1	Original Research Article
2	
3	CHEMICAL PROCESS ABSORPTION COLUMN DESIGN FOR
4	CO ₂ SEQUESTRATION
5	
6	Abstract
7	The design of a prototype chemical process absorption column was carried out to facilitate the
8	sequestration of CO ₂ from flue gas emanating from an exhaust point of a power generating set.
9	Factors such as ambient temperature and atmospheric pressure where factored into consideration
10	before the fabrication of the absorption column. The rate of the absorbing liquid is 0.1056kg/min
11	and contains 5% mole/mole carbon (iv) oxide. Also the energy and material balance of the entire
12	sequestration process was verified as well as the equipment design for the process was carried
13	out.
14	
15	Keyword: material balance, energy balance, CO ₂ sequestration, ammonia, equipment design,
16	absorption column, knockout drum, absorber, evaporative gas cooler, solution cooler, solution
17	heat exchanger, flash drum, stripper, and reboiler.
18	
19	1. Introduction
20	The scientific community agrees that anthropogenic CO ₂ emission, mainly generating by fossil-

21 fuel power plants, is among the main contributors to global warming (Aroonwilas and Veaweb, 22 2004). Although the transition of the existing infrastructure from carbon-based sources to cleaner alternatives would be ideal in this regard, such a change requires considerable modifications to 23 24 the current energy framework, and many of the proposed technologies are not yet sufficiently developed to facilitate large-scale industrial implementation (Zeng, 2011). Thus, carbon capture 25 26 and sequestration (CCS) technology that efficiently capture CO_2 from existing emission sources will play a vital role until more significant modifications to the energy infrastructure can be 27 realized. Plant design is a technical term that embraces all engineering aspects involved in the 28 development of either a new, modified, or expanded industrial plant (Coulson and Richardson, 29 1968). It involves the economic evaluation of new processes, design of industrial pieces of 30 equipment for a new plant or the development a plant layout for the co-ordination of the overall 31 operation (Sadik, Kakac and Hongton, 2002). Present strategies for the mitigation of the 32 atmospheric carbon (IV) oxide build-up are relied on the energy use efficiency, and the reduction 33

of fossil fuels consumption for increased use of renewable energy sources or nuclear power plants. Thus, the inevitable way of keeping the global CO_2 load in the atmosphere and hydrosphere below unbearable levels is the complementing of emission reduction (Watson, 2001) efforts by the capture CO_2 before it emits from point sources, or from its carrying air stream emitting from the point of sources, and to store it permanently outside the atmosphere.

39

40 2. Materials and Methods

41 **2.1 Methodology**

Due to the nature of the equipment made of glassware and in order to control the experiment, standard conditions of ambient temperature and atmospheric pressure were adopted for the process, and also for the flow rate of the solution into the absorption column. Three independent variables were used: the concentration of solvent ranging from 2-10 mol/dm³, contact time of 20-100 seconds and volume of solvent from 40-200 ml.

For the carbon sequestration to be achieved, 10 mol/dm³ concentration of aqueous ammonia was 47 prepared and poured into a flask containing ammonia solution which supplied the solution to the 48 absorber, the aqueous ammonia was evenly distributed across the inner surface of the column 49 while in contact with the plates. The petrol generating set was turned on while the gas analyzer 50 detected the components and quantity of gases before it was charged into the heat exchanger. 51 The heat exchanger helped to attain the desired temperature of 40°C before the flue gas was 52 charged into the absorption column from the entry point near the base of the absorption column. 53 The flue gas in the column contacted with the aqueous ammonia in a counter current form for a 54 period of 60 seconds after which the tap at the exit point close to the top of the absorption 55 column was opened and gas analyzer used to determine the amount of CO₂ leaving the column. 56

57 2.2 Chemical Absorption-Amine Absorption/Stripping Technology

A typical chemical absorption process consists of an absorber and a stripper in which absorbent 58 59 is thermally regenerated. Chemical absorption process was the adopted method for this work with ammonia used as the absorbent. Ammonia was chosen as the most suitable solvent and 60 61 absorbent for this work because of its large absorption capacity, small heat of reaction, fast kinetics, high CO_2 selectivity, it is cheap and does not degrade and ammonia is not affected by 62 O₂ and SO₂. In a chemical absorption process, the flue gas containing CO₂ enters a packed bed 63 absorber from the bottom and contacts counter-currently with a CO₂-lean absorbent, after 64 65 absorption, the CO₂-rich absorbent flows into a stripper for thermal regeneration. In the

66 aftermath regeneration, the CO₂-lean absorbent is pumped back to the absorber for cyclic use. The pure CO₂ released from the stripper is compressed for subsequent transportation and storage 67 (Wiche and Kennedy, 2002). The advantage of a chemical absorption technology is that it is the 68 most matured technology for CO₂ capture and it has been commercialized for many decades. 69 70 Another advantage of this technology is that it is suitable for retrofitting of the existing power plants. 71

72 **2.3 Materials**

The materials made up of glass wares were fabricated at scientific research and development 73 institute; they were put together alongside other components purchased from a science apparatus 74 market to make a complete absorption column. The equipment has an absorption column, flask 75 containing the ammonia solution, reservoir to house the content of the mixture in the aftermath 76 77 of the reaction, openings for flue gas entrant and exit point after the reaction, non-heat sensitive 78 pipe connected to the entry point of the absorption column and the exhaust pipe of the gasoline generating set. 79

80

Equation for the reaction: (Lackuer and Klaus, 2003) (Liao and Liu, 2002)

81	i)	CO ₂ Absorption
82		$2CO_2(g) + 2NH_3(aq) + H_2O \rightarrow NH_2COONH^+_4(aq) + H_2CO_3$
83	•••	
84	ii)	Ammonia Regeneration
85		$NH_2COONH_4^+(aq) + H_2O \rightarrow H_2CO_3 + 2NH_3$
86	About 98	% recovery of CO ₂ occurs and the recovery liquid is a 20% w/w NH ₃
87	Assumpt	ions:
88	1)	The rate of the absorbing liquid is 0.1056kg/min and contains 5% mole/mole carbon
89		(iv) oxide.
90	2)	The spent air effluent analysis, 0.000347ft ³ /s at 30 ^o C, 1atm with % composition on
91		dry basis of carbon (IV) oxide (3.5%), nitrogen (79%) and oxygen (17.5%). The exit
92		air is saturated with water vapour at the absorbing liquid inlet temperature of 40° C.
93	3)	Recovery of 85% CO ₂ .
94	4)	Reaction equation
95	The follo	wing reaction occurs:
96	i)	CO ₂ Absorption

97	$2CO_2(g) + 2NH_3(aq) + H_20 \rightarrow NH_2COONH_4^+(aq) + H_2CO_3$
98	ii) Ammonia Regeneration
99	$NH_2COONH_4^+(aq) + H_2O \rightarrow H_2CO_3 + 2NH_3$
100	About 98% recovery of CO_2 occurs and the recovery liquid is a 20% w/w NH ₃
101	Assumptions:
102	i) The rate of the absorbing liquid is 0.1056kg/min and contains 3.5% mole/mole carbon
103	(IV) oxide.
104	ii) Air effluent analysis, $0.000347 \text{ft}^3/\text{s}$ at 30° C, 1atm with % composition on dry basis of
105	carbon (IV) oxide (3.5%), nitrogen (79%) and oxygen (17.5%). The exit air is
106	saturated with water vapour at the absorbing liquid inlet temperature of 40^{0} C.
107	iii) Recovery of 85% CO ₂ .
108	
109 110	Process Details: Basis: 1 minute operation
111 112 113 114 115 116 117	Feed Stream Stream 2: Spent air effluent (dry basis) $CO_2 = 3.5\%$ Nitrogen = 79% Oxygen = 17.5% Total volume of spent air effluent = 0.000347Ft ³ /s
118	3. Results and Discussions
119	

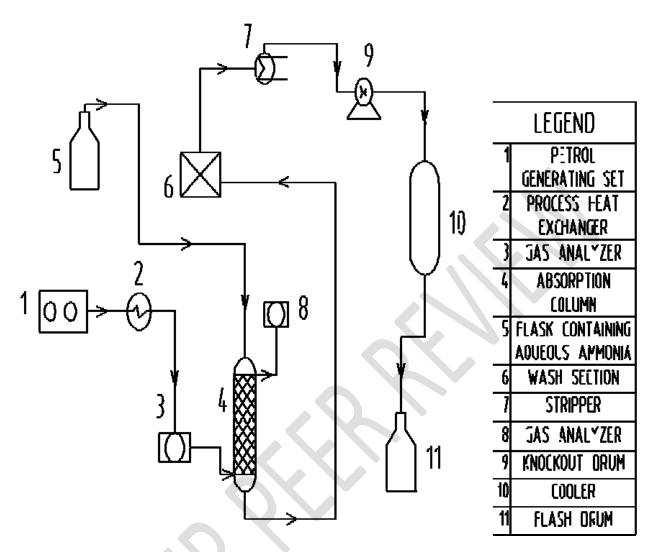
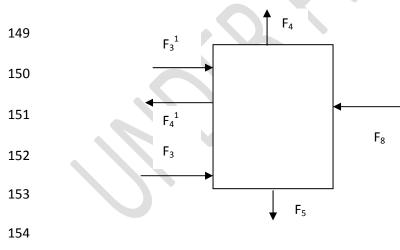


Fig.1 Experimental set-up and sketch diagram for absorption using the prototype semi-batch column

123

The capturing of CO₂ from spent air effluent was achieved through the absorption of CO₂ with 124 125 ammonia solution to form ammonia carbamate which was later regenerated to recover the ammonia and CO₂. The raw gas (air effluent from a generating set) was cooled to about 40° C 126 (reaction temp.) and separated to remove any condensed water from the raw gas. Dry air effluent 127 was charged to the absorption column. In the absorption section the air was charged counter 128 currently with ammonia solution from the top and the CO₂ was absorbed to form ammonium 129 130 carbamate (Nwokedi and Igbokwe, 2018). The off air from absorption section was water washed in the wash section to remove any entrained liquid. The scrubbed gas recovered as overhead was 131 132 sent to the knock-out drum to recover any entrained ammonia solution from the absorption


133 column. The rich-amine solution from the bottom of the absorber was passed to energy recovery system and a solution heat exchanger where it was pre-heated to about 150°C (regeneration 134 135 temperature). The spent ammonia solution exchange heat with incoming regenerated ammonia solution from bottom of the regenerator (Qing, 2011). Pre-heated spent ammonia solution was 136 separated to remove any gas associated with the spent ammonia solution. Regeneration of 137 ammonia solution was carried out in the regenerator by the application of heat supplied by steam 138 generated in the reboiler at the base of the regenerator. The top product of regenerator contains 139 mainly CO₂ and steam which was cooled in the cooler to condense them. The steam was 140 separated and returned to the reboiler (Liao and Liu, 2002). 141

142 The bottom product of regenerator containing regenerated ammonia solution was passed through 143 solution heat exchanger where it exchanges heat with spent ammonia solution from the absorber. 144 It was further cooled to bring its temperature to about 40° C (absorption temperature).

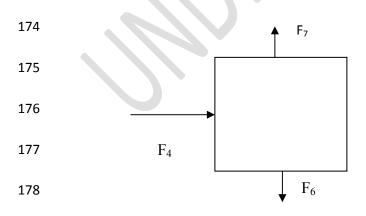
145 **3.1 Material Balance Results**

- 146 **3.1.1 Material Balance Summary Tables**
- 147

148 **3.1.1.1 Absorber**

- 155 Fig. 2: Material Balance diagram for Absorber
- 156
- 157

158 Table 1: Absorber Input Streams

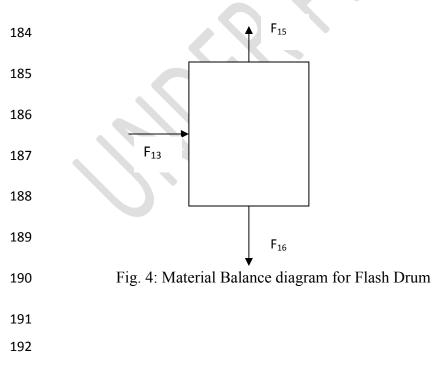

		F ₃		F ₈		$\mathbf{F_3}^1$	
Comp	Mol.	Mole	Mass	Mole	Mass	Mole	Mass kg/hr
	Wt	kmol/ hr	kg/hr	kmol/ hr	kg/hr	kmol/ hr	
<u> </u>		0.0000110	0.00002(4	0.000011	0.0005100		
CO ₂	44	0.0000118	0.0000364	0.000011 8	0.0005192		
O ₂	32	0.000526	0.000133	-	-	-	-
N ₂	28	0.000133	0.000526	-	-		-
NH ₃	17	-	-	0.00118	0.02006	•	-
H ₂ O	18	-	-	0.08496	0.08496	-	0.001015
H ₂ CO ₃	61	-	-		-	-	-
Carbamate	62	-	-		-	-	-
Total			0.0006954		0.01055		0.001015

171 Table 2: Absorber Output Streams

		F2	1 4		F ₄	F ₅	
Comp	Mol. Wt	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr
CO ₂	44	-	-	0.02006	0.000484	0.0000118	0.0005192
O ₂	32	-	-	0.08406	0.000526		-
N ₂	28	-	-	0.000043	0.000133	···	-
NH ₃	17	-	-	-	0.0005713	0.0000118	0.02006
H ₂ O	18	-	0.001015	-	0.000286	0.000000701	0.08406
H ₂ CO ₃	61	-	-		-	0.000000701	0.000043
Carbamat	62	-	-		-	0.000000701	0.000053
e							
Total			0.001015		0.00203		0.1047

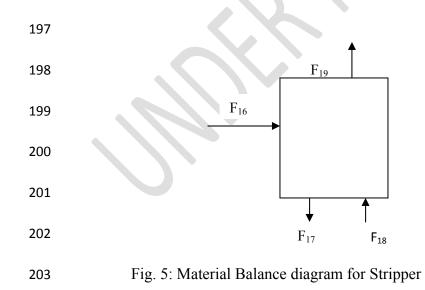
172

173 3.1.1.2 Knock-Out Drum 1



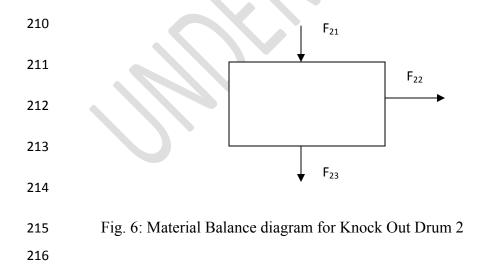
	INPU	Γ (F ₄)		OUTPUT	Г (F ₆)	OUTPUT (F7)	
Comp	Mol.	ol. Mole	Mass	Mole	Mass	Mole	Mass
	/wt	Kmol/h	kg/hr	kmol/hr	Kg/hr	Kmol/hr	Kg/hr
CO ₂	44	0.000484	0.000484	-	-	0.000484	0.0005192
O ₂	32	0.000526	0.000133	-	-	0.000526	0.000133
N ₂	28	0.000133	0.000133	-	-	0.000133	0.000133
NH ₃	17	-	-	-	0.0029	-	-
H ₂ O	18	-	-	-	0.00116	-	-
Total			0.000203		0.0000000203		0.0011782

181 Table 3: Knock-Out Drum 1 Calculation Details


3.1.1.3 Flash Drum

194Table 4: Flash Drum Input and Output Streams

INPUT STR	REAM		OUTPUT STREAM			
	F ₁₃		F ₁₅		F ₁₆	
Comp	Mole	Mass	Mole	Mass	Mole	Mass
	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
CO ₂	-	0.0005192	-	0.0005192	-	-
NH ₃	-	0.02006	-	-	0.86	0.02006
H ₂ O	0.000000701	0.08406	-	-	0.000000701	0.08406
H ₂ CO ₃	0.00118	0.000043	-	2	0.00118	0.000043
Carbamate	0.00118	0.000053	- 0	-	0.00118	0.000053
Total		0.1047		0.0005192		0.104216


3.1.1.4 Stripper

207 Table 5: Stripper Input and Output Streams

INPUT ST	REAMS		OUTPUT STREAMS					
	F ₁₆		F ₁₈		F ₁₇		F ₁₉	
Comp	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr
NH ₃	-	0.02006	-	-	-	0.02006	-	-
H ₂ O	0.00000701	0.08406	-	0.00004326	-	0.1690	-	0.00004326
H ₂ CO ₃	0.00118	0.000043	-	-	0	-	-	-
Carbamate	0.00118	0.000053	-		- \	•	-	-
CO ₂	-	-	-		-	0.0005192	-	0.00055004
Total		0.104216		0.00004326		0.1896		0.0005933

3.1.1.5 Knock-Out Drum 2

Table 6: Knock-Out Drum 2 Input and Output Streams

INPUT	STREAMS			OUTPUT STREAMS			
	F ₂₁		F ₂₂	F ₂₂			
Comp	Mole/ wt	Mole kg/hr	Mass kg/hr	Mole kmol/hr	Mass kg/hr	Mole kmol/hr	Mass kg/hr
CO ₂	44	-	0.0005501	-	0.0005501	-	-
H ₂ O	18	-	0.00004326	-	-		0.00004326
Total			0.0005933		0.0005501	\mathbb{N}	0.00004326

219

220 **3.2 Energy Balance Results**

The conservation of energy differs from that of mass in that energy is generated (or consumed) in a chemical process. Material can change form; new molecular species was formed by chemical reactions where the total mass flow into a process unit must be equal to the flow out at the steady state (Aneke, 2009). The same is not true of energy. The total enthalpy of the outlet streams will not equal that of the inlet streams if energy is generated or consumed in the processed, such as that due to heat of reaction.

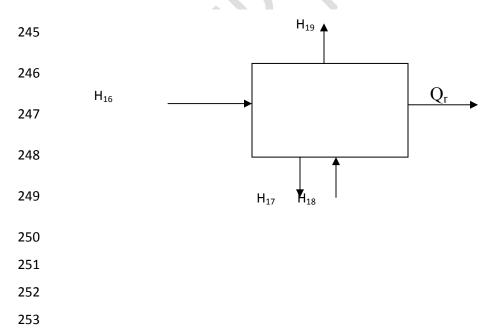
- 227 3.2.1 Energy Balance Summary Tables
- 228 **3.2.1.1 Absorber**

Fig. 7: Energy Balance diagram for Absorber

236

235

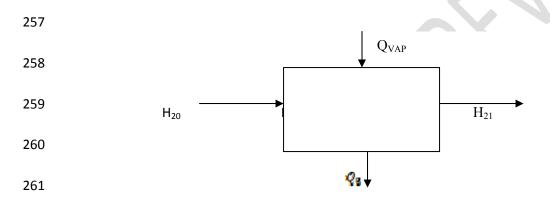
- 237 Where Qp = heat of the process, in this case Qp = 0 (Adiabatic process)
- 238 Qr = Heat of the reaction = $\Sigma \Delta Hr^0$)
- 239 Total heat input = $H_3 + H_3^1 + H_8$
- 240 Total heat output $= H_5 + H_4 + H_4^1$

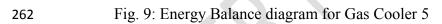

241 Enthalpy input, $H_3 = \int_{T_{ref}}^{T_3} \epsilon_n C_p dT$

242Table 7: Absorber Energy Balance Summary

ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)
H ₃	0.1704	
H ₄	-	0.3329
H_4^1	-	0.1705
H ₈	3.9952	
H ₅	-	102.4708
Qr	98.8085	-
Total	102.9741	102.9741

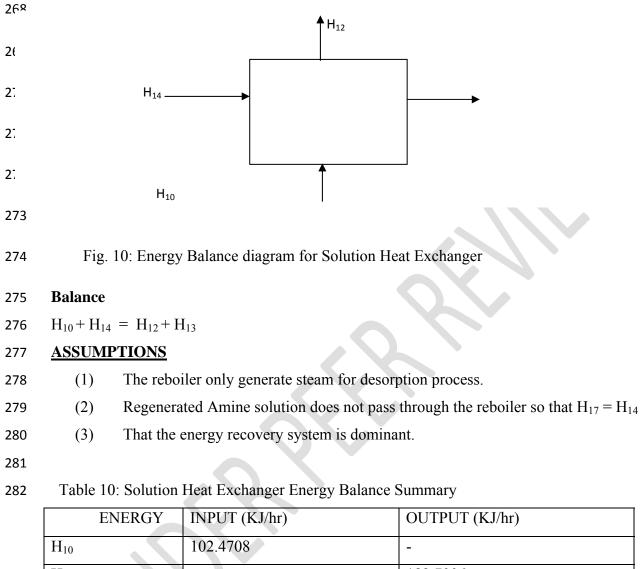
243

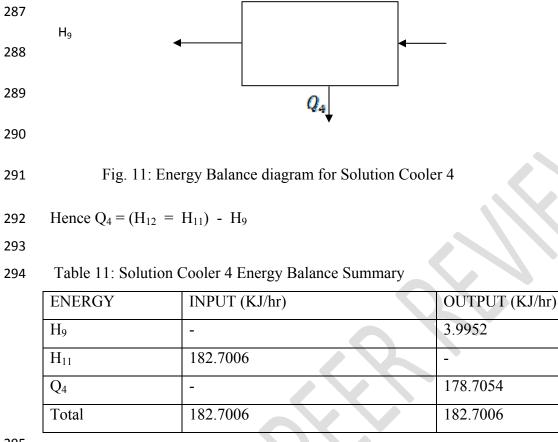

244 **3.2.1.2 Stripper**



ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)	
H ₁₆	47.4869	-	
H ₁₈	0.1326	-	
H ₁₇	-	127.77	
H ₁₉	-	- 76.5845	
Qr		- 98.805	
Total	47.6195	- 47.6195	II

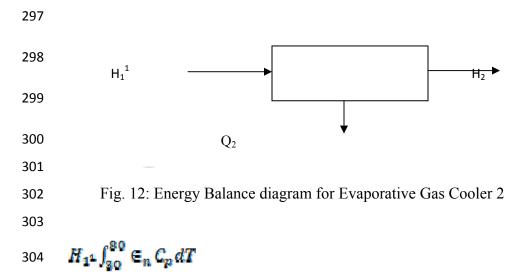
254 Table 8: Stripper Energy Balance Summary





263Table 9: Gas Cooler 5 Energy Balance Summary

ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)
H ₂₀	5.0624	-
H ₂₁	•	2.5312
Q _{VAP}	0.09769	-
Q5	-	2.62889
TOTAL	5.16009	5.16009



H ₁₀	102.4708	-
H ₁₂		182.7006
H ₁₃	-	47.5402
H ₁₄	127.77	
Total	230.2408	230.2408


```
295
```

3.2.1.6 Evaporative Gas Cooler 2

ENERGY	INPUT (KJ/Hr)	OUTPUT (KJ/Hr)
H ₁ ¹	0.8712	-
H ₂	-	0.1704
Q ₂	-	0.7008
TOTAL	0.8712	0.8712

306 Table 12: Gas Cooler Energy Balance Summary

3.3 Process Equipment Specifications

309 3.3.1 Absorber Specifications (Baum and Woehlck, 2003)

310 Absorption of CO_2 in 20% w/w NH₃ solution

311 -
$$G\partial y = KGa (P_A - P_{AC}) \partial h$$

 $P_{Ae} = partial pressure that would be in equilibrium with the bulk of liquid, because the liquid$ is a concentrated solution of NH₃, the partial pressure of CO₂, P_{Ae} in equilibrium with it isvirtually zero. Also PA = yp where P is the total pressure.

315 - $G\partial y = KGayp\partial h$

316 Rearranging and integrating

	<u> </u>	•+	
317	$K_{G\alpha}$	K_{Ga}	K_{Lo}
318			
319			
320			

Equipment name	Absorber
Туре	Wetted wall column
Packing type	Ceramic intallox paddle
Packing size	38mm
Packing factor	170m ⁻¹
Column area	0.0003142 m²
Column diameter	0.01m
Height of absorption section	1.0m
Height of wash section	0.2m
Bottom liquid depth	0.000044m
Top gas disengagement height	0.3048m
Packing height	0.235m
Column material	Stainless steel
Design temperature	50°C
Design pressure	1.1atm
Column wall thickness	5mm
Column cover thickness	5mm (terrispherical)

330 Table 13: Results Summary of Absorber Specifications

The design of wet scrubbers or any air pollution control device depends on the industrial process 331 conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust 332 333 properties are of primary importance. Scrubber was designed to collect particulate matter and/or gaseous pollutants (Coulson and Richardson, 2005). Wet scrubbers remove dust particles by 334 capturing them in liquid droplets. Wet scrubbers remove pollutant gases by dissolving or 335 absorbing them into the liquid (Kohl and Nielsen, 1997). Droplets that are in the scrubber inlet 336 gas were separated from the outlet gas stream by means of another device referred to as a mist 337 338 eliminator or entrainment separator.

339 3.3.2 Evaporative Gas Cooler 2 specifications

340

341 Area of cooler A = $\underline{\phi}$

342

UΔζm

The evaporative cooler (also swamp cooler, desert cooler and wet air cooler) is a device that was designed to cool air through the evaporation of water. Evaporative cooling differs from typical air conditioning systems which use vapour-compression or absorption refrigeration cycles. Evaporative cooling works by employing water's large enthalpy of vaporization (Demontigny,

- 347 Tontiwachwuthikal and Chakins, 2005). The temperature of dry air can be dropped significantly
- through the phase transition of liquid water to water vapour, which requires much less energy
- 349 than refrigeration.
- 350 351 352

Table 14: Results summary	of Evaporative	Gas Cooler 2	specifications
---------------------------	----------------	--------------	----------------

Equipment name	Gas Cooler 2	
Туре	Horizontal C & R	
Sub-type	Split-ring floating Head	
Shell type	Split-flow	
Number of tubes	130	
Number of tubes per pass	65	
Surface area of exchange	0.003m ²	
Heat load	0.7008KJ/min	
Tube bundle diameter	37.5mm	
Shell inside diameter	48.5mm	
Bundle clearance	11mm	
Overall heat coefficient	$0.082 \text{w/m}^2 ^{\circ}\text{C}$	
Tube-side heat coefficient	11.935 w/m ² °C	
Shell-side heat coefficient	3.1391 w/m ² °C	
Tube-side fouling factor	5000w/m ² ⁰ C	
Shell-side fouling factor	$5000 \text{w/m}^{20} \text{C}$	
Tube pitch	25mm	
Tube arrangement pattern	Triangular	
Baffle spacing	9.7mm	
Baffle cut	25%	
Baffle type	Segmented	
Baffle height	76.275mm	
No of support place nods	8	
Diameter of nods	9.5mm	
Tube-side design press	2.2atm	
Tube-side design temp.	70 °C	
Tube-side pressure drop	0.215kpa	
Shell-side design press	1.1atm	
Shell-side design temp.	90 °C	
Shell-side design pressure Drop	169.77 kpa	
Tube material	Mild steel	
Shell material	Stainless steel.	

355 3.3.3 Solution Cooler 2 Specifications

Basic design equation (Renato, Giuseppe and Marco, 2006)

357 $\phi = UA\Delta Tm$

358 Shell – side heat transfer coefficient

$$\frac{h_s a_e}{k_f} = Jh \, x \, Re \, x \, pr \, x \, 0.33 \, \left(\frac{\mu}{\mu W}\right) \quad ^{0.14}$$

- hs = shell side heat transfer coefficient, de = equivalent diameter
- 361 $\int h = heat transfer correction factor, Re = Reynolds number, Pr = prandth number$
- 362 μ = viscosity of fluid at mean temp, μ w = viscosity of fluid at wall temp.
- 363 $(\mu/\mu w)^{0.14}$ = viscosity correction factor.
- 364

359

365 **Overall heat coefficient**

366 Kw for mild steel = 45w/m⁰C (Sinnott and Towler)

$$\frac{1}{U_0} = \frac{1}{ho} + \frac{1}{hod} + \frac{do \ln \frac{do}{dl}}{2kw} + \frac{do}{dl} \times \frac{1}{h_i} \times \frac{do}{dl} \times \frac{1}{hid}$$

1

368 Shell – side pressure drop

$$\Delta P_s = 8 jf x \left(\frac{D_s}{de}\right) x \frac{L}{IB} \left(\frac{\rho u s^2}{2}\right) \frac{\mu^{0.14}}{\frac{\mu}{W}}$$

369

367

370 Neglecting viscosity correction factor

371 From figure 12 (Coulson and Richardson)

372
$$\int f = 5.5 \times 10^{-2}$$

Table 15: Results summary of Solution Cooler 2 specifications

Equipment name	Solution cooler
Туре	Horizontal shell & tubes
Sub-type	Split-ring floating head
Shell-type	Split-flow
Surface area of exchange	0.304 m²
Tube-inside diameter	16mm

Tube-outside diameter	20mm
Heat load	178.7054KJ/min
Tube length	4.88m
Tube-sheet	0.03m
Shell inside diameter	87.55mm
Tube bundle diameter	37.55mm
Bundle clearances	50mm
Number of tubes	1
Number of tube pass	1
Number of tubes per pass	1
Baffle spacing	17.51mm
Baffle cut	25 % (segmented type)
Tube pitch	25mm
Tube arrangement pattern	Triangular
Overall heat coefficient	362.9896 w/m ² ⁰ C
Tube-side pressure drop	0.000013kpa
Shell-side pressure drop	243.17kpa
Tube-side design pressure	2.7atm
Shell-side design pressure	2.2atm
Tube-side design temp.	100 °C
Shell-side design temp.	212 °C
Shell wall thickness	5mm
Tube material	Mild steel
Shell material	Stainless steel

374 3.3.4 Cooler 5 (Condenser 5) Specifications

375 **A = surface area of exchange.**

376 = <u>φ</u>

- $U\Delta T_m$
- 378 **Tube bundle diameter** (**D**_b)

$$D_b = d_o \binom{N_t}{K_i} \frac{1}{nt}$$

- 380 From Table 15 (Coulson and Richardson), for triangular pitch.
- 381 $K_1 = 0.175, ni = 2.285$
- 382 **Tube inside coefficient.**

383 Cross – sectional area of one tube

$$-\frac{\pi(du^2)}{4}$$

385 Shell – side heat transfer coefficient

$$h_{s} = \frac{Kf}{de} x \ln x \operatorname{Re} x \operatorname{pr}^{0.33} x \left(\frac{\mu}{\mu W}\right)^{-0.14}$$

where hs = shell - side heat coefficient, Kf = thermal conductivity of fluid

 $\int h = heat transfer coefficient, R = Reynolds number, Pr = prandth$

 $\left(\underline{\mu}\right)^{0.14}$ = viscosity correction factor.

μw

384

386

388

389

392 Table 16: Results summary of Cooler 5 (Condenser 5) specifications

Equipment name	Cooler 5
Туре	Shell & tube H.E
Sub-type	Split-ring floating head
Head load	2.62889kJ/min
Shell type	Two shell pass
Number of tubes	1
Number of tubes pass	4
Number of tubes per pass	1
Tube bundle diameter	5.88mm
Surface area of cooler	0.00245m ²
Shell inside diameter	63.88mm
Baffle spacing	494mm
Baffle cut	25%
Baffle height	0.75 Ds = 47.91mm
Baffle type	Segmented
Tube pitch	31.25mm
Tube pattern	Triangular pattern
No of rods	12
Diameter of rods	9.5mm
Shell-side design press	5.984atm
Tube-side design press	2.75atm
Shell-side design temp.	310 ^o C
Tube-side design temp.	160 [°] C

Shell material	Stainless steel
Overall heat coefficient	3.5142w/m ²⁰ C
Shell wall thickness	5mm
Shell cover thickness	5mm
Tube-side pressure drop	0.0000079kpa
Shell-side pressure drop	791.388kpa.

394 3.3.5 Knock-Out Drum 1 Specification

Vapour–liquid separator was designed to separate a vapour–liquid mixture. The vapour–liquid separator is also referred to as a flash drum, knock-out drum, knock-out pot, compressor suction drum or compressor inlet drum (Kister, 1992). The vapour travels gas outlet at a design velocity which minimizes the entrainment of any liquid droplets in the vapour as it exits the vessel (Mani and Peruzzini, 2006).

400	Table 17: Results summary of Knock Out Drum 1 specification
-----	---

Equipment name	Knock-out drum I
Туре	Vertical vessel
Drum diameter	0.002m
Drum length	0.004m
Mist eliminator type	Knitted wire-mesh
Mist eliminator thickness	0.152m
Clearance b/w liquid surface and centre of nozzle	0.3m
Clearance b/w centre of inlet	0.1524m
Nozzle and mist eliminator	
Clearance b/w mist eliminator and drum top	0.31m
edge	

Drum material of construction	Stainless steel
Drum wall thickness	7mm
Head and closure type	Ellipsoidal
Head and closure type	7mm
Mist eliminator material	Stainless steel.

3.3.6 Knock-Out Drum 2 Specifications

403 Table 18: Results summary of Knock Out Drum 2 specifications

Equipment name	Knock-out drum 2		
Туре	Vertical cylinder vessel		
Drum diameter	0.002m		
Drum length	1.0m		
Mist eliminator type	Knitted wire-mush		
Mist eliminator thickness	0.152m		
Liquid depth	0.1374m		
Clearance b/w liquid surface and centre of	0.05m		
nozzle			
Clearance b/w the centre of nozzle and the	0.1m		
mist eliminator			
Clearance b/w the mist eliminator and drum	0.31m		
top			
Drum wall thickness	5mm		
Head and closure type	Tom spherical		
Head and closure thickness	5mm		
Mist eliminate material	Stainless		
Drum material	Stainless steel		

405 **3.3.7 Solution Heat Exchanger Specifications**

A heat exchanger was designed for efficient heat transfer from one medium to another. The media is separated by a solid wall, so that they never mix, or they may be in direct contact (Kister, 1992). They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries, natural gas processing, and sewage treatment (Perry et al, 1997).

411 Table 19: Results summary of Solution Heat Exchanger specifications

Equipment name	Solution Heat exchanger		
Туре	Horizontal S&T		
Sub-type	Split-ring floating head		
Head load	- 54.9306 KJ/min		
Shell type	Split flow		
Number of tubes	1		
Number of tubes pass	1		
Number of tubes per pass	1		
Tube bundle diameter	37.5504mm		
Surface area of exchanger	0.019m ²		
Shell inside diameter	87.5504mm		
Baffle spacing	17.6mm		
Baffle cut	25%		
Baffle height	135mm		
Baffle type	Segmented		
Tube pitch	25mm		
Tube pattern	Triangular pattern		
No of rods	8		
Bundle diameter	124mm		
Shell inside diameter	180mm		
Tube outside diameter	20mm		
Tube inside diameter	16mm		
Tube length	4.88mm		
Tube-sheet thickness	0.03m		
Bundle clearance	50mm		
Diameter of rods	9.5mm		
Shell-side design press	1.1atm		
Tube-side design press	1.1atm		

Shell-side design temp.	160 [°] C
Tube-side design temp.	360 [°] C
Shell material	Stainless steel
Overall heat coefficient	300w/m ² °C
Shell wall thickness	5mm
Tube -side coefficient	261.13w/m ² ⁰ C
Shell-side coefficient	361.324w/m ² ⁰ C
Shell cover thickness	5mm

3.3.8 Flash Drum Specifications

414 Table 20: Results summary of Flash Drum specifications

Equipment name	Flash drum
Туре	Vertical gas
Drum diameter	Liquid separator
Drum length	0.002m
Mist dominator type	Knitted wore mesh
Mist dominator thickness	0.152m
Liquid depth	0.30m
Clearance between liquid surface and centre	
of nozzle	0.30m
Clearance between centre wilet nozzle &	
mist dominator	0.61m
Clearance between mist dominator and drum	
top	0.31m
Drum material of construction	Stainless steel
Head and closure type	Ellipsoidal

417 **3.3.9** Optimal values of CO₂ and validation of the experimental data

Conc of Solvent	Contact	Volume of	Predicted	Experimental	Percentage
(Mol/dm ³)	Time (Secs)	Solvent	Amount of	Amount of	Error (%)
		(ml)	CO ₂ (%)	CO ₂ (%)	
6.15	59.21	107.84	5.021	5.41	2

418 Table 21: Optimum conditions for CO₂ capture

419

The optimum conditions obtained are concentration of solvent 6.15 mol/dm³, contact time 59.21 seconds, volume of solvent 107.84 with 5.021 percent of CO_2 absorbed as shown in Table 21. Table 21 also depicts the validation of the optimal results of the sequestration process by performing the experiment with predicted optimum conditions, from the table it can be observed that the percentage error between the actual and predicted was 2 percent, this showed that the model was adequate in predicting the response for the absorption of CO_2 .

426 **4. Conclusion:**

The design of a plant to recover CO_2 from spent air from aerobic fermentation was successfully 427 428 carried out. Material and energy balances were carried out on each equipment and then over the 429 entire process. These balances were used in the chemical and mechanical engineering design of the following equipment: absorber, knock out drum, flash drum, gas cooler, reboiler and 430 431 stripping column. The data obtained in this design were used to fabricate an absorption column by the research for CO_2 and CO capture. The empirical relationship between amount of CO_2 , CO 432 captured and the independent variables were obtained with the aid of a statistical package. The 433 statistical package was useful in analyzing and optimizing the amount of CO₂ and CO captured. 434 435 The Analysis of Variance (ANOVA) result for the model terms were obtained and were applied for estimating the significance of the model. The experimental data were also analyzed to 436 ascertain the correlation between the experimental and predicted gases captured, normal 437 probability and residual plot as well as actual and predicted plots while the 3D response surface 438 plots were generated to estimate the effect of the combinations of the independent variables on 439 the amount of the captured gases. 440

441 **References:**

Ahegot, A. S. & Celia, M. A. (2002). Modeling carbon (IV) oxide transport in unsaturated soils
in (Hassainzadeh et al eds.) *Proc. 14th International Conference in Computational Methods in Water Resources*, 41-47.

- Aneke L.E. (2009), "Principles of Chemical Engineering Process Design". De-Adroil.
 Innovation Enugu.
- 447 Aroonwilas, A. & Veawab, A. (2007). Integration of CO₂ capture unit using single- and blended-448 amines into supercritical coal-fired power plants: Implications for emission and 449 energymanagement. *International Journal of Greenhouse Gas Control*, 1, 143-150.
- Baum, J. A. & Woehlck, H. J. (2003). Interaction of inhalational anaesthetics with CO₂
 absorbents. *Best Prac. Res., Clin. Anaesthesiol., Vol. 17*, 63-76.
- 452 Coulson, J. M. and Richardson, J.F. (1968). Chemical Engineering, Vol. 2. Pergamon, N.Y.
- Demontigny, D. Tontiwachwuthikal, P. & Chakins, A. (2005). Comparing the absorption performance of packed columns and membrane contactors. *Ind. Eng. Chem. Res*, 44, 5726-5732.
- Kohl, A., and Nielsen, B. (1997): "Gas Purification", fifth edition, Gulf Publishing Company,Houston, Texas.
- Liao, C. H. & Li, M. H. (2002). Kinetics of absorption of carbon (IV) oxide into aqueous solutions of monoethanolamine + N-methyloliethanolamin. *Chem. Eng. Sci.*, *57*, 4569-4582.
- Liao, C. H. Liu, W. T. & Tan, C. S. (2003). Removal of CO₂ by absorption in a rotating packed bed. *Ind. Eng. Chem. Res.*, *42*, 2381-2386.
- Lackuer, Klaus S. (2002): "Carbonate Chemistry for Sequestering fossil carbon", Annual Review of Energy and the Environment 27 (1): 193-232.
- 463 Mani, F. & Peruzzini, M. (2006). CO_2 absorption by aqueous NH₃ solutions: speciation of 464 ammonium carbamate, bicarbonate and carbonate by a CNMR study. *Green Chem.*, *8*, 995-1000.
- Nwokedi, I. C. and Igbokwe, P. K. (2018). "Absorption Kinetics and Mass Transfer Coefficient
 for carbon (IV) oxide sequestration by Ammonia solution", The Pharmaceutical and Chemical
 Journal, Volume 5, Issue 6, pp. 45-53, December 2018, <u>http://tpcj.org/download/vol-5-iss-6-</u>
 2018/TPCJ2018-05-06-45-53.pdf.
- Perry, R.H., et al., (1997): "Chemical Engineers" Handbook, 7th Edition, McGraw- Hill, News
 York. pp. 244.
- 471 Qing, F. et. al. (2011). Kinetics of CO₂ absorption in aqueous ammonia solution. *International*472 *Journal of Greenhouse Gas Control*, 2010, 4(5), 729-738.

- 473 Renato, B, Giuseppe, S. and Marco, M. (2006): "Process Design and Energy Requirements for
- The Capture of Carbon (iv) oxide from Air", Chemical Engineering and Processing, Vol. 45, pp.
 1047-1058.
- 476 Sadik, Kakac and Hongtan (2002): "Heat Exchanges: Selection, Rating and Thermal Design",
 477 (2nd ed.) CRC Press ISBN.
- 478 Saunders, E.A.D. (1988) "Heat Exchangers: Selection Design and Construction", Longman.
- 479 Watson, R.T., (2001): "Climate Change", Synthesis Report, *Cambridge University Press, UK*.
- 480 Wiche, I. A. & Kennedy, R. J. (2002). Energy and Fuels. Vol. 14, pp. 56-66.
- 481 Zeng, Q. et. al. (2011). Mass transfer coefficients for CO₂ absorption into aqueous ammonia
- 482 solution using a packed column. Ind. *Eng. Chem. Research*, *50*, 10168-10175.