be established. After a 79 

1th-order accumulation,               1 1 1 11 , 2 , , X x x x n  is generated. Call  1X  the 80 

1th-order accumulation generating sequence(1 AGO ) of  0X , where 81 
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Let non-negative sequence  0X  and 1th-order accumulation generating sequence  1X are 82 

described above, and call  83 

       1 1
1 2ˆ ˆ1 ,x k x k     (2)

the DGM(1,1) model, or the discrete form of GM(1,1) model [40]. Where the first "1" also 84 

represents the first order differential equation, and the second "1" also indicates that there is a 85 

variable. 86 

If  1 2
ˆ= ,

T    are parameters, and 87 
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Then the least squares estimation parameters  1 2
ˆ= ,   T

 of the discrete grey prediction 88 

model        1 1
1 2ˆ ˆ1    x k x k  satisfies 89 

  1

1 1 1 1
ˆ= .T TB B B


  (4)

Let        1 0ˆ 1 1x x  be the recursive function 90 
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Restore value is 91 
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3 Adaptive Variable Weight Accumulation Optimized AVWA-DGM(1,1) Model 92 

 93 

3.1 Transformation of the raw data sequence 94 

 95 

Since a developing system is often disturbed by the impact of changes in the external 96 

environment, this leads to the volatility of a certain characteristic data sequence describing the 97 

development of the system.The accuracy of prediction will be greatly affected when grey 98 

modeling is carried out on such data to predict the future change trend.Common grey 99 

prediction models are the GM (1, 1) model and the DGM (1, 1) model.These traditional grey 100 



 

 

prediction models generally use equal weight accumulation when performing 1th-order 101 

accumulation to generate 1th-order accumulation sequence (1-AGO), namely, the weight 102 

coefficients of each raw data are fixed constants 1.This accumulation method cannot fully 103 

exploit the potential information of the raw data sequence, so that the prediction result of the 104 

model is not good.Based on this, this paper proposes a variable weight accumulation method, 105 

which uses this accumulation method to generate a variable weight accumulation generation 106 

sequence (1-AVWAGO).When using this sequence for grey modeling, the variation trend of 107 

the raw data sequence is adjusted by adding a weight coefficient to each modeling data, so as 108 

to weaken the randomness of the raw data and improve the fitting and prediction accuracy of 109 

the model. 110 

Definition 1. Let the raw observation data sequence be               0 0 0 01 , 2 , , n      111 

and the adjustment weight coefficient be 112 

 1 2= , , , , 0, 1, 2, , .n k k n         (7)

Performing a linear weighted transform process on the raw data sequence, and obtaining a 113 

weighted new data sequence of               0 0 0 01 , 2 , , n     , where 114 

         0 0 , 1, 2, , .kk k k n      (8)

3.2 Establish an optimized AVWA-DGM (1,1) model 115 

 116 

Let               0 0 0 01 , 2 , , X x x x n  be the raw observation data sequence, 117 

 1 2= , , , , 0, 1, 2, ,n k k n         be the weight coefficient, and perform linear 118 

weighted transformation on  0X  according to the above formula (8) to obtain 119 

              0 0 0 01 , 2 , ,Y y y y n  , where 120 

         0 0 , 1,2, , .ky k x k k n    (9)

Performing a 1th-order accumulation on the data sequence  0Y after the weighted 121 

transformation to obtain a weighted 1th-order accumulation sequence 122 

              1 1 1 1= 1 , 2 , ,Y y y y n , where 123 
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The data sequence  1Y  after the weighted transformation process is used to establish the 124 

DGM(1,1) model as described above. 125 
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 127 

Let  1 2
ˆ= ,

T    be the parameters, if 128 
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 129 

Then the least squares estimation parameters  1 2ˆ= ,
T    of the discrete grey prediction 130 

model        1 1
1 2ˆ ˆ1y k y k     satisfies 131 
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2 2 2 2ˆ= .T TB B B
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  (13) 

Let        1 0ˆ 1 1y y  be the recursive function 132 
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Obtained after subtraction 133 
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After the reduction,    0ŷ k  is obtained, and then the predicted value of the model can be 134 

calculated. 135 
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Where n  represents the number of data used for modeling. 136 

 137 

3.3 Determination of the optimal weighting coefficient 138 

 139 

In order to verify the accuracy of the model and determine the weight coefficients of the 140 

weighted transformed AVWA-DGM(1,1) model, absolute percentage error (APE) and mean 141 

absolute percentage error (MAPE) are defined. The specific expression are as follows 142 
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N represents the number of sample data used for modeling.As can be seen from the above 143 

formula(17) and (18), when 1,2, ,k N  ,  APE k  is the absolute percentage error of 144 

the fitted data. When 1, 2, ,k N N n    ,  APE k  is the absolute percentage error of 145 

the test data. When 1,l m N  , MAPE  represents the mean absolute percentage error of 146 

the simulated data. When 1,l N m n   , MAPE  represents the mean absolute 147 

percentage error of the test data. When 1,l m n  , MAPE  represents the mean absolute 148 

percentage error of the overall data. 149 

From the modeling process, the unknown parameters existing in the AVWA-DGM(1,1) model 150 

are  1 2= , , , , 0, 1, 2, ,n k k n        .When the weight coefficients 151 

 1 2= , , , , 0, 1, 2, ,n k k n         are determined, the parameters  1 2ˆ= ,
T    152 

can be solved by the least squares method.Therefore, according to the principle of minimum 153 

error, choose  1 2= , , , , 0, 1, 2, ,n k k n         as the parameters of the optimized 154 

MAPE, and establish the following mathematical optimization model. 155 
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(19)

Considering the complexity of equation (19), solving the optimal 156 

 1 2= , , , , 0, 1, 2, ,n k k n         are very difficult. Based on this, this paper uses 157 

the particle swarm optimization algorithm to find the optimal 158 

 1 2= , , , , 0, 1, 2, ,n k k n         value. 159 



 

 

The Particle Swarm Optimization (PSO) algorithm was proposed by Kennedy and Eberhart 160 

[41]. The algorithm is based on the simulation of the social activities of the flocks, and 161 

proposes a global random search algorithm based on swarm intelligence by simulating the 162 

behavior of the flocks interacting with each other.The particle swarm algorithm first randomly 163 

initializes the particle swarm in the solution space and initializes the velocity and position.The 164 

dimension of the solution space is determined by the number of variables to be 165 

optimized.Each position of the particle in the search space is a solution to the problem to be 166 

optimized, and each particle is given a velocity, which determines the flight distance and 167 

direction of the particle, so that the particle can fly within to the solution space and land on 168 

the optimal solution. Each particle in the swarm is evaluated by the objective function to 169 

determine the fitness value to determine the pros and cons of the current position, while the 170 

particles endowed with memory function record the current optimal position 171 

searched.Through iterative optimization, each particle in the group keeps track of two 172 

extremes case.Where, the individual best is recorded in pbest , the global best is recorded in 173 

gbest , and the position and flight speed of the particle in the solution space are updated 174 

according to the two records.The particle swarm then follows the current optimal particle and 175 

continues searching in the solution space.The steps of the algorithm are specifically shown 176 

below.  177 

 178 

Step1: Initialize the population particle number 100M  , particle dimension 7n  , 179 

maximum iteration number maxk , learning factor 1 21.5, 1.5l l  , inertia weight maximum 180 

value 0.8maxw   and minimum value 0.4minw  . 181 

Step2: Initialize the population particle maximum position 182 

 1, 2, ,, , ,max max max n max     , minimum position  1, 2, ,, , ,min min min n min     , 183 

maximum speed  1, 2, ,, , ,max max max n maxv v v v  , minimum speed 184 

 1, 2, ,, , ,min min min n minv v v v  , particle individual optimal position 1
ipbest  and optimal 185 

value 1
ip , and particle group global optimal position 1gbest  and optimal value 1g ; 186 

Step3: calculating the fitness value  ,1 ,2 ,, , ,k k k
i i i nMAPE     of each particle in the 187 

particle group; 188 

Step 4: Compare each particle fitness value  ,1 ,2 ,, , ,k k k
i i i nMAPE     with the 189 

individual extreme value k
ip  and the particle group global optimal value kg , respectively. 190 

If  ,1 ,2 ,, , ,k k k
i i i

k
inMAP pE     , replace k

ip  with  ,1 ,2 ,, , ,k k k
i i i nMAPE     and 191 



 

 

replace the particle's individual optimal position k
ipbest . If  ,1 ,2 ,, , ,k k k

i i i
k

nMAP gE     , 192 

replace kg  with  ,1 ,2 ,, , ,k k k
i i i nMAPE     and replace the global optimal position 193 

kgbest  of the particle group; 194 

Step 5: Calculate the dynamic inertia weight w  according to the following formula; 195 

  / .max max min maxw w k w w k    196 

Step6: Update the velocity value ,
k
i jv  and the position ,

k
i j  according to the following 197 

iteration formula and perform boundary condition processing, where 1,2, ,i M  , 198 

1,2, ,j n  ; 199 

 
 

1
, , 1 , ,

2 ,

1 1
, , ,

(0,1)

(0,1) ,

.

k k k k
i j i j i j i j

k k
j i j

k k k
i j i j i j

v wv l rand pbest

l rand gbest

v





 



 





    

 

 

 (20)

Step7: Judge whether the algorithm termination condition is satisfied: if yes, end the 200 
algorithm and output the optimization result: otherwise return to Step3. 201 

Compared with the classical DGM (1,1) model, the AVWA-DGM (1,1) model proposed in 202 

this paper, namely the adaptive variable weight accumulation DGM (1,1) model, is more 203 

widely applicable.After combining the PSO algorithm, the classical DGM (1,1) model is 204 

optimized with a fixed weight for the first-order accumulation process, and the adaptive 205 

change of the weighting coefficients is realized.The accumulation of the raw data sequence 206 

with adaptive weights is more likely to exploit the underlying internal information of the raw 207 

data sequence than the fixed weight accumulation of the raw data sequence. Moreover, after 208 

the raw data sequence is accumulated by using the adaptive weights method, the 1th-order 209 

accumulation generation sequence can be made to conform to the characteristic requirements 210 

of the data of the DGM (1, 1) model. 211 

 212 

4 Application of AVWA-DGM(1,1) model 213 

 214 
This part will show the accuracy of the adaptive weighted optimized AVWA-DGM(1,1) 215 

model under actual data.The modeling results were compared with the classical DGM (1, 1) 216 

model.Where, the weighting coefficient  1 2= , , , , 0, 1, 2, ,n k k n         of the 217 

AVWA-DGM (1,1) model is determined by the PSO. The article uses the actual enrollment of 218 

Chinese higher education from the China Statistical Yearbook [42] 2005-2016 as an example 219 

to illustrate the superiority of the AVWA-DGM (1,1) model. This paper divides the data into 220 

two parts, namely, the modeling data from 2005 to 2011 and the test data of the model from 221 

2012 to 2016. The raw data is shown in Table 1. 222 



 

 

 223 
Table 1 Actual enrollment of Chinese higher education in 2005-2016 224 

Year postgraduate master degree 
undergraduate  

and junior college 
undergraduate 

2005 36.4831 31.0037 504.5 236.3647 

2006 39.7925 34.197 546.1 253.0854 

2007 41.8612 36.059 565.9 282.0971 

2008 44.6422 38.6658 607.7 297.0601 

2009 51.0953 44.9042 639.5 326.1081 

2010 53.8177 47.4415 661.8 351.2563 

2011 56.0168 49.4609 681.5 356.6411 

     

2012 58.9673 52.1303 688.8 374.0574 

2013 61.1381 54.0919 699.8 381.4331 

2014 62.1323 54.8689 721.4 383.4152 

2015 64.5055 57.0639 737.8 389.4184 

2016 66.7064 58.9812 748.6 405.4007 

 225 

4.1 Number of postgraduates enrolled in China 226 

 227 

This section combines the particle swarm optimization algorithm and the actual data provided 228 

by the China Statistical Yearbook to study the number of postgraduates enrollment scale in 229 

China by establishing the DGM (1,1) model and the AVWA-DGM (1,1) model.The final 230 

calculation results and weighting coefficients (both reserved for four decimal places) are 231 

given in Table 2, Table 3 and Fig.1, Fig.2.It can be seen from Table 2 that when the 232 

AVWA-DGM (1,1) model is accumulated, the weights of the raw data are not all constant 1, 233 

but the corresponding optimal weight coefficients are given according to the characteristics of 234 

the raw data sequence itself. As can be seen from Table 3 and Fig.1, both grey models reflect 235 

the changing trend of the number of postgraduates enrolled in China. As can be seen from 236 

Table 3, the simulated MAPE of the DGM (1,1) model, the MAPE of the test data and the 237 

overall MAPE were 1.6791%, 13.7769% and 6.7199%, respectively, while the AVWA-DGM 238 

(1,1) was 133.53 10 %, 0.3485% and 0.1452%, respectively.These results indicate that the 239 
AVWA-DGM (1,1) model is more accurate than the DGM (1,1) model in predicting the trend 240 

of postgraduates enrollment in China.  241 

 242 
Table 2 Weighting coefficients of the two models 243 

Model Weight coefficient 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM(1,1)  1.0000 1.2376 1.2123 1.1714 1.0547 1.0318 1.0215， ， ， ， ， ，  

 244 
Table 3 Calculation results and errors of the two models 245 



 

 

Year Raw data DGM(1,1) APE(%) AVWA-DGM(1,1) APE(%) 

2005 36.4831 36.4831 0.0000 36.4831 0.0000 

2006 39.7925 39.5405 0.6333 39.7925 0.0000 

2007 41.8612 42.5517 1.6494 41.8612 0.0000 

2008 44.6422 45.7921 2.5758 44.6422 0.0000 

2009 51.0953 49.2793 3.5541 51.0953 0.0000 

2010 53.8177 53.0321 1.4597 53.8177 0.0000 

2011 56.0168 57.0707 1.8814 56.0168 0.0000 

      

2012 58.9673 61.4168 4.1540 58.9673 0.0000 

2013 61.1381 66.0939 8.1059 60.7646 0.6108 

2014 62.1323 71.1271 14.4769 62.6168 0.7797 

2015 64.5055 76.5437 18.6623 64.5253 0.0308 

2016 66.7064 82.3728 23.4856 66.4921 0.3213 

simulation MAPE  1.6791   133.53 10  

forecast MAPE  13.7769  0.3485  

overall MAPE  6.7199  0.1452  

 246 

Fig.1 Comparison of simulation and prediction 

 of two models in postgraduate’s enrollment 
Fig.2 PSO algorithm fitness evolution curve 

 247 

4.2 China's master degree student’s enrollment 248 

 249 

Similar to the previous section, the AVWA-DGM (1,1) model and AVWA-DGM (1,1) model 250 

were established, and the parameters of AVWA-DGM (1,1) model were solved by particle 251 

swarm optimization.The resulting final calculation results and weighting coefficients (both 252 

reserved for four decimal places) are given in Table 4, Table 5 and Fig.3, Fig.4.Table 4 also 253 

shows that the weight coefficients of the AVWA-DGM (1,1) model are not all constant 1.It 254 

can be seen from Fig.3 that compared with the DGM (1,1) model, the AVWA-DGM (1,1) 255 

model can more accurately predict the changing trend of the number of master degree 256 

students in China. As can be seen from table 5 and table 1, the simulated MAPE of DGM 257 
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(1,1), the MAPE of test data and the overall MAPE were 1.9163%, 16.0442% and 7.8029%, 258 

respectively, while the AVWA-DGM (1,1) are 114.31 10 %, 0.3764% and 0.1568%, 259 

respectively. 260 

 261 
Table 4 Weighting coefficients of the two models 262 

Model Weight coefficient 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM(1,1)  1.0000 1.2682 1.2402 1.1926 1.0589 1.0335 1.0221， ， ， ， ， ，  

 263 
Table 5 Calculation results and errors of the two models 264 

Year Raw data DGM(1,1) APE(%) AVW-DGM(1,1) APE(%) 

2005 31.0037 31.0037 0.0000 31.0037 0.0000 

2006 34.1970 33.9552 0.7070 34.1970  0.0000 

2007 36.0590 36.7624 1.9507 36.0590 0.0000 

2008 38.6658 39.8017 2.9377 38.6658 0.0000 

2009 44.9042 43.0922 4.0353 44.9042  0.0000 

2010 47.4415 46.6548 1.6583 47.4415 0.0000 

2011 49.4609 50.5119 2.1248 49.4609  0.0000 

      

2012 52.1303 54.6878 4.9061 52.1303 0.0000 

2013 54.0919 59.2091 9.4601 53.7540  0.6247 

2014 54.8689 64.1041 16.8313 55.4282 1.0193 

2015 57.0639 69.4037 21.6246 57.1546  0.1589 

2016 58.9812 75.1416 27.3992 58.9347  0.0788 

simulation MAPE  1.9163    114.31 10   

forecast MAPE  16.0442  0.3764  

overall MAPE  7.8029  0.1568  

 265 

 266 



 

 

Fig.3 Comparison of simulation and prediction of  

two models in master degree student’s enrollment 
Fig.4 PSO algorithm fitness evolution curve 

 267 

4.3 Enrollment scale of Chinese undergraduates and junior college students 268 

 269 

Similarly, the DGM(1,1) model and AVWA-DGM (1,1) model were used to model and predict 270 

the enrollment scale of undergraduate and junior college students in China, and the 271 

parameters of AVWA-DGM (1,1) model were optimized and solved by particle swarm 272 

optimization algorithm.The final calculations for both models (all retaining four decimal 273 

places) are given in Table 6, Table 7, and Fig.5, Fig.6.Table 6 shows that the weight 274 

coefficients of the AVWA-DGM (1,1) model varies with the raw data and is not a fixed 275 

constant. As can be seen from Fig.5, when modeling and forecasting the enrollment scale of 276 

undergraduate and junior college students in China, the simulation and prediction accuracy of 277 

AVWA-DGM (1,1) model is higher than the DGM(1,1) model. In Table 5, the simulated 278 

MAPE of DGM (1,1), the MAPE of the test data, and the overall MAPE are 0.8899%, 279 

10.1810%, and 4.7612%, respectively, while AVWA-DGM(1,1) are 135.4059 10 % , 0.3184% 280 

and 0.1327%, respectively. 281 

 282 
Table 6 Weighting coefficients of the two models 283 

Model Weight coefficients 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM (1,1)  1.0000 1.1006,1.0865,1.0350,1.0062, 0.9946, 0.9880，  

 284 
Table 7 Calculation results and errors of the two models 285 

Year Raw data DGM(1,1) APE(%) AVWA-DGM(1,1) APE(%) 

2005 504.5  504.5  0.0000 504.5 0.0000 

2006 546.1  548.6084 0.4593 546.1 0.0000 

2007 565.9  574.3444 1.4922 565.9  0.0000 

2008 607.7  601.2876 1.0552 607.7 0.0000 
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2009 639.5 629.4948 1.5645 639.5  0.0000 

2010 661.8  659.0253 0.4193 661.8 0.0000 

2011 681.5  689.9411 1.2386 681.5  0.0000 

      

2012 688.8  722.3071 4.8646 688.8 0.0000 

2013 699.8  756.1915 8.0582 704.6215  0.6890 

2014 721.4  791.6655 9.7402 720.8065 0.0823 

2015 737.8  828.8036 12.3345 737.3632  0.0592 

2016 748.6  867.6839 15.9075 754.3002 0.7614 

simulation MAPE  0.8899   135.4059 10   

forecast MAPE  10.1810  0.3184  

overall MAPE  4.7612  0.1327  

 286 

Fig.5 Comparison of simulation and prediction of  

two models in the number of enrollment scale  

undergraduate and junior college students 

Fig.6 PSO algorithm fitness evolution curve 

 287 

4.4 Number of students enrolled in undergraduates in China 288 

 289 

In this section, we use grey theory to study the number of undergraduate enrollments scale in 290 

China. The DGM (1,1) model was established and compared with the AVWA-DGM (1,1) 291 

model. Similarly, the particle swarm algorithm is used to optimize the parameters of the 292 

AVWA-DGM (1,1) model. The final calculations for both models (all retaining four decimal 293 

places) are given in Table 8, Table 9, and Fig.7, Fig.8. The weight coefficients of the 294 

1th-order accumulation generation sequence of the DGM (1, 1) model and the AVWA-DGM 295 

(1, 1) model are compared in Table 8.The results show that the weight coefficients of the 296 

AVWA-DGM (1,1) model are also a sequence that varies with the raw data sequence and is 297 

not a fixed constant. In Table 9, the simulation MAPE of DGM(1,1), the MAPE of the test 298 
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data, and the overall MAPE are 1.6922%, 16.7266%, and 7.9565%, respectively, while 299 

AVWA-DGM(1,1) are 0.0028%, 0.7061% and 0.2958%, respectively. It can be seen from Fig. 300 

7 that the simulation accuracy and prediction accuracy of the AVWA-DGM (1, 1) model is 301 

higher than the DGM (1, 1) model. 302 

 303 
Table 8 Weighting coefficients of the two models 304 

Model Weight coefficients 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM(1,1)  1.00011.3147 1.2029 1.1648 1.0819 1.0242 1.0285， ， ， ， ， ，  

 305 
Table 9 Calculation results and errors of the two models 306 

Year Raw data DGM(1,1) APE(%) AVWA-DGM(1,1) APE(%) 

2005 236.3647 236.3647 0.0000 236.3647  0.0000 

2006 253.0854 260.4513 2.9104 253.0854 0.0000 

2007 282.0971 278.8862 1.1382 282.0834 0.0049 

2008 297.0601 298.6259 0.5271 297.0289  0.0105 

2009 326.1081 319.7628 1.9458 326.1081 0.0000 

2010 351.2563 342.3959 2.5225 351.2563  0.0000 

2011 356.6411 366.6308 2.8011 356.6553 0.0040 

      

2012 374.0574 392.5812 4.9521 374.0574  0.0000 

2013 381.4331 420.3683 10.2076 381.4232 0.0026 

2014 383.4152 450.1223 17.3981 388.9340  1.4394 

2015 389.4184 481.9822 23.7698 396.5927  1.8423 

2016 405.4007 516.0972 27.3055 404.4023 0.2463 

simulation MAPE  1.6922   0.0028  

forecast MAPE  16.7266  0.7061  

overall MAPE  7.9565   0.2958  

 307 



 

 

Fig.7 Comparison of simulation and prediction of two models in 

undergraduate enrollment students 
Fig.8 PSO algorithm fitness evolution curve 

 308 

5 Conclusion 309 

 310 
In this paper, the 1th-order accumulation sequence of the classical DGM (1,1) model is 311 

changed by weighting, and the weighting coefficients are optimized by particle swarm 312 

optimization algorithm to obtain the optimal weight coefficients, and the AVWA-DGM (1,1) 313 

model is proposed. The results show that when performing the 1th-order accumulation, the 314 

original data is given an appropriate weight, and then the 1th-order accumulation is 315 

performed, which can change the variation characteristics of the original data sequence. 316 

Through the sequence of the optimal weight coefficient, the data variation characteristics of 317 

the sequence are more in line with the data requirements of the DGM (1,1) model, so that the 318 

solution of the parameters becomes more accurate, thus making the DGM(1,1) model and the 319 

simulation and prediction accuracy are effectively improved. According to the results of the 320 

four numerical examples provided in this paper, the AWVA-DGM(1,1) model can effectively 321 

improve the prediction accuracy of the DGM(1,1) model, and has certain theoretical 322 

significance and application value. 323 

 324 
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