1

2

3

4

5

6

7

8 9

10 11

13

Planting Spacing of Cultivated Soybean Intercropped With Cover Plants

Thatyele Sousa dos Santos¹, José de Anchieta Alves de Albuquerque^{1*}, Roberto Dantas de Medeiros², Paulo Roberto Ribeiro Rocha¹, José Maria Arcanjo Alves¹, Thaís Santiago Castro¹, Anderson Carlos de Melo Gonçalves¹ and Ana Karyne Pereira Melo¹

> ¹Federal University of Roraima (UFRR), Boa Vista, RR, Brazil. ²Brazilian Agricultural Research Corporation (EMBRAPA), Boa Vista, RR, Brazil.

ABSTRACT

15 16

Aims: The objective of this work was to evaluate the influence of planting spacing in soybean intercropped with covering species in the Roraima savanna.

Study design: The experimental design was a randomized complete block design with four replications.

Place and Duration of Study: The experiments were conducted at Embrapa Roraima, in Campo Experimental Água Boa, municipality of Boa Vista - Roraima state, in 2015 and 2016.

Methodology: Plots consisted in the spacing (0.45, 0.55 and 0.65 m) and the subplots were constituted by the cover plant species *Urocloa brizantha*, *Urocloa ruziziensis*, *Panicum maximum* and the treatment without intercropping. The used soybean cultivar was BRS Tracajá in two crops. The following variables had evaluated: plant height, number of grains per pod, number of pods per plant, 100-grain weight, plant dry matter, insertion of the first pod, grain yield, and dry matter of the covering species and of spontaneous vegetation.

Results: Cover plants affected the plant height, number of pods per plant, insertion of the first pod, dry matter of cover species and yield of grains in soybean. The spacing did not influence the growth and production of the soybean crop, except positively in the number of pods per plant with the increased of spacing. The interaction of cover plants and spacing affected the weight of 100 grains, the insertion of the first pod and the dry mass of the cover species. Number of grains per pod and the dry mass of the soybean plants were not affected by the cover plants and by the spacing.

Conclusion: The *U. brizantha* species provids the highest production of dry matter intercropped with soybean, however, the yield of the crop decrease. The *U. ruziziensis* species is the most suitable for the cultivation intercropped with the crop. The used spacing do not influence the productivity.

17 18

Keywords: competition; intercropped cultivation; forages; Glycine max; grain production.

19

20 1. INTRODUCTION

21

Brazil is the second largest soybean (*Glycine max*) producer in the world, following only the United States. In the 2015/2016 growing season, this crop occupied an area of 33.17 million hectares, totaling a production of 95.63 million tons; the average yield of soybean in Brazil was 2,882 kg ha⁻¹. In the same growing season, Roraima occupied an area of 24 thousand

*Corresponding author: E-mail: anchietaufrr@gmail.com;

- hectares, with a production of 79.2 thousand tons and totaling a productivity of 3,300 kg ha⁻¹ [1].
- 28

Integrated systems can contribute to the production of soybean and to sustainability in
 different regions of Brazil, becoming an option to increase and diversify the income of
 producers, as well as for future improvements of no-till systems [2, 3].

32

The intercropping with forage species is a long-term method and consists of the cultivation of two or more crops in the same place with the objective of maximizing the productivity and quality of the obtained production [4, 5].

36

Intercropped cultivations with forage species from the genus Urochloa have been proving to be profitable and compatible, aiming at both straw and grain production. However, one of the limitations faced by producers for the adoption of the no-tillage system for soybean in the Cerrado of Roraima is related to the difficulty of establishing these plant species after harvesting commercial crops, due to the marked water deficit occurring from October to March.

43

In order to maximize the yield of a crop, the use of spacing and the used cultivar contribute most of the time to soybean yield. In this context, it is important to emphasize the spacing between rows to be used while sowing. According to Tourino (2002) [6], Procópio et al. (2014) [7], and Balena et al. (2016) [8], spacing can be managed in order to define a more suitable arrangement to obtain higher yields and the adaptation to harvesting fabaceae by machines. Also, by defining an adequate spacing, it is possible to provide good productivity and weed management, thus contributing to soil sustainability.

51

52 The objective of this work was to evaluate the influence of spacing and intercropping with 53 cover crop species on the performance of soybean in the cerrado of Roraima.

54 55

2. MATERIAL AND METHODS

56 57 2.1 Location of Study Area

58

The experiment was conducted in the experimental field of Brazilian Agricultural Research Corporation (EMBRAPA), Água Boa - CEAB, in the municipality of Boa Vista - Roraima state; located at the geographical coordinates of reference: $02^{\circ}49'11''N$, $60^{\circ}40'24''W$ and 85 m of altitude, in a soil classified as Yellow Latosol, whose analysis of properties was the following: pH (H₂O) = 5.4; Ca²⁺ = 1.28 cmolc.dm³; Mg²⁺cmolc.dm³ = 0.2 cmolc.dm³; K⁴ cmolc.dm³; = 0.19 cmolc.dm³ ; Al³⁺ = 0.1; cmolc.dm³ (H + Al) = 2.62 cmolc.dm³; P₂O₅ = 14.18 mg.dm³; SB= 1.67 cmolc.dm³; T = 4.29 cmolc.dm³; t = 1.77 cmolc.dm³; V= 39% and m=6%, clay = 136 g kg⁻¹; silt = 29.1 g kg⁻¹ and sand = 834.7 g kg⁻¹.

67

The climate of the region, according to the classification of Köppen, is Aw type, tropical rainy, with an average annual precipitation of approximately 1,700 mm and relative air humidity around 70% [9].

- 71
- The climatic data referring to maximum and minimum temperatures, and rainfall occurredduring the experimental period are described in Figure 1.

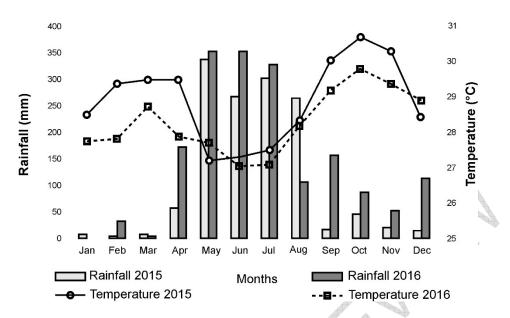


Fig 1. Means of rainfall and maximum and minimum temperatures.

76 77 **2.2 Study design**

78

The experimental design was a randomized complete block design in subdivided plots with four replications. Plots consisted in the spacing (0.45, 0.55 and 0.65 m) and the subplots were constituted by the cover plant species *Urocloa brizantha*, *Urocloa ruziziensis*, *Panicum maximum* and the treatment without intercropping. The used soybean cultivar was BRS Tracajá in two crops, from June to September 2015, and from May to September 2016.

84

85 The plant stand was the same for all treatments, varying only as for the number of plants per linear meter, which were adjusted to the different spacing. The subplots occupied areas of 86 18.9 m² for the 0.45 m spacing: 23.1 m² for the 0.55 m spacing, and of 27.3 m² for the 0.65 87 88 m spacing. The useful area of each subplot consisted of 5.0 x 2.25 m (11.3 m²) for the 0.45 89 m spacing; 5.0 m x 2.2 m (11 m²) for the 0.55 m spacing, and 5.0 x 1.95 m (9.8 m) for the 90 0.65 m spacing, consisting of five, four and three rows of soybean plants, respectively, in 91 which 0.50 m at each end of the subplots were excluded, for the realization of the 92 evaluations, corresponding to the useful area. 93

Before the sowing of soybean in 2015, the area was prepared with two disk plowing and one with a leveler to revolve the soil, since it remained for six years without any cultivation. Fertilization consisted of 100 kg ha⁻¹ of P_2O_5 , in the source of simple superphosphate + 50 kg ha⁻¹ of FTE BR 12 + 10 kg ha⁻¹ of N (urea source) applied in the planting grooves, and 120 Kg ha⁻¹ of K₂O in the source of potassium chloride, with 50% applied during planting and 50% during coverage, 30 days after emergence (DAE), together with seeds of the cover species.

101

102 Soybean sowing was performed in open grooves with a mechanized ridger during the first 103 year of cultivation. Therefore, seeds were inoculated with *Bradyrhizobium japonicum*.

- 104 Subsequently, it was sown manually, using densities of 280,000 ha¹ seeds, held in June
- 105 2015. In the second year of cultivation (2016), sowing was performed mechanically in May in
- no-tillage, using a SEMEATO SAN 200 planter, over the straw formed by the cover speciesfrom the previous year.
- 108

- Covering species were sown 30 days after the emergence of the soybean seedlings (DAE), using 30 kg ha⁻¹ of seeds for the species *Urocloa brizantha* and *U. ruziziensis*, and 10 kg ha⁻¹ for cv. Massai, mixed with 60 kg ha⁻¹ of K₂O planted between the rows of soybean plants.
 Weed control was performed at 25 DAE, at stage V4, using the herbicides Flex (Fomesafen) and Fusilade (Fluazifop-p-butyl), at doses recommended by the manufacturers.
- 114

In the second cultivation year (2016), according to the covering obtained from the previous
planting, forage was dried with Glyphosate + Flumyzin (Flumioxazin), then soybean was
planted, and after 20 (DAE), Flex (Fomesafen) + Verdict (Haloxyfop-Methyl) was applied.

- 119 2.3 Data Collection
- 120

121 During the development of the crop and after the harvesting of soybean, the following 122 agronomic characteristics were evaluated: plant height, evaluating ten random plants in the 123 useful area, measuring them from the neck of the plant until the end of the main stem; 124 number of grains per pod - the total number of grains from ten plants was counted, and the 125 result was divided by the total number of pods; number of pods per plant - ten random plants 126 were collected in the useful area of the sub-plot, obtained by counting the total number of 127 pods and calculating the average: 100-grain weight, determined by weighing one hundred 128 grains from the useful area, later corrected to 13% moisture; plant dry matter - ten plants 129 were randomly collected, dried in an oven until constant weight and weighed on a precision 130 scale; insertion of the first pod, determined from the collection of ten random plants in the 131 useful area of each subplot, measuring from the neck of the plant until the insertion of the 132 first pod; grain yield - the grains harvested from the useful area of each plot were weighed, 133 estimating the production for one hectare, and correcting grain moisture to 13%.

134

One-hundred twenty days after the harvest of soybean, the dry matter of the cover crop area and the spontaneous vegetation contained in the treatments without intercropping were evaluated. To determine the dry matter of the covering species, samples were collected using a 0.50 x 0.50 m square iron, according to the Braun-Blanquet methodology (1950) [10]. After that, they were taken to the laboratory in order to determine the dry matter of plants, through oven drying until constant weight at a temperature of 65 °C, and then they were weighed on a precision scale.

142 143

2.4 Data Analysis

144

Data on the production components of soybean and the dry matter of forage species and spontaneous vegetation were submitted to analysis of variance using the F test. These data refer to the average of two cultivation years (2015 and 2016). For the comparison between the means, the Tukey's test was carried out at 5% probability, with the help of the SISVAR computational application. The variable about shoot dry matter of covering species and spontaneous plants was transformed into kg ha⁻¹ to discuss data.

151152 3. RESULTS AND DISCUSSION

153

154 3.1 Height of Plants

155

The height of plants (PH) was influenced by the covering species intercropped with soybean,whose means are presented in Table 1.

158

The greatest PH of soybean intercropped with *P. maximum* cv capim massim may be related to the characteristic of the species. The forage plant cv. massai presents a smaller size, forming clumps with a mean height of 0.60 m, and presenting fine leaves, measuring 1 cm in 162 width [11]. Possibly, these characteristics may have contributed to a smaller competition with 163 the intercropped species, since soybean reaches a greater height.

164

165 For the intercrop with the species U. ruziziensis, due to a slower initial growth, soybean 166 probably showed greater vigor in the initial development of plants, but did not differ in height from P. maximum, as well as the low spontaneous vegetation in the area of treatments 167 without intercropping, which were basically composed of lower plants where there was 168 169 greater competition of the culture.

170

171 172

173 174

R	oraima state, 2017			
Covering plants	PH (cm)	NPP	Yield (kg ha ⁻¹)	
Urocloa brizantha	0.83 b*	59.0b	2631.1 b	
Urocloa ruziziensis	0.87 ab	59.2ab	2880.8 ab	
Panicum maximum	0.89 a	62.9ab	2713.9 ab	
Spontaneous vegetation	0.85 ab	67.1a	2920.4 a	

9.1

Table 1. Average plant height (PH), number of pod per plant (NPP) and yield of soybean crop cv. BRS Tracajá, intercropped with covering plants in Boa Vista -

3.6 11.3 175 *Means followed by the same lowercase letter in the column do not differ by Tukey's test, at 5% 176 probability.

177

178 The lower PH found for the intercrop with U. brizantha can be justified by the characteristics regarding the forage cultivar introduced in the intercrop with BRS Tracajá soybean. It is 179 possible to state that, under these conditions, the intra-species competition was significant, 180 but with an acceptable height of soybean plants. 181

182 3.2 Number of Pods per Plant 183

VC%

The number of pods per plant (NPP) was influenced by the spacing (Table 2) and also by 185 the intercrop with covering species (Table 1). A significant difference between spacing was 186 187 also verified by Silva et al. (2013) [12], in which there was a higher NPP in a spacing of 0.50 188 m.

189

190 Table 2. Average number of pods per plant intercropped with three types of spacing 191 (cm) in between rows of soybean cv. BRS Tracajá, in Boa Vista - Roraima state, 2017 192

S	pacing (m)	Number of pods per plant
0	.45	59.5 b*
0	.55	58.4 b
0	.65	68.2 a
V	′C %	11.1

*Means followed by the same lowercase letter in the column do not differ by Tukey's test, at 5% probability.

194 195

193

196 As for the different covering species used in the intercrop with soybean, it is possible to 197 observe that the spontaneous vegetation, U. ruziziensis and P. maximum, provided soybean with the highest NPP and the last two species did not differ from U. brizantha (Table 1). 198 199 Among the elements used in the production factor, NPP is the characteristic that most 200 contributes to the grain yield in the soybean crop, since it presents a higher correlation with 201 production [13].

202

203 3.3 Grain Yield

184

204

211

Grain yield was influenced by the covering crops; the cultivation without intercropping was the best treatment, followed by the species *U. ruziziensis* and *P. maximum* (Table 1). Productivity is closely linked to the production components of soybean and depends directly on the interaction of the genotype with the environment [17]. According to Albuquerque et al. (2012) [18], Castagnara et al. (2014) [16], Albuquerque et al. (2015) [19] and Werner et al. (2017) [3], large crops show higher yields in single crops.

212 3.4 Number of Grains Per Pod213

The number of grains per pod in the soybean crop was not influenced by the spacing and the cover crops used in this work, similar to other works with the same crop [20, 21, 22, 23, 24].

217 218 **3.5 100-grain Weight**

219

There was an interaction between the used spacing and the covering plants for the 100grain weight (W100G). When the spacing was split within each covering, it was possible to observe that *U. ruziziensis* and the spontaneous vegetation influenced the W100G of the culture (Table 3).

In the intercrop with *U. ruziziensis*, soybean reached a higher W100G at the spacing of 0.45
and 0.55 m. Possibly, a smaller spacing allowed lower weed interference in the soybean
crop, due to the closing of the crop canopy. As for *U. ruziziensis*, there was a smaller initial
development at these spacing. As for the outcome of the covering species within each
spacing level, no significant difference was observed (Table 3).

230

231

232

233 234

Table 3. Averages of the 100-grain weight obtained according to the interaction
between spacing and covering plant intercropped with soybean cv. BRS Tracajá
under different spacing in Boa Vista - Roraima, 2017

Covering plants		100-grain weight (g)	
covering plants	🕨 45 cm	55 cm	65 cm
Urocloa brizantha	11.8 aA*	12.1 aA	11.8 aA
Urocloa ruziziensis	13.3 aA	11.3 abA	10.8 bA
Panicum maximum	11.9 aA	12.3 aA	12.8 aA
Spontaneous vegetation	11.7 abA	13.5 aA	11.3 bA
VC1%		7.88	
VC2%		9.23	

235 236 *Means followed by the same lowercase letter on the line and uppercase in the column do not differ by Tukey's test, at 5% probability.

237

Komatsu et al. (2010) [14], while studying the effect of plant spacing on the behavior of
specific growth soybean cultivars, observed a greater grain weight when the 0.45 m spacing
was used, highlighting this effect among the characteristics of long-cycle soybean cultivars.
According to Bianchi et al. (2010) [15], crops with good potential for production cause
greater reduction of environmental resources, reducing their availability to other competing
species and thereby becoming more competitive with weeds.

244

No significant differences were found as for the W100G intercropped with the species *U. brizantha* and *P. maximum* cv. massai (Table 3). This result may be related to the genetic limit of the forage cultivar and/or species. In a study conducted by Castagnara et al. (2014)

[16], it was also not possible to find differences in terms of W100G in the joint sowing of soybean and *U. brizantha*.

250 251 252

3.6 Plant Dry Mass

The spacing and cover plants used did not influence the dry mass of the soybean plant,
 similar results were found in other studies with the same crop [25, 26]

256 **3.7 First pod Insertion**257

Table 4 presents the values about the first pod insertion (FPI) characteristic in the soybean crop, for the interaction between spacing and covering.

260

261 As for the spacing within each covering level, it was observed that the spacing of 0.65 m 262 influenced the intercrop when the P. maximum species was used, decreasing the height of the FPI. The spacing with the highest FPI height was 0.45 and 0.55 m. As for the other 263 264 covering species, no significant differences were observed (Table 4). A greater spacing 265 allowed lower plants, compared to those of the 0.55 and 0.45 m spacing; thus, there was a 266 small variation in FPI. According to Cruz et al. (2016) [27], the importance of evaluating this 267 variable informs if the minimum height may or may not provide losses during the harvesting 268 process by the cutting bar of the harvester.

269

In the 0.55 m spacing, *U. brizantha* negatively influenced the FPI, resulting in the lowest height, but with similar values to the other treatments (Table 4). This effect may be related to the competition of the intercrop and the variation in the environment, modifying the height of plants. Torres et al. (2015) [28] state that the environmental factors that interfere in the FPI are the same that can influence the height of plants, so it is possible that the height of the first pod has undergone a variation according to the height of soybean plants.

276 277

Table 4. Averages of the first pod insertion (FPI) obtained according to the interaction
 between spacing and covering plant intercropped with soybean cv. BRS Tracajá in
 three spacing between rows, in Boa Vista - Roraima state, 2017

281

Covering plents	Fi	rst pod insertior	ו
Covering plants	45 cm	55 cm	65 cm
Urocloa brizantha	15.9 aB*	16.6 aB	16.3 aB
Urocloa ruziziensis	17.9 aA	17.5 aAB	18.1 aA
Panicum maximum	18.4 aA	18.4 aA	16.5 bB
Spontaneous vegetation	17.1 aAB	17.2 aAB	16.4 aB
VC1%		5.78	
VC2%		4.54	

282 283

284

*Means followed by the same lowercase letter on the line and uppercase in the column do not differ by Tukey's test, at 5% probability.

The *U. brizantha* species, in general, was the one that influenced in terms of lower height in the FPI, mainly due to the intense competition that occurs with the culture. *U. brizantha* is more demanding for light, thus becoming more competitive for the solar radiation that reaches the soil for germination and vegetative development, and the FPI has a direct correlation with the use of light in the lower part of the canopy; thus, the more light reaches the lower part of the canopy of the soybean crop, the lower the node of the first pod and, consequently, the height of the insertion of the first pod.

292

293 A study by Pereira et al. (2011) [29] showed a negative influence on the intercropping with 294 U. decumbens species, causing a significant effect, and reducing the height of the first pod 295 to 11.1 cm, when this forage was sown in the sovbean rows, 25 days after sowing. 296

297

298

3.8 Dry Matter Yield of Covering Plants Had

299 The shoot dry matter yield of covering plants had a significant effect for the interaction 300 between spacing and covering plants (Table 5). 301

Table 5. Averages of the dry matter of covering species (kg ha⁻¹), obtained according 302 to the interaction between spacing and covering plant intercropped with soybean cv. 303 304 BRS Tracajá, in three spacing between rows, in the experimental field of Embrapa, in 305 Boa Vista - Roraima state, 2017 306

Covoring plant	Dry matter (kg ha ⁻¹)		
Covering plant	45 cm	55 cm 🚽	65 cm
Urocloa brizantha	74.99 bA*	83.56 abA 📃	92.44 aA
Urocloa ruziziensis	54.60 aB	63.74 aB	68.08 aB
Panicum maximum	69.58 aAB	64.95 aB	🔪 70.21 aB
Vegetação espontânea	17.75aC	16.70 aC	15.03 aC
VC1%		14.7	
VC2%		15.1	

307 *Means followed by the same lowercase letter on the line and uppercase in the column do not differ by 308 Tukey's test, at 5% probability.

309

Opposite results were obtained by Mata et al. (2012) [30] with lower values for the same 310 variable, which can be explained by the smaller spacing between soybean rows (0.40 m) 311 312 used by these authors, and the 20 to 30-day sowing gap period, which favored the development to the detriment of forage. 313

314

315 The Urocloa species show greater root growth, which may result in better development 316 conditions during the dry season [31].

317

318 U. ruziziensis becomes promising in the production of straw when intercropped with soybean 319 in the no-tillage system. Pacheco et al. (2011) [32] mention that out of the species used to 320 form straw in the off-season, U. Ruziziensis is important; even with a low initial development, 321 it has good regrowth capacity and dry matter gains, thus being an alternative to intercropping 322 and no-till systems. 323

324 4. CONCLUSION

325

326 Cultivar BRS Tracajá presents better grain yield in the single crop, and intercropped with 327 Urocloa ruziziensis and Panicum maximum. The highest dry matter yield occurs for the 328 Urocloa brizantha species; however, it causes the greatest reduction in soybean yield. The 329 U. ruziziensis and P. maximum species present the best use potential to establish 330 themselves in intercrop with soybean, reaching good dry matter productivity and less interference in soybean production components. The used spacing does not influence the 331 332 productivity of cultivar BRS Tracajá.

333 COMPETING INTERESTS

- Authors have declared that no competing interests exist. 335 336 **AUTHORS' CONTRIBUTIONS** 337 338 339 This work was carried out in collaboration between all authors. All authors read and 340 approved the final manuscript. 341 REFERENCES 342 343 National Supply Company (CONAB). Follow-up of Brazilian harvest: grains, fifth lifting, 344 1. 345 crop 2016/17. 2017;4(5):166. 346 2. Debiasi H, Franchini JC. Soil physical attributes and soybean production in a crop-347 livestock integration system with *Brachiaria sp* and *Glycine max*. Rural Science.. 348 2012;42(7):1180-1186. English. 349 Available:http://dx.doi.org/10.1590/S0103-84782012000700007 Werner F, Balbinot Junior AA, Franchini JC, Ferreira AS, Silva MAA. Agronomic 350 3. performance of soybean cultivars in an agroforestry system. Tropical Agriculture 351 352 Research. 2017;47(3):279-285. 353 Available: http://dx.doi.org/10.1590/1983-40632016v4745937 354 Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios D. Annual intercrops: An 4. 355 alternative pathway for sustainable agriculture. Australian Journal of Crop Science. 356 2011:5:396-410. Queiroz RF, Chioderoli CA, Furlani CEA, Holanda HV, Zerbato C. Maize intercropped 357 5. 358 with Urochloa ruziziensis under no-tillage system. Tropical Agriculture Research. 359 2016;46(3):238-244. English. 6. Tourino MCC, Rezende PM, Salvador N. Row spacing, plant density and intrarow plant 360 361 spacing uniformity effect on soybean yield and agronomic characteristics. Brazilian 362 Agricultural Research. 2002;37(8):1071-1077. English. 363 Procópio SO, Balbinot Junior AA, Debiasi H, Franchini JC, Panison F. Sowing in twin or 7. 364 narrow rows in soybean crop. Journal Agro@mbiente on-line. 2014;8(2):212-221. 365 English. Balena R, Giacomini CT, Bender AC, Nesi CN. Sowing time and row spacing in 366 8. 367 soybean yield. Unoesc & Science. 2016;7(1):61-68. English. 368 9. Araújo WF, Andrade Junior ASD, Medeiros RD, Sampaio RA. Probable monthly rainfall 369 in Boa Vista, Roraima State, Brazil. Brazilian Journal of Agricultural and Environmental 370 Engineering. 2001;5(3):563-567. English. 371 Available: http://dx.doi.org/10.1590/S1415-43662001000300032 10. Braun-Blanquet J. Sociologia vegeta: estudios de las comunidades vegetales. Buenos 372 373 Aires: Acme Agency; 1950. 374 11. Brazilian Agricultural Research Corporation (EMBRAPA). Massai Grass (Panicum 375 maximum Jacq.): New forage for pasture diversification in Acre. 2001;41:16. 376 12. Silva WB, Lima LB, Petter FA, Andrade FR. Initial development of Urochloa ruziziensis and agronomic performance of soybean in diferent space arrangements in the cerrado 377 378 of Mato-Grosso, Brazil. Bragantia. 2013;72(2):146-153. English. 379 Available: http://dx.doi.org/10.1590/S0006-87052013000200006 380 13. Nogueira APO, Sediyama T, Sousa LB, Hamawaki OT, Cruz CD, Pereira DG, Matsuo, 381 É. Path analysis and correlations among traits in soybean grown in two dates sowing. 382 Bioscience Journal. 2012;28(6):877-888. English. 383 14. Komatsu RA, Guadagnin DD, Borgo MA. Effect of plant spacing on the performance of 384 soybean cultivars growth of particular. Digit@l field. 2010;5(1):50-55. English.
- 334

385	15	Bianchi MA, Fleck NG, Lamego FP, Agostinetto D. Plant arrangement and soybean
386	10.	cultivar roles in weed interference results. Weed Plant. 2010;28(4):979-991. English.
387		Available: http://dx.doi.org/ 10.1590/S0100-83582010000500006
388	16	Castagnara DD, Bulegon LG, Zoz T, Rossol CD, Berte LN, Oliveira PSR, Neres MA.
389	10.	Intercropping of braquiária with soybean. Bioscience Journal. 2014;30:168-177.
390		English.
391	17	Cruz TV, Peixoto CP, Martins MC, Pinto MDFS. Soybean yield components in different
392	17.	sowing periods in the western of state of Bahia. Bioscience Journal. 2010;26(5):709-
393		716. English.
394	18	Albuquerque JAA, Sediyama T, Alves JMA, Silva AA, Uchôa SCP. Cultivation of
395	10.	cassava and beans in intercropping systems held in Coimbra in the State of Minas
396		Gerais, Brazil. Agronomic Science Journal. 2012;3(3):532-538. English.
	10	
397	19.	Albuquerque JAA, Oliva LSDC, Alves JMA, Uchôa SCP, Melo DAD, Cultivation of
398		cassava and cowpea in intercropping systems held in Roraima's savannah, Brazil.
399		Agronomic Science Journal. 2015;46(2):388-395. English.
400	00	Available: http://dx.doi.org/10.5935/1806-6690.20150018
401	20.	Lima EDV, Crusciol CAC, Cavariani C, Nakagawa J. Agronomic traits, yield and
402		physiological quality of "safrinha" (off-season) soybean under no till as a function of
403	04	plant cover and surface liming. Brazilian Journal of Seeds. 2009;31(1):69-80. English.
404	21.	Mauad M, Silva TLB, Neto AIA, Abreu VG. The influence of sowing density on
405		agronomic characteristics of soybean crop. Agrarian Journal. 2010;3(9):175-181.
406		English.
407	22.	Garcia CMP, Andreotti M, Teixeira Filho MCM, Lopes KSM, Buzetti S. Straw
408		decomposition forage as a function of nitrogen fertilization after the consortium with
409		corn and soybean yield in succession. Bragantia. 2014;73(2):143-152. English.
410		Available: http://dx.doi.org/10.1590/brag.2014.016
411	<mark>23.</mark>	Silva AFD, Lazarini E. Doses and application seasons of potassium on soybean crop in
412		succession the cover crops. Semina-Agrarian Sciences. 2014;35(1):179-192. English.
413		Available: http://dx.doi.org/10.5433/1679-0359.2014v35n1p179
414	<mark>24.</mark>	Procópio SO, Junior AAB, Debiasi H, Franchini JC, Panison F. Sowing in twin or narrow
415		rows in soybean crop. Agro@mbiente Journal On-line. 2014;8(2),212-221. English.
416	<mark>25.</mark>	Rodrigues GS, Medeiros RD, Albuquerque JAA, Smiderle OJ, Alves JMA, Silva AA.
417		Chemical management of Urochloa ruziziensis intercropping in soybean crop in
418		savanah of Roraima. Brazilian Journal of Herbicides. 2018;17(2):581-1. English.
419		Available: http://dx.doi.org/10.7824/rbh.v17i2.581
420	<mark>26.</mark>	Cavalli E, Lange A. Potassium rates and their residual effect on the soy-corn crops
421		system. Journal of Agronomic Sciences. 2018;27(2):310-326. English.
422	27.	Cruz SCS, Sena Junior DG, Santos DMA, Lunezzo, LO, Machado CG. Soybean
423		cropping under different plant densities and spatial arrangements. Journal of
424		Neotropical Agriculture. 2016;3(1):1-6. English.
425	28.	Torres FE, David GV, Teodoro PE, Ribeiro LP, Correa CG, Luz Júnior RA. Agronomic
426	•	performance and genetic dissimilarity between soybean genotypes. Journal of
427		Agricultural Sciences. 2015;38(1):111-117. English.
428	29.	Pereira RG, Albuquerque AW, Souza ROS, Silva AD, Santos JPA, Barros ES, Medeiros
429		PVQ. Soil management systems: soybean [Glycine max (L.)] intercropped with
430		Brachiaria decumbens (STAPF). Tropical Agriculture Research. 2011;41(1):44-51.
431		English.
432	30.	Mata JF, Erasmo EAL, Siebeneichler SC, Saraiva AS, Gonçalves RC. Analysis of
433		Brachiaria growth in different densities and sowing times in consortium with soybean
434		crop. Applied Research & Agrotechnology. 2012;4(3):7-30. English.
435		Available: https://doi.org/10.5777/paet.v4i3.1494

- 436 31. Pacheco LP, Pires FR, Monteiro FP, Procópio SO, Assis RD, Petter FA. Depth of
 437 sowing and initial growth of forage species used for soil coverage. Science and
 438 Agrotechnology. 2010;34(5):1211-1218. English.
- 439 Available: <u>http://dx.doi.org/10.1590/S1413-70542010000500019</u>
- 440 32. Pacheco LP, Barbosa JM, Leandro WM, Machado PLOA, Assis RL, Madari BE, Petter 441 FA. Biomass production and nutrient cycling of cover crops in upland rice and soybean.

442 Brazilian Journal of Soil Science. 2011;35:1787-1799. English.

MULTICAL