# **Original Research Article**

# CHEMICAL PROCESS ABSORPTION COLUMN DESIGN FOR CO<sub>2</sub> SEQUESTRATION

6 Abstract

The design of a prototype chemical process absorption column was carried out to facilitate the sequestration of  $CO_2$  from flue gas emanating from an exhaust point of a power generating set. Factors such as ambient temperature and atmospheric pressure where factored into consideration before the fabrication of the absorption column. The rate of the absorbing liquid is 0.1056kg/min and contains 5% mole/mole carbon (iv) oxide. Also the energy and material balance of the entire sequestration process was verified as well as the equipment design for the process was carried out.

**Keyword:** material balance, energy balance, CO<sub>2</sub> sequestration, ammonia, equipment design, absorption column, knockout drum, absorber, evaporative gas cooler, solution cooler, solution heat exchanger, flash drum, stripper, and reboiler.

#### 1. Introduction

Plant design is a technical term that embraces all engineering aspects involved in the development of either a new, modified, or expanded industrial plant (Coulson and Richardson, 1968). It involves the economic evaluation of new processes, design of industrial pieces of equipment for a new plant or the development a plant layout for the co-ordination of the overall operation. The development of a process involves many different steps starting from the inception of the basic idea. The atmospheric concentration of carbon (IV) oxide, i.e., the most critical greenhouse gas, has increased from 280 ppm in the pre-industrial age to more than 370 ppm now, and is expected to increase above 500 ppm by the end of this century, Watson R.T (2001). This is recognized to be due to anthropogenic activities, especially fossil fuels burning and land use changes, and associated with the increasing earth's average temperature.

Present strategies for the mitigation of the atmospheric carbon (IV) oxide build-up are relied on the energy use efficiency, and the reduction of fossil fuels consumption for increased use of renewable energy sources or nuclear power plants. However, the increasing world population accompanied with increasing consumption of energy and growth of industrial development in developing countries like china and India has posed a challenge in the efforts to reduce greenhouse gas emissions. Thus, the inevitable way of keeping the global CO<sub>2</sub> load in the atmosphere and hydrosphere below unbearable levels is the complementing of emission reduction efforts by the capture CO<sub>2</sub> before it emits from point sources, or from its carrying air stream emitting from the point of sources, and to store it permanently outside the atmosphere.

39 40

41

34

35

36

37

38

#### 2. Materials and Methods

#### 2.1 Methodology

- Due to the nature of the equipment made of glassware and in order to control the experiment,
- 43 standard conditions of ambient temperature and atmospheric pressure were adopted for the
- process, and also for the flow rate of the solution into the absorption column. Three independent
- 45 variables were used: the concentration of solvent ranging from 2-10 mol/dm<sup>3</sup>, contact time
- ranging from from 20-100 seconds and volume of solvent ranging from 40-200 ml.
- 47 For the carbon sequestration to be achieved, 10 mol/dm<sup>3</sup> concentration of aqueous ammonia was
- prepared and poured into a flask containing ammonia solution which supplies the solution to the
- 49 absorber, the aqueous ammonia was evenly distributed across the inner surface of the column
- while in contact with the plates. The petrol generating set was turned on while the gas analyzer
- 51 detected the components and quantity of gases before it being charged into the heat exchanger.
- The heat exchanger helped to attain the desired temperature of 40°C before the flue gas was
- charged into the absorption column from the entry point near the base of the absorption column.
- The flue gas in the column contacted with the aqueous ammonia in a counter current form for a
- period of 60 seconds after which the tap at the exit point close to the top of the absorption
- column was opened and gas analyzer was used to determine the amount of CO<sub>2</sub> and CO leaving
- 57 the column.

#### 2.2 Materials

- The materials made up of glass wares were purchased at science apparatus market; they were put
- together alongside other components fabricated to make a complete reactor. The equipment has
- an absorption column, flask containing the ammonia solution, reservoir to house the content of
- the mixture in the aftermath of the reaction, openings for flue gas entrant and exit point after the
- reaction, non-heat sensitive pipe connected to the entry point of the absorption column and the
- exhaust pipe of the gasoline generating set.

#### **Equation for the reaction:**

- i) CO<sub>2</sub> Absorption
- 68  $2CO_2(g) + 2NH_3(aq) + H_2O \rightarrow NH_2COONH_4(aq) + H_2CO_3$

69

71

66

- 70 ii) Ammonia Regeneration
  - $NH_2COONH_4^+(aq) + H_2O \rightarrow H_2CO_3 + 2NH_3$
- About 98% recovery of CO<sub>2</sub> occurs and the recovery liquid is a 20% w/w NH<sub>3</sub>

#### 73 **Assumptions:**

- The rate of the absorbing liquid is 0.1056kg/min and contains 5% mole/mole carbon (iv) oxide.
- The spent air effluent analysis, 0.000347ft<sup>3</sup>/s at 30<sup>o</sup>C, 1atm with % composition on dry basis of carbon (IV) oxide (3.5%), nitrogen (79%) and oxygen (17.5%). The exit air is saturated with water vapour at the absorbing liquid inlet temperature of 40<sup>o</sup>C.
- 79 3) Recovery of 85% CO<sub>2</sub>.
- 80 4) Reaction equation
- 81 The following reaction occurs:
- i) CO<sub>2</sub> Absorption
- 83  $2CO_2(g) + 2NH_3(aq) + H_2O \rightarrow NH_2COONH_4(aq) + H_2CO_3$
- 84 ii) Ammonia Regeneration
- 85  $NH_2COONH_4^+(aq) + H_2O \rightarrow H_2CO_3 + 2NH_3$
- About 98% recovery of CO<sub>2</sub> occurs and the recovery liquid is a 20% w/w NH<sub>3</sub>

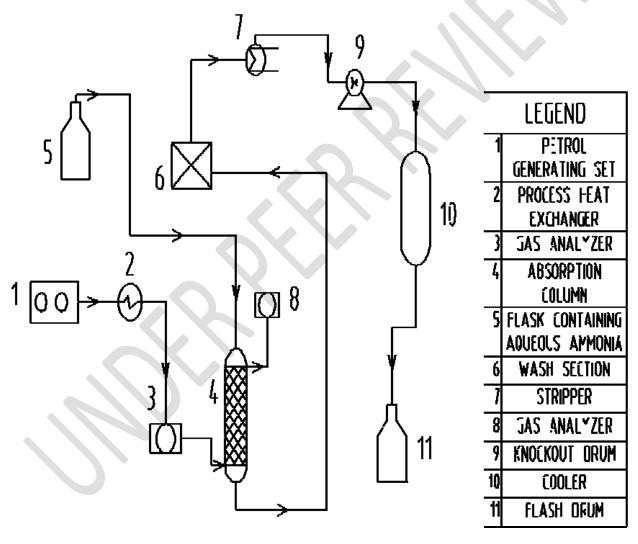
### **Assumptions:**

- i) The rate of the absorbing liquid is 0.1056kg/min and contains 3.5% mole/mole carbon (IV) oxide.
- 90 ii) Air effluent analysis, 0.000347ft<sup>3</sup>/s at 30<sup>o</sup>C, 1atm with % composition on dry basis of 91 carbon (IV) oxide (3.5%), nitrogen (79%) and oxygen (17.5%). The exit air is 92 saturated with water vapour at the absorbing liquid inlet temperature of 40<sup>o</sup>C.
- 93 iii) Recovery of 85% CO<sub>2</sub>.

94

95

87


#### **Process Details:**

- 96 Basis: 1 minute operation
- 97 Feed Stream
- 98 Stream 2: Spent air effluent (dry basis)
- 99  $CO_2 = 3.5\%$
- 100 Nitrogen = 79%
- 101 Oxygen = 17.5%
- 102 **Total volume** of spent air effluent = 0.000347Ft<sup>3</sup>/s

104

### 3. Results and Discussions

105



106 107

Fig.1 Experimental set-up and sketch diagram for absorption using the prototype semi-batch column

The capturing of CO<sub>2</sub> from spent air effluent was achieved through the absorption of CO<sub>2</sub> with ammonia solution to form ammonia carbamate which was later regenerated to recover the ammonia and CO<sub>2</sub>. The raw gas (air effluent from a generating set) was cooled to about 40°C (reaction temp.) and separated to remove any condensed water from the raw gas. Dry air effluent was charged to the adsorption column. In the absorption section the air was charged counter currently with ammonia solution from the top and the CO<sub>2</sub> was absorbed to form ammonium carbamate. The off air from absorption section is water washed in the wash section to remove any entrained liquid. The scrubbed gas recovered as overhead is sent to the knock-out drum to recover any entrained ammonia solution from the absorption column. The rich-amine solution from the bottom of the absorber is passed to energy recovery system and a solution heat exchanger where it is pre-heated to about 150°C (regeneration temperature). The spent ammonia solution exchange heat with incoming regenerated ammonia solution from bottom of the regenerator. Pre-heated spent ammonia solution is separated to remove any gas associated with the spent ammonia solution. Regeneration of ammonia solution is carried out in the regenerator by the application of heat supplied by steam generated in the reboiler at the base of the regenerator. The top product of regenerator contains mainly CO<sub>2</sub> and steam which is cooled in the cooler to condense them. The steam is separated and returned to the reboiler.

- The bottom product of regenerator containing regenerated ammonia solution is passed through
- solution heat exchanger where it exchanges heat with spent ammonia solution from the absorber.
- It is further cooled to bring its temperature to about  $40^{\circ}$ C (absorption temperature).

#### 130 3.1 Material Balance Results

#### 131 CALCULATIONS

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

#### 132 To get the volumetric flow rate:

# $133 \quad Volume = \pi r^2 h$

- The absorption column specifications are:
- Length of column: 40cm
- Diameter of column: 5cm
- Number of plates: 10
- Distance between plates: 2cm
- Distance between outlet and plates in the column: 5cm

- Distance between outlet and bottom of column: 5cm
- Distance between inlet and plate contact: 5cm

Radius = 
$$\frac{\text{Diameter}}{2} = \frac{5}{2} = 2.5 \text{cm} (0.025 \text{m})$$

- Volume =  $\pi \times 0.025^2 \times 0.4 = 7.8539 \times 10^{-4} m^3$
- 144 Convert to feet: where 1ft<sup>3</sup> =0.0283m<sup>3</sup>

$$\frac{0.0007845}{0.3048^3} = 0.0277ft^3 \times 60 = 1.6642 ft^3/hr$$

Assuming 75% absorption capacity for CO<sub>2</sub> and converting the calculated values from ft<sup>3</sup>/hr to ft<sup>3</sup>/sec

$$\frac{3}{4} \times \frac{1.6642}{1} = \frac{1.24815}{3600} = 0.0003467 \text{ ft}^3/\text{sec}$$

148 To get the mass flow rate:

- 149 **At optimum condition:** Vol. of solvent = 120ml
- Multiply by the density;  $120 \times 0.88 \times 1 \text{gram} = 105.6 \text{ g/min} = 0.1056 \text{ kg/min}$
- 151 Balance around the absorber
- 152  $CO_2$  in  $F_3 = 0.0000364$ kg (0.000000827kmol)
- For 85% recovery, CO<sub>2</sub> scrubbed
- 154 =  $0.85 \times C0_2 \text{ Fed in } F_3 = 0.0000309 \text{kg}$
- 155 Kmol of  $CO_2$  scrubbed = 0.000000701kmol
- 156 Reaction equation in Absorber
- 157  $2CO_2(g) + 2NH_3(aq) + H_20 \rightarrow NH_2COONH_4(aq) + H_2CO_3$
- 158 Ammonium carbomate
- 159 From above equation
- $= (0.000000701 \text{ x 2}) \text{ kmol of CO}_2 \text{ required } (0.000000701 \text{ x 2}) \text{ kmol NH}_3$
- 161 Total mole of liquid consumed
- 162 = 0.000001402 + 0.000000701 = 0.000002103 kmol
- Total mole of absorbing liquid = 0.1056kmol/min
- 164 Recovery liquid is a 20% w/w NH<sub>3</sub>
- 165 Average molecular weight of recovery

166 Liquid = 
$$\frac{20(17)}{100} + \frac{80(18)}{100} = 17.8$$

- 167 Total mole of recovery liquid
- $168 = \frac{0.1086}{17.8} = 0.0059 \text{kmol}$
- Mole of  $NH_3$  in recovery liquid = 0.00118kmol
- 170 Mass of Ammonia in recovery liquid = 0.02006 kg/min
- 171 Kmol of  $H_20$  in recovery liquid = 0.00472kmol
- Mass of  $H_20$  in recovery liquid = 0.08496 kg/min
- Unreacted  $NH_3 = 0.00118$ kmol
- 174 Unreacted  $H_20 = 0.004719$  kmol
- 175 Balance check
- 176 Flow stream  $F_3$  (kg)
- 177 Total  $F_3 = 0.0006954$ kg/min
- 178 Flow stream F<sub>8</sub>
- 179  $CO_2 = 0.0000118$ kmol x 44 = 0.0005192kg
- Total  $F_8 = 0.02006 + 0.08496 + 0.0005192 = 0.1055 \text{kg/min}$
- 181 Flow stream F<sub>4</sub>
- 182 Unscrubbed  $CO_2 = 0.000484 \text{kg/min}$
- From specifications, the exit air is saturated at  $40^{\circ}$ C.
- Vapour pressure of water at 40°C, 760mmHg.
- Where A, B and C are Antione's constant, T = Temperature
- 187  $\rho_{\rm w}^0 = 232.293 \, \text{mmHg}$
- Mole fraction of water vapour in flow  $F_4$

### Vapour pressure of water vapour

#### Total pressure

190 Total  $F_4 = 0.000887 + 0.000526 + 0.000133 + 0.000484 = 0.00203$ 

191 NH<sub>3</sub> solution =  $1 \times 10^{-6} \times 0.00203 = 0.00000000203 \text{kg}$ 

192 Flow stream  $F_5$  (spent amine solution)

193  $CO_2 = 0.0005192$ kg

194 Flow stream  $F_3^1$ 

189

Water used for washing = 0.5 X total gas washed = 0.001015 kg

196 Flow stream  $F_4^1$ 

197 Let assume  $H_20$  in  $F_4^1 = H_20$  in  $F_3^1 = 0.001015$ kg

198  $H_2O \text{ in } F_5 = H_2O \text{ in } F_8 + H_2O \text{ in } F_3^1 - H_2O \text{ in } = 0.08406$ 

Total  $F_5 = 0.000053 + 0.000043 + (0.00118 \times 17) + 0.08406 + 0.0005192 = 0.1047 \text{kg}$ 

200 Balance

201 At steady state

202 Total input = total output

203  $F_3 + F_8 + F_3^1 = F_4 + F_4^1 + F_5$ 

204 0.1072104 = 0.107745

206

205

207

# **3.1.1 Material Balance Summary Tables**

### **3.1.1.1 Absorber**

209

210

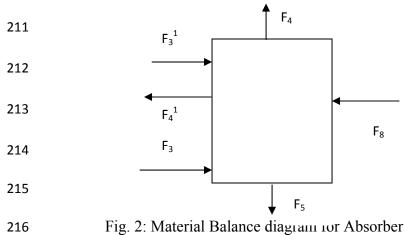



Fig. 2: Material Balance diagram for Absorber

#### 217 Table 1: Absorber Input Streams

|                                |            | F <sub>3</sub>   |               | F <sub>8</sub>   |               | $F_3^1$          |            |
|--------------------------------|------------|------------------|---------------|------------------|---------------|------------------|------------|
| Comp                           | Mol.<br>Wt | Mole<br>kmol/ hr | Mass<br>kg/hr | Mole<br>kmol/ hr | Mass<br>kg/hr | Mole<br>kmol/ hr | Mass kg/hr |
| CO <sub>2</sub>                | 44         | 0.0000118        | 0.0000364     | 0.000011         | 0.0005192     | -                | -          |
| $O_2$                          | 32         | 0.000526         | 0.000133      | -                | -             | -                | -          |
| N <sub>2</sub>                 | 28         | 0.000133         | 0.000526      | -                | -             | -                | -          |
| NH <sub>3</sub>                | 17         | -                | -             | 0.00118          | 0.02006       | -                | -          |
| H <sub>2</sub> O               | 18         | -                | -             | 0.08496          | 0.08496       | -                | 0.001015   |
| H <sub>2</sub> CO <sub>3</sub> | 61         | -                | -             | -                | -             | -                | -          |
| Carbamate                      | 62         | -                | -             | -                | -             | -                | -          |
| Total                          |            |                  | 0.0006954     |                  | 0.01055       |                  | 0.001015   |

# Table 2: Absorber Output Streams

|                                |            | <b>F</b> <sub>2</sub> | 1             |                  | F <sub>4</sub> | $\mathbf{F}_{5}$ |               |
|--------------------------------|------------|-----------------------|---------------|------------------|----------------|------------------|---------------|
| Comp                           | Mol.<br>Wt | Mole<br>kmol/ hr      | Mass<br>kg/hr | Mole<br>kmol/ hr | Mass kg/hr     | Mole kmol/<br>hr | Mass<br>kg/hr |
| CO <sub>2</sub>                | 44         | -                     | -             | 0.02006          | 0.000484       | 0.0000118        | 0.0005192     |
| $O_2$                          | 32         | -                     | -             | 0.08406          | 0.000526       |                  | -             |
| N <sub>2</sub>                 | 28         | -                     | -             | 0.000043         | 0.000133       | -                | -             |
| NH <sub>3</sub>                | 17         | -                     | -             | -                | 0.0005713      | 0.0000118        | 0.02006       |
| H <sub>2</sub> O               | 18         | -                     | 0.001015      | -                | 0.000286       | 0.000000701      | 0.08406       |
| H <sub>2</sub> CO <sub>3</sub> | 61         | -                     | -             | (-)              | -              | 0.000000701      | 0.000043      |
| Carbamat<br>e                  | 62         | -                     |               |                  | -              | 0.000000701      | 0.000053      |
| Total                          |            | ~                     | 0.001015      |                  | 0.00203        |                  | 0.1047        |

219

220

226

218

# 3.1.1.2 Knock-Out Drum 1

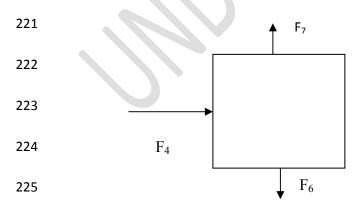



Fig. 3: Material Balance diagram for Knock Out Drum 1

### Table 3: Knock-Out Drum 1 Calculation Details

|                  | INPUT (F <sub>4</sub> ) |          | OUTPUT   | OUTPUT (F <sub>6</sub> ) |               | OUTPUT (F <sub>7</sub> ) |           |
|------------------|-------------------------|----------|----------|--------------------------|---------------|--------------------------|-----------|
| Comp             | Mol.                    | Mole     | Mass     | Mole                     | Mass          | Mole                     | Mass      |
|                  | /wt                     | Kmol/h   | kg/hr    | kmol/hr                  | Kg/hr         | Kmol/hr                  | Kg/hr     |
| CO <sub>2</sub>  | 44                      | 0.000484 | 0.000484 | -                        | -             | 0.000484                 | 0.0005192 |
| O <sub>2</sub>   | 32                      | 0.000526 | 0.000133 | -                        | -             | 0.000526                 | 0.000133  |
| N <sub>2</sub>   | 28                      | 0.000133 | 0.000133 | -                        | -             | 0.000133                 | 0.000133  |
| NH <sub>3</sub>  | 17                      | -        | -        | -                        | 0.0029        |                          | -         |
| H <sub>2</sub> O | 18                      | -        | -        | -                        | 0.00116       | -                        | -         |
| Total            |                         |          | 0.000203 |                          | 0.00000000203 |                          | 0.0011782 |

### **3.1.1.3 Flash Drum**

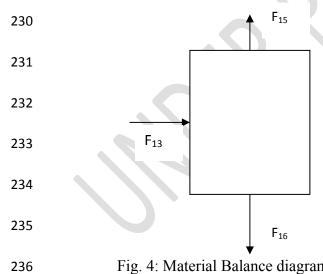



Fig. 4: Material Balance diagram for Flash Drum

| INPUT STREAM                   |                 |           | OUTPUT STREAM   |           |                 |          |
|--------------------------------|-----------------|-----------|-----------------|-----------|-----------------|----------|
|                                | F <sub>13</sub> |           | F <sub>15</sub> |           | F <sub>16</sub> |          |
| Comp                           | Mole            | Mass      | Mole            | Mass      | Mole            | Mass     |
|                                | kmol/hr         | kg/hr     | kmol/hr         | kg/hr     | kmol/hr         | kg/hr    |
| CO <sub>2</sub>                | -               | 0.0005192 | -               | 0.0005192 | -               | -        |
| NH <sub>3</sub>                | -               | 0.02006   | -               | -         | 0.86            | 0.02006  |
| H <sub>2</sub> O               | 0.000000701     | 0.08406   | -               | -         | 0.000000701     | 0.08406  |
| H <sub>2</sub> CO <sub>3</sub> | 0.00118         | 0.000043  | -               |           | 0.00118         | 0.000043 |
| Carbamate                      | 0.00118         | 0.000053  | -               | -         | 0.00118         | 0.000053 |
| Total                          |                 | 0.1047    |                 | 0.0005192 |                 | 0.104216 |

# **3.1.1.4 Stripper**

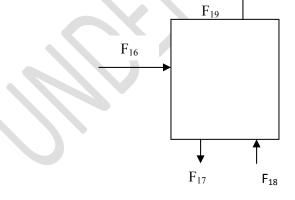



Fig. 5: Material Balance diagram for Stripper

# Table 5: Stripper Input and Output Streams

| INPUT STREAMS                  |                  |               |                     |            | OUTPUT STREAMS      |               |                     |               |
|--------------------------------|------------------|---------------|---------------------|------------|---------------------|---------------|---------------------|---------------|
|                                | F <sub>16</sub>  |               | F <sub>18</sub>     |            | F <sub>17</sub>     |               | F <sub>19</sub>     |               |
| Comp                           | Mole<br>kmol/ hr | Mass<br>kg/hr | Mole<br>kmol/<br>hr | Mass kg/hr | Mole<br>kmol/<br>hr | Mass<br>kg/hr | Mole<br>kmol/<br>hr | Mass<br>kg/hr |
| NH <sub>3</sub>                | -                | 0.02006       | -                   | -          | -                   | 0.02006       | -                   |               |
| H <sub>2</sub> O               | 0.00000701       | 0.08406       | -                   | 0.00004326 | -                   | 0.1690        | ~                   | 0.00004326    |
| H <sub>2</sub> CO <sub>3</sub> | 0.00118          | 0.000043      | -                   | -          | -                   |               | _                   | -             |
| Carbamate                      | 0.00118          | 0.000053      | -                   | -          | -                   |               | -                   | -             |
| CO <sub>2</sub>                | -                | -             | -                   | 70         | -                   | 0.0005192     | -                   | 0.00055004    |
| Total                          |                  | 0.104216      |                     | 0.00004326 |                     | 0.1896        |                     | 0.0005933     |

#### \_ 254

255

261

262

263

253

# **3.1.1.5 Knock-Out Drum 2**

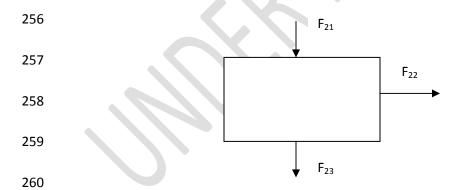
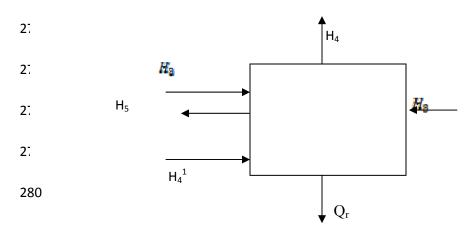



Fig. 6: Material Balance diagram for Knock Out Drum 2

Table 6: Knock-Out Drum 2 Input and Output Streams


| INPUT STREAMS    |                 |               | OUTPUT STREAMS |                 |               |                 |            |
|------------------|-----------------|---------------|----------------|-----------------|---------------|-----------------|------------|
|                  | F <sub>21</sub> |               |                | F <sub>22</sub> |               | F <sub>23</sub> |            |
| Comp             | Mole/ wt        | Mole<br>kg/hr | Mass kg/hr     | Mole<br>kmol/hr | Mass<br>kg/hr | Mole<br>kmol/hr | Mass kg/hr |
| CO <sub>2</sub>  | 44              | -             | 0.0005501      | -               | 0.0005501     | -               | -          |
| H <sub>2</sub> O | 18              | -             | 0.00004326     | -               | -             |                 | 0.00004326 |
| Total            |                 |               | 0.0005933      |                 | 0.0005501     |                 | 0.00004326 |

#### 3.2 Energy Balance Results

The conservation of energy differs from that of mass in that energy is generated (or consumed) in a chemical process. Material can change form; new molecular species was formed by chemical reactions where the total mass flow into a process unit must be equal to the flow out at the steady state. The same is not true of energy. The total enthalpy of the outlet streams will not equal that of the inlet streams if energy is generated or consumed in the processed, such as that due to heat of reaction.

### 3.2.1 Energy Balance Summary Tables

#### **3.2.1.1 Absorber**



```
Fig. 7: Energy Balance diagram for Absorber
```

288

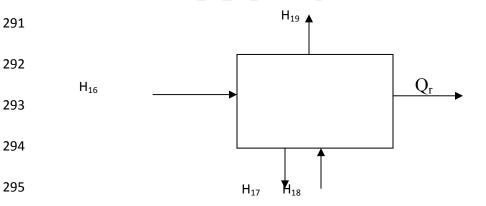
Where Qp = heat of the process, in this case Qp = 0 (Adiabatic process)

284 Qr = Heat of the reaction =  $\Sigma$ -  $\Delta$ Hr<sup>0</sup>)

285 Total heat input =  $H_3 + H_3^1 + H_8$ 

Total heat output  $= H_5 + H_4 + H_4^1$ 

287 Enthalpy input,  $H_3 = \int_{T_{ref}}^{T_2} \in_n C_p dT$ 


Table 7: Absorber Energy Balance Summary

| ENERGY         | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|----------------|---------------|----------------|
| H <sub>3</sub> | 0.1704        |                |
| H <sub>4</sub> | -             | 0.3329         |
| $H_4^{-1}$     | -             | 0.1705         |
| H <sub>8</sub> | 3.9952        | -              |
| H <sub>5</sub> | -             | 102.4708       |
| Qr             | 98.8085       | -              |
| Total          | 102.9741      | 102.9741       |

289

290

### **3.2.1.2 Stripper**



296

297

298

### Table 8: Stripper Energy Balance Summary

| ENERGY          | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|-----------------|---------------|----------------|
| H <sub>16</sub> | 47.4869       | -              |
| H <sub>18</sub> | 0.1326        | -              |
| H <sub>17</sub> | -             | 127.77         |
| H <sub>19</sub> | -             | - 76.5845      |
| Qr              |               | - 98.805       |
| Total           | 47.6195       | - 47.6195      |

### **3.2.1.3 Gas Cooler 5**




Fig. 9: Energy Balance diagram for Gas Cooler 5

# Table 9: Gas Cooler 5 Energy Balance Summary

| ENERGY           | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|------------------|---------------|----------------|
| H <sub>20</sub>  | 5.0624        | -              |
| H <sub>21</sub>  | -             | 2.5312         |
| Q <sub>VAP</sub> | 0.09769       | -              |
| Q <sub>5</sub>   | -             | 2.62889        |
| TOTAL            | 5.16009       | 5.16009        |

### 3.2.1.4 Solution Heat Exchanger

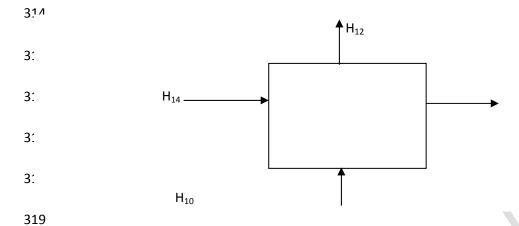



Fig. 10: Energy Balance diagram for Solution Heat Exchanger

### 321 Balance

323

324

325

328

329

330

331

313

322  $H_{10} + H_{14} = H_{12} + H_{13}$ 

### **ASSUMPTIONS**

- (1) The reboiler only generate steam for desorption process.
  - (2) Regenerated Amine solution does not pass through the reboiler so that  $H_{17} = H_{14}$
- 326 (3) That the energy recovery system is dominant.

Table 10: Solution Heat Exchanger Energy Balance Summary

| ENERGY          | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|-----------------|---------------|----------------|
| $H_{10}$        | 102.4708      | -              |
| H <sub>12</sub> | -             | 182.7006       |
| H <sub>13</sub> |               | 47.5402        |
| H <sub>14</sub> | 127.77        |                |
| Total           | 230.2408      | 230.2408       |

### 3.2.1.5 Solution Cooler 4

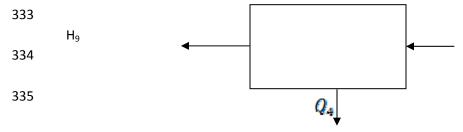



Fig. 11: Energy Balance diagram for Solution Cooler 4

338 Hence 
$$Q_4 = (H_{12} = H_{11}) - H_9$$

Table 11: Solution Cooler 4 Energy Balance Summary

| ENERGY          | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|-----------------|---------------|----------------|
| H <sub>9</sub>  | -             | 3.9952         |
| H <sub>11</sub> | 182.7006      | -              |
| Q <sub>4</sub>  | -             | 178.7054       |
| Total           | 182.7006      | 182.7006       |

# 3.2.1.6 Evaporative Gas Cooler 2

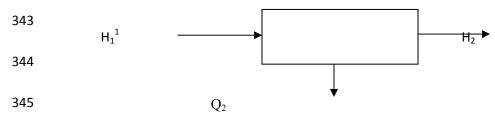



Fig. 12: Energy Balance diagram for Evaporative Gas Cooler 2

349 
$$H_{1^{\perp}} \int_{30}^{80} \in_{n} C_{p} dT$$

Table 12: Gas Cooler Energy Balance Summary

| ENERGY         | INPUT (KJ/Hr) | OUTPUT (KJ/Hr) |
|----------------|---------------|----------------|
| $H_1^{-1}$     | 0.8712        | -              |
| H <sub>2</sub> | -             | 0.1704         |
| Q <sub>2</sub> | -             | 0.7008         |
| TOTAL          | 0.8712        | 0.8712         |

### 3.3 Process Equipment Specifications

#### 3.3.1 Absorber Specifications

356 Absorption of CO<sub>2</sub> in 20% w/w NH<sub>3</sub> solution

357 - 
$$G\partial y = KGa (P_A - P_{AC}) \partial h$$

 $P_{Ae}$  = partial pressure that would be in equilibrium with the bulk of liquid, because the liquid is a concentrated solution of NH<sub>3</sub>, the partial pressure of CO<sub>2</sub>,  $P_{Ae}$  in equilibrium with it is virtually zero. Also PA = yp where P is the total pressure.

Rearranging and integrating

$$\frac{1}{K_{G\alpha}} = \frac{1}{K_{G\alpha}} + \frac{H}{K_{L\alpha}}$$

Table 13: Results Summary of Absorber Specifications

| Equipment name               | Absorber                |
|------------------------------|-------------------------|
| Туре                         | Wetted wall column      |
| Packing type                 | Ceramic intallox paddle |
| Packing size                 | 38mm                    |
| Packing factor               | 170m <sup>-1</sup>      |
| Column area                  | 0.0003142 <b>m²</b>     |
| Column diameter              | 0.01m                   |
| Height of absorption section | 1.0m                    |
| Height of wash section       | 0.2m                    |
| Bottom liquid depth          | 0.000044m               |
| Top gas disengagement height | 0.3048m                 |
| Packing height               | 0.235m                  |
| Column material              | Stainless steel         |
| Design temperature           | 50°C                    |
| Design pressure              | 1.1atm                  |
| Column wall thickness        | 5mm                     |
| Column cover thickness       | 5mm (terrispherical)    |

The design of wet scrubbers or any air pollution control device depends on the industrial process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust properties are of primary importance. Scrubber was designed to collect particulate matter and/or gaseous pollutants (Coulson and Richardson, 2005). Wet scrubbers remove dust particles by capturing them in liquid droplets. Wet scrubbers remove pollutant gases by dissolving or absorbing them into the liquid. Droplets that are in the scrubber inlet gas were separated from the outlet gas stream by means of another device referred to as a mist eliminator or entrainment separator.

### 3.3.2 Evaporative Gas Cooler 2 specifications

The evaporative cooler (also swamp cooler, desert cooler and wet air cooler) is a device that was designed to cool air through the evaporation of water. Evaporative cooling differs from typical air conditioning systems which use vapour-compression or absorption refrigeration cycles. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature

of dry air can be dropped significantly through the phase transition of liquid water to water vapour, which requires much less energy than refrigeration.

Table 14: Results summary of Evaporative Gas Cooler 2 specifications

| Equipment name                  | Gas Cooler 2             |
|---------------------------------|--------------------------|
| Туре                            | Horizontal C & R         |
| Sub-type                        | Split-ring floating Head |
| Shell type                      | Split-flow               |
| Number of tubes                 | 130                      |
| Number of tubes per pass        | 65                       |
| Surface area of exchange        | $0.003 \text{m}^2$       |
| Heat load                       | 0.7008KJ/min             |
| Tube bundle diameter            | 37.5mm                   |
| Shell inside diameter           | 48.5mm                   |
| Bundle clearance                | 11mm                     |
| Overall heat coefficient        | 0.082w/m <sup>2</sup> °C |
| Tube-side heat coefficient      | 11.935 w/ <b>m²</b> °C   |
| Shell-side heat coefficient     | 3.1391 w/ <b>m²</b> °C   |
| Tube-side fouling factor        | 5000w/m <sup>20</sup> C  |
| Shell-side fouling factor       | 5000w/m <sup>20</sup> C  |
| Tube pitch                      | 25mm                     |
| Tube arrangement pattern        | Triangular               |
| Baffle spacing                  | 9.7mm                    |
| Baffle cut                      | 25%                      |
| Baffle type                     | Segmented                |
| Baffle height                   | 76.275mm                 |
| No of support place nods        | 8                        |
| Diameter of nods                | 9.5mm                    |
| Tube-side design press          | 2.2atm                   |
| Tube-side design temp.          | 70 °C                    |
| Tube-side pressure drop         | 0.215kpa                 |
| Shell-side design press         | 1.1atm                   |
| Shell-side design temp.         | 90 °C                    |
| Shell-side design pressure Drop | 169.77 kpa               |
| Tube material                   | Mild steel               |
| Shell material                  | Stainless steel.         |
|                                 |                          |

#### 3.3.3 Solution Cooler 2 Specifications

401 Basic design equation

402 
$$\varphi = UA\Delta Tm$$

400

404

409

410

412

414

403 Shell – side heat transfer coefficient

$$\frac{h_s d_e}{k_f} = Jh \, x \, Re \, x \, pr \, x \, 0.33 \, (\frac{\mu}{\mu w})^{-0.14}$$

hs = shell – side heat transfer coefficient, de = equivalent diameter

J h = heat transfer correction factor, Re = Reynolds number, Pr = prandth number

407  $\mu = \text{viscosity of fluid at mean temp}, \ \mu \text{w} = \text{viscosity of fluid at wall temp}.$ 

408  $(\mu/\mu w)^{0.14}$  = viscosity correction factor.

#### Overall heat coefficient

411 Kw for mild steel = 45w/m $^{0}$ C (Sinnott and Towler)

$$\frac{1}{U_0} = \frac{1}{ho} + \frac{1}{hod} + \frac{do \ln \frac{do}{dt}}{2kw} + \frac{do}{dt} \times \frac{1}{h_t} \times \frac{do}{dt} \times \frac{1}{htd}$$

413 Shell – side pressure drop

$$\Delta P_s = 8jf \times \left(\frac{D_s}{de}\right) \times \frac{L}{IB} \left(\frac{\rho u s^2}{2}\right) \frac{\mu^{0.14}}{\frac{\mu}{w}}$$

415 Neglecting viscosity correction factor

416 From figure 12 (Coulson and Richardson)

417 
$$J f = 5.5 \times 10^{-2}$$

### Table 15: Results summary of Solution Cooler 2 specifications

| Equipment name           | Solution cooler          |
|--------------------------|--------------------------|
| Туре                     | Horizontal shell & tubes |
| Sub-type                 | Split-ring floating head |
| Shell-type               | Split-flow               |
| Surface area of exchange | 0.304 <b>m²</b>          |
| Tube-inside diameter     | 16mm                     |
| Tube-outside diameter    | 20mm                     |
| Heat load                | 178.7054KJ/min           |

| Tube length                | 4.88m                        |
|----------------------------|------------------------------|
| Tube-sheet                 | 0.03m                        |
| Shell inside diameter      | 87.55mm                      |
| Tube bundle diameter       | 37.55mm                      |
| Bundle clearances          | 50mm                         |
| Number of tubes            | 1                            |
| Number of tube pass        | 1                            |
| Number of tubes per pass   | 1                            |
| Baffle spacing             | 17.51mm                      |
| Baffle cut                 | 25 % (segmented type )       |
| Tube pitch                 | 25mm                         |
| Tube arrangement pattern   | Triangular                   |
| Overall heat coefficient   | 362.9896 w/m <sup>2</sup> °C |
| Tube-side pressure drop    | 0.000013kpa                  |
| Shell-side pressure drop   | 243.17kpa                    |
| Tube-side design pressure  | 2.7atm                       |
| Shell-side design pressure | 2.2atm                       |
| Tube-side design temp.     | 100 °C                       |
| Shell-side design temp.    | 212 °C                       |
| Shell wall thickness       | 5mm                          |
| Tube material              | Mild steel                   |
| Shell material             | Stainless steel              |

### 419 3.3.4 Cooler 5 (Condenser 5) Specifications

420 A = surface area of exchange.

421 = 
$$\underline{\phi}$$

422  $U\Delta T_m$ 

423 Tube bundle diameter (D<sub>b</sub>)

$$D_b = d_o(\frac{N_t}{K_t}) \frac{1}{nt}$$

424

From Table 15 (Coulson and Richardson), for triangular pitch.

426 
$$K_1 = 0.175$$
, ni = 2.285

427 Tube inside coefficient.

428 Cross – sectional area of one tube

$$=\frac{\pi(du^2)}{4}$$

431

433

436

430 Shell – side heat transfer coefficient

$$h_s = \frac{Kf}{de} x \ln x \, Re \, x \, pr^{0.33} \, x \, (\frac{\mu}{\mu w})^{-0.14}$$

where hs = shell - side heat coefficient, Kf = thermal conductivity of fluid

 $\int h$  = heat transfer coefficient, R = Reynolds number, Pr = prandth

434 
$$\left(\underline{\mu}\right)^{0.14}$$
 = viscosity correction factor.

435  $\mu w$  = viscosity correction facto

Table 16: Results summary of Cooler 5 (Condenser 5) specifications

| Equipment name           | Cooler 5                         |
|--------------------------|----------------------------------|
| Type                     | Shell & tube H.E                 |
| Sub-type                 | Split-ring floating head         |
| Head load                | 2.62889kJ/min                    |
| Shell type               | Two shell pass                   |
| Number of tubes          | 1                                |
| Number of tubes pass     | 4                                |
| Number of tubes per pass | 1                                |
| Tube bundle diameter     | 5.88mm                           |
| Surface area of cooler   | $0.00245 \text{m}^2$             |
| Shell inside diameter    | 63.88mm                          |
| Baffle spacing           | 494mm                            |
| Baffle cut               | 25%                              |
| Baffle height            | 0.75 Ds = 47.91mm                |
| Baffle type              | Segmented                        |
| Tube pitch               | 31.25mm                          |
| Tube pattern             | Triangular pattern               |
| No of rods               | 12                               |
| Diameter of rods         | 9.5mm                            |
| Shell-side design press  | 5.984atm                         |
| Tube-side design press   | 2.75atm                          |
| Shell-side design temp.  | 310°C                            |
| Tube-side design temp.   | 160°C                            |
| Shell material           | Stainless steel                  |
| Overall heat coefficient | $3.5142 \text{w/m}^{20}\text{C}$ |

| Shell wall thickness     | 5mm         |
|--------------------------|-------------|
| Shell cover thickness    | 5mm         |
| Tube-side pressure drop  | 0.000079kpa |
| Shell-side pressure drop | 791.388kpa. |

### 3.3.5 Knock-Out Drum 1 Specification

Vapour-liquid separator was designed to separate a vapour-liquid mixture. The vapour-liquid separator is also referred to as a flash drum, knock-out drum, knock-out pot, compressor suction drum or compressor inlet drum (Kister, 1992). The vapour travels gas outlet at a design velocity which minimizes the entrainment of any liquid droplets in the vapour as it exits the vessel.

### Table 17: Results summary of Knock Out Drum 1 specification

| Equipment name                                    | Knock-out drum I  |
|---------------------------------------------------|-------------------|
| Туре                                              | Vertical vessel   |
| Drum diameter                                     | 0.002m            |
| Drum length                                       | 0.004m            |
| Mist eliminator type                              | Knitted wire-mesh |
| Mist eliminator thickness                         | 0.152m            |
| Clearance b/w liquid surface and centre of nozzle | 0.3m              |
| Clearance b/w centre of inlet                     | 0.1524m           |
| Nozzle and mist eliminator                        |                   |
| Clearance b/w mist eliminator and drum top        | 0.31m             |
| edge                                              |                   |
| Drum material of construction                     | Stainless steel   |
| Drum wall thickness                               | 7mm               |

| Head and closure type    | Ellipsoidal      |
|--------------------------|------------------|
| Head and closure type    | 7mm              |
| Mist eliminator material | Stainless steel. |

# 3.3.6 Knock-Out Drum 2 Specifications

# Table 18: Results summary of Knock Out Drum 2 specifications

| Equipment name                             | Knock-out drum 2         |
|--------------------------------------------|--------------------------|
| Туре                                       | Vertical cylinder vessel |
| Drum diameter                              | 0.002m                   |
| Drum length                                | 1.0m                     |
| Mist eliminator type                       | Knitted wire-mush        |
| Mist eliminator thickness                  | 0.152m                   |
| Liquid depth                               | 0.1374m                  |
| Clearance b/w liquid surface and centre of | 0.05m                    |
| nozzle                                     |                          |
| Clearance b/w the centre of nozzle and the | 0.1m                     |
| mist eliminator                            |                          |
| Clearance b/w the mist eliminator and drum | 0.31m                    |
| top                                        |                          |
| Drum wall thickness                        | 5mm                      |
| Head and closure type                      | Tom spherical            |
| Head and closure thickness                 | 5mm                      |
| Mist eliminate material                    | Stainless                |
| Drum material                              | Stainless steel          |

### 451 3.3.7 Solution Heat Exchanger Specifications

A heat exchanger was designed for efficient heat transfer from one medium to another. The media is separated by a solid wall, so that they never mix, or they may be in direct contact (Kister, 1992). They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries, natural gas processing, and sewage treatment.

Table 19: Results summary of Solution Heat Exchanger specifications

| Equipment name            | Solution Heat exchanger  |
|---------------------------|--------------------------|
| Туре                      | Horizontal S&T           |
| Sub-type                  | Split-ring floating head |
| Head load                 | - 54.9306 KJ/min         |
| Shell type                | Split flow               |
| Number of tubes           | 1                        |
| Number of tubes pass      | 1                        |
| Number of tubes per pass  | 1                        |
| Tube bundle diameter      | 37.5504mm                |
| Surface area of exchanger | $0.019m^2$               |
| Shell inside diameter     | 87.5504mm                |
| Baffle spacing            | 17.6mm                   |
| Baffle cut                | 25%                      |
| Baffle height             | 135mm                    |
| Baffle type               | Segmented                |
| Tube pitch                | 25mm                     |
| Tube pattern              | Triangular pattern       |
| No of rods                | 8                        |
| Bundle diameter           | 124mm                    |
| Shell inside diameter     | 180mm                    |
| Tube outside diameter     | 20mm                     |
| Tube inside diameter      | 16mm                     |
| Tube length               | 4.88mm                   |
| Tube-sheet thickness      | 0.03m                    |
| Bundle clearance          | 50mm                     |
| Diameter of rods          | 9.5mm                    |
| Shell-side design press   | 1.1atm                   |
| Tube-side design press    | 1.1atm                   |
|                           |                          |

| Shell-side design temp.  | 160°C                          |
|--------------------------|--------------------------------|
| Tube-side design temp.   | $360^{0}$ C                    |
| Shell material           | Stainless steel                |
| Overall heat coefficient | $300 \text{w/m}^{20} \text{C}$ |
| Shell wall thickness     | 5mm                            |
| Tube -side coefficient   | 261.13w/m <sup>2</sup> °C      |
| Shell-side coefficient   | 361.324w/m <sup>2</sup> °C     |
| Shell cover thickness    | 5mm                            |

# 3.3.8 Flash Drum Specifications

# Table 20: Results summary of Flash Drum specifications

| Equipment name                              | Flash drum        |
|---------------------------------------------|-------------------|
| Туре                                        | Vertical gas      |
| Drum diameter                               | Liquid separator  |
| Drum length                                 | 0.002m            |
| Mist dominator type                         | Knitted wore mesh |
| Mist dominator thickness                    | 0.152m            |
| Liquid depth                                | 0.30m             |
| Clearance between liquid surface and centre |                   |
| of nozzle                                   | 0.30m             |
| Clearance between centre wilet nozzle &     |                   |
| mist dominator                              | 0.61m             |
| Clearance between mist dominator and drum   |                   |
| top                                         | 0.31m             |
| Drum material of construction               | Stainless steel   |
| Head and closure type                       | Ellipsoidal       |

#### 3.3.9 Optimal values of CO<sub>2</sub> and validation of the experimental data

Table 21: Optimum conditions for CO<sub>2</sub> capture

| <b>Conc of Solvent</b> | Contact     | Volume of | Predicted           | Experimental        | Percentage |
|------------------------|-------------|-----------|---------------------|---------------------|------------|
| (Mol/dm <sup>3</sup> ) | Time (Secs) | Solvent   | Amount of           | Amount of           | Error (%)  |
|                        |             | (ml)      | CO <sub>2</sub> (%) | CO <sub>2</sub> (%) |            |
| 6.15                   | 59.21       | 107.84    | 5.021               | 5.41                | 2          |

The optimum conditions obtained are concentration of solvent 6.15 mol/dm<sup>3</sup>, contact time 59.21 seconds, volume of solvent 107.84 with 5.021 percent of CO<sub>2</sub> absorbed as shown in Table 21. Table 21 also depicts the validation of the optimal results of the sequestration process by performing the experiment with predicted optimum conditions, from the table it can be observed that the percentage error between the actual and predicted was 2 percent, this showed that the model was adequate in predicting the response for the absorption of CO<sub>2</sub>.

#### 4. Conclusion:

The design of a plant to recover CO<sub>2</sub> from spent air from aerobic fermentation was successfully carried out. Material and energy balances were carried out on each equipment and then over the entire process. These balances were used in the chemical and mechanical engineering design of the following equipment: absorber, knock out drum, flash drum, gas cooler, reboiler and stripping column. The data obtained in this design were used to fabricate an absorption column by the research for CO<sub>2</sub> and CO capture. The empirical relationship between amount of CO<sub>2</sub>, CO captured and the independent variables were obtained with the aid of a statistical package. The statistical package was useful in analyzing and optimizing the amount of CO<sub>2</sub> and CO captured. The Analysis of Variance (ANOVA) result for the model terms were obtained and were applied for estimating the significance of the model. The experimental data were also analyzed to ascertain the correlation between the experimental and predicted gases captured, normal probability and residual plot as well as actual and predicted plots while the 3D response surface plots were generated to estimate the effect of the combinations of the independent variables on the amount of the captured gases.

#### 487 **References:**

- Ahegot, A. S. & Celia, M. A. (2002). Modeling carbon (IV) oxide transport in unsaturated soils
- in (Hassainzadeh et al eds.) Proc. 14th International Conference in Computational Methods in
- 490 Water Resources, 41-47.
- 491 Aneke L.E. (2009), "Principles of Chemical Engineering Process Design". De-Adroil.
- 492 Innovation Enugu.
- 493 Aroonwilas, A. & Veawab, A. (2007). Integration of CO<sub>2</sub> capture unit using single- and blended-
- 494 amines into supercritical coal-fired power plants: Implications for emission and
- 495 energymanagement. *International Journal of Greenhouse Gas Control*, 1, 143-150.
- Baum, J. A. & Woehlck, H. J. (2003). Interaction of inhalational anaesthetics with CO<sub>2</sub>
- 497 absorbents. Best Prac. Res., Clin. Anaesthesiol., Vol. 17, 63-76.
- 498 Coulson, J. M. and Richardson, J.F. (1968). Chemical Engineering, Vol. 2. Pergamon, N.Y.
- 499 Demontigny, D. Tontiwachwuthikal, P. & Chakins, A. (2005). Comparing the absorption
- performance of packed columns and membrane contactors. *Ind. Eng. Chem. Res*, 44, 5726-5732.
- Kozak F. et. al., (2009): "Chilled Ammonia Press for Co<sub>2</sub> Capture", Energy Procedia 1: 1419-
- 502 1426.
- Kohl, A., and Nielsen, B. (1997): "Gas Purification", fifth edition, Gulf Publishing Company,
- Houston, Texas.
- Liao, C. H. & Li, M. H. (2002). Kinetics of absorption of carbon (IV) oxide into aqueous
- solutions of monoethanolamine + N-methyloliethanolamin. Chem. Eng. Sci., 57, 4569-4582.
- Liao, C. H. Liu, W. T. & Tan, C. S. (2003). Removal of CO<sub>2</sub> by absorption in a rotating packed
- 508 bed. Ind. Eng. Chem. Res., 42, 2381-2386.
- Lackuer, Klaus S. (2002): "Carbonate Chemistry for Sequestering fossil carbon", Annual Review
- of Energy and the Environment 27 (1): 193-232.
- Mani, F. & Peruzzini, M. (2006). CO<sub>2</sub> absorption by aqueous NH<sub>3</sub> solutions: speciation of
- ammonium carbamate, bicarbonate and carbonate by a CNMR study. *Green Chem.*, 8, 995-1000.
- Nwokedi, I. C. and Igbokwe, P. K. "Absorption Kinetics and Mass Transfer Coefficient for
- 514 carbon (IV) oxide sequestration by Ammonia solution", The Pharmaceutical and Chemical
- Journal, Volume 5, Issue 6, pp. 45-53, December 2018, http://tpcj.org/download/vol-5-iss-6-
- 516 2018/TPCJ2018-05-06-45-53.pdf.
- Perry, R.H., et al., (1997): "Chemical Engineers" Handbook, 7<sup>th</sup> Edition, McGraw-Hill, News
- 518 York. pp. 244.

- Qing, F. et. al. (2011). Kinetics of CO<sub>2</sub> absorption in aqueous ammonia solution. *International*
- 520 *Journal of Greenhouse Gas Control*, 2010, 4(5), 729-738.
- Renato, B, Giuseppe, S. and Marco, M. (2006): "Process Design and Energy Requirements for
- The Capture of Carbon dioxide from Air", Chemical Engineering and Processing, Vol. 45, pp.
- 523 1047-1058.
- 524 Sadik, Kakac and Hongtan, Liv (2002): "Heat Exchanges: Selection, Rating and Thermal
- 525 Design", (2<sup>nd</sup> ed.) CRC Press ISBN.
- Saunders, E.A.D. (1988) "Heat Exchangers: Selection Design and Construction", Longman.
- Tontiwachwuthikul, P., Aboudheiv, A., Demontigny, D. and Chakma, A. (1998) "Important
- 528 Factors Affecting Carbon Dioxide Removal Efficiency by Using Extra- high Concentrated
- Monoethanolamine Solutions and High-Capacity Packings", SPE Gas Technology Symposium
- Held in Calgary, Alberta, Canada, SPE 40034.
- Watson, R.T., (2001): "Climate Change", Synthesis Report, Cambridge University Press, UK.
- Yeh, A. C. & Bai, H. (1999). Comparison of ammonia and monoethanoamine solvents to reduce
- 533 CO<sub>2</sub> greenhouse gas emissions. *Sci. Total. Environ.*, 228, 121-133.
- Zeng, Q. et. al. (2011). Mass transfer coefficients for CO<sub>2</sub> absorption into aqueous ammonia
- solution using a packed column. Ind. Eng. Chem. Research, 50, 10168-10175.