| 1  | <u>Original Research Article</u>                                                                          |
|----|-----------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                           |
| 3  | CHEMICAL PROCESS ABSORPTION COLUMN DESIGN FOR                                                             |
| 4  | CO <sub>2</sub> SEQUESTRATION                                                                             |
| 5  |                                                                                                           |
| 6  | Abstract                                                                                                  |
| 7  | The design of a prototype chemical process absorption column was carried out to facilitate the            |
| 8  | sequestration of CO <sub>2</sub> from flue gas emanating from an exhaust point of a power generating set. |
| 9  | Factors such as ambient temperature and atmospheric pressure where factored into consideration            |
| 10 | before the fabrication of the absorption column. The rate of the absorbing liquid is 0.1056kg/min         |
| 11 | and contains 5% mole/mole carbon (iv) oxide. Also the energy and material balance of the entire           |
| 12 | sequestration process was verified as well as the equipment design for the process was carried            |
| 13 | out.                                                                                                      |
| 14 |                                                                                                           |
| 15 | Keyword: material balance, energy balance, CO <sub>2</sub> sequestration, ammonia, equipment design,      |
| 16 | absorption column, knockout drum, absorber, evaporative gas cooler, solution cooler, solution             |
| 17 | heat exchanger, flash drum, stripper, and reboiler.                                                       |
| 18 |                                                                                                           |
| 19 | 1. Introduction                                                                                           |
| 20 | The scientific community agrees that anthropogenic CO <sub>2</sub> emission, mainly generating by fossil- |
|    |                                                                                                           |

21 fuel power plants, is among the main contributors to global warming (Aroonwilas and Veaweb, 2004). Although the transition of the existing infrastructure from carbon-based sources to cleaner 22 alternatives would be ideal in this regard, such a change requires considerable modifications to 23 24 the current energy framework, and many of the proposed technologies are not yet sufficiently developed to facilitate large-scale industrial implementation (Zeng, 2011). Thus, carbon capture 25 26 and sequestration (CCS) technology that efficiently capture  $CO_2$  from existing emission sources will play a vital role until more significant modifications to the energy infrastructure can be 27 realized. Plant design is a technical term that embraces all engineering aspects involved in the 28 development of either a new, modified, or expanded industrial plant (Coulson and Richardson, 29 1968). It involves the economic evaluation of new processes, design of industrial pieces of 30 equipment for a new plant or the development a plant layout for the co-ordination of the overall 31 operation (Sadik, Kakac and Hongton, 2002). Present strategies for the mitigation of the 32 atmospheric carbon (IV) oxide build-up are relied on the energy use efficiency, and the reduction 33

of fossil fuels consumption for increased use of renewable energy sources or nuclear power plants. Thus, the inevitable way of keeping the global  $CO_2$  load in the atmosphere and hydrosphere below unbearable levels is the complementing of emission reduction (Watson, 2001) efforts by the capture  $CO_2$  before it emits from point sources, or from its carrying air stream emitting from the point of sources, and to store it permanently outside the atmosphere.

39

#### 40 2. Materials and Methods

#### 41 **2.1 Methodology**

Due to the nature of the equipment made of glassware and in order to control the experiment, standard conditions of ambient temperature and atmospheric pressure were adopted for the process, and also for the flow rate of the solution into the absorption column. Three independent variables were used: the concentration of solvent ranging from 2-10 mol/dm<sup>3</sup>, contact time of 20-100 seconds and volume of solvent from 40-200 ml.

For the carbon sequestration to be achieved, 10 mol/dm<sup>3</sup> concentration of aqueous ammonia was 47 prepared and poured into a flask containing ammonia solution which supplied the solution to the 48 absorber, the aqueous ammonia was evenly distributed across the inner surface of the column 49 while in contact with the plates. The petrol generating set was turned on while the gas analyzer 50 detected the components and quantity of gases before it was charged into the heat exchanger. 51 The heat exchanger helped to attain the desired temperature of 40°C before the flue gas was 52 charged into the absorption column from the entry point near the base of the absorption column. 53 The flue gas in the column contacted with the aqueous ammonia in a counter current form for a 54 period of 60 seconds after which the tap at the exit point close to the top of the absorption 55 column was opened and gas analyzer used to determine the amount of CO<sub>2</sub> leaving the column. 56

#### 57 2.2 Chemical Absorption-Amine Absorption/Stripping Technology

A typical chemical absorption process consists of an absorber and a stripper in which absorbent 58 is thermally regenerated (Saunders, 1998). Chemical absorption process was the adopted method 59 for this work with ammonia used as the absorbent. Ammonia was chosen as the most suitable 60 61 solvent and absorbent for this work because of its large absorption capacity, small heat of reaction, fast kinetics, high  $CO_2$  selectivity, it is cheap and does not degrade and ammonia is not 62 affected by O<sub>2</sub> and SO<sub>2</sub>. In a chemical absorption process, the flue gas containing CO<sub>2</sub> enters a 63 packed bed absorber from the bottom and contacts counter-currently with a CO<sub>2</sub>-lean absorbent, 64 65 after absorption, the CO<sub>2</sub>-rich absorbent flows into a stripper for thermal regeneration. In the

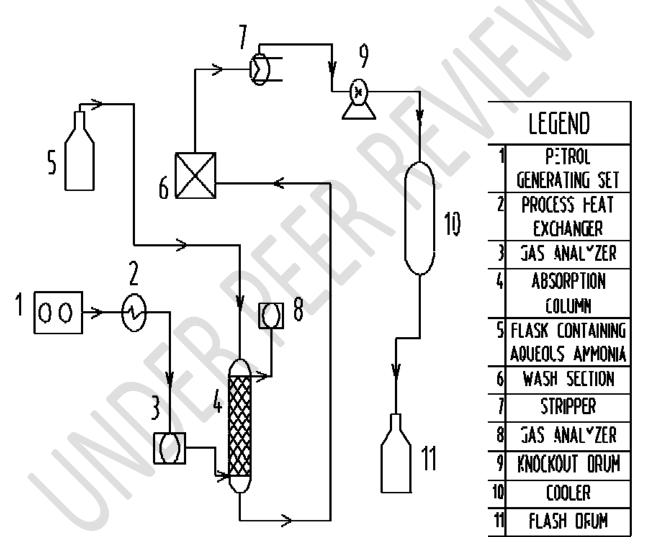
aftermath regeneration, the  $CO_2$ -lean absorbent is pumped back to the absorber for cyclic use. The pure  $CO_2$  released from the stripper is compressed for subsequent transportation and storage (Wiche and Kennedy, 2002). The advantage of a chemical absorption technology is that it is the most matured technology for  $CO_2$  capture and it has been commercialized for many decades. Another advantage of this technology is that it is suitable for retrofitting of the existing power plants.

#### 72 2.3 Materials

The materials made up of glass wares were fabricated at scientific research and development institute; they were put together alongside other components purchased from a science apparatus market to make a complete absorption column. The equipment has an absorption column, flask containing the ammonia solution, reservoir to house the content of the mixture in the aftermath of the reaction, openings for flue gas entrant and exit point after the reaction, non-heat sensitive pipe connected to the entry point of the absorption column and the exhaust pipe of the gasoline generating set.

80 Equation for the Reaction: (Lackuer and Klaus, 2002) (Liao, Liu and Tan, 2003)

|    | •         |                                                                                                                        |
|----|-----------|------------------------------------------------------------------------------------------------------------------------|
| 81 | i)        | CO <sub>2</sub> Absorption                                                                                             |
| 82 |           | $2CO_2(g) + 2NH_3(aq) + H_2O \rightarrow NH_2COONH^+_4(aq) + H_2CO_3$                                                  |
| 83 |           |                                                                                                                        |
| 84 | ii)       | Ammonia Regeneration                                                                                                   |
| 85 |           | $NH_2COONH_4^+(aq) + H_2O \rightarrow H_2CO_3 + 2NH_3$                                                                 |
| 86 | About 98  | % recovery of CO <sub>2</sub> occurs and the recovery liquid is a 20% w/w NH <sub>3</sub>                              |
|    |           |                                                                                                                        |
| 87 | Assumpt   | ions:                                                                                                                  |
| 88 | 1)        | The rate of the absorbing liquid is 0.1056kg/min and contains 5% mole/mole carbon                                      |
| 89 |           | (iv) oxide.                                                                                                            |
| 90 | 2)        | The spent air effluent analysis, $0.000347 \text{ft}^3/\text{s}$ at $30^{\circ}\text{C}$ , 1 atm with % composition on |
| 91 |           | dry basis of carbon (IV) oxide (3.5%), nitrogen (79%) and oxygen (17.5%). The exit                                     |
| 92 |           | air is saturated with water vapour at the absorbing liquid inlet temperature of $40^{\circ}$ C.                        |
| 93 | 3)        | Recovery of $85\%$ CO <sub>2</sub> .                                                                                   |
| 94 | 4)        | Reaction equation                                                                                                      |
| 95 |           |                                                                                                                        |
| 96 | Process I | Details:                                                                                                               |


97 Basis: 1 minute operation

#### 98 Feed Stream

- 99 Stream 2: Spent air effluent (dry basis)
- $100 \quad CO_2 = 3.5\%$
- 101 Nitrogen = 79%
- 102 Oxygen = 17.5%
- **Total volume** of spent air effluent = 0.000347Ft<sup>3</sup>/s
- 104

### 105 **3. Results and Discussions**

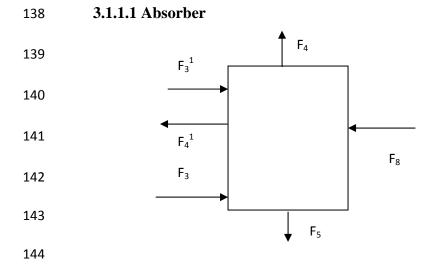
106



107

Fig.1 Experimental Set-Up and Sketch Diagram for Absorption using the Prototype Semi-Batch Column

111 The capturing of CO<sub>2</sub> from spent air effluent was achieved through the absorption of CO<sub>2</sub> with ammonia solution to form ammonia carbamate which was later regenerated to recover the 112 113 ammonia and CO<sub>2</sub>. The raw gas (air effluent from a generating set) was cooled to about  $40^{\circ}$ C (reaction temp.) and separated to remove any condensed water from the raw gas. Dry air effluent 114 was charged to the absorption column. In the absorption section the air was charged counter 115 currently with ammonia solution from the top and the CO<sub>2</sub> was absorbed to form ammonium 116 carbamate (Nwokedi and Igbokwe, 2018). The off air from absorption section was water washed 117 in the wash section to remove any entrained liquid. The scrubbed gas recovered as overhead was 118 sent to the knock-out drum to recover any entrained ammonia solution from the absorption 119 column. The rich-amine solution from the bottom of the absorber was passed to energy recovery 120 system and a solution heat exchanger where it was pre-heated to about 150°C (regeneration 121 temperature). The spent ammonia solution exchange heat with incoming regenerated ammonia 122 solution from bottom of the regenerator (Qing, 2011). Pre-heated spent ammonia solution was 123 separated to remove any gas associated with the spent ammonia solution. Regeneration of 124 ammonia solution was carried out in the regenerator by the application of heat supplied by steam 125 126 generated in the reboiler at the base of the regenerator. The top product of regenerator contains mainly CO<sub>2</sub> and steam which was cooled in the cooler to condense them. The steam was 127 separated and returned to the reboiler (Liao and Liu, 2002). 128


The bottom product of regenerator containing regenerated ammonia solution was passed through solution heat exchanger where it exchanges heat with spent ammonia solution from the absorber. It was further cooled to bring its temperature to about  $40^{\circ}$ C (absorption temperature).

- 132 **3.1 Material Balance Results**
- 133 **3.1.1 Material Balance Summary Tables**

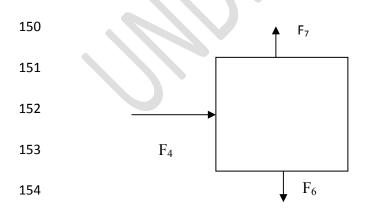
134

135

136





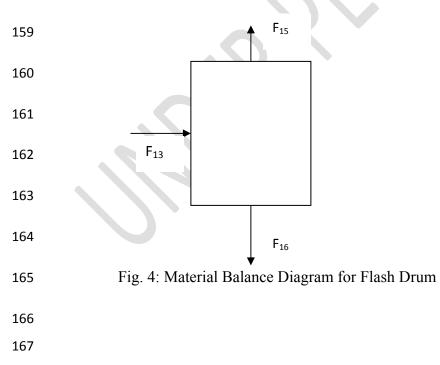

146 Table 1: Absorber Input Streams

|                                |            | F <sub>3</sub>   |               | <b>F</b> <sub>8</sub> |               | $F_3^1$          |            |
|--------------------------------|------------|------------------|---------------|-----------------------|---------------|------------------|------------|
| Comp                           | Mol.<br>Wt | Mole<br>kmol/ hr | Mass<br>kg/hr | Mole<br>kmol/ hr      | Mass<br>kg/hr | Mole<br>kmol/ hr | Mass kg/hr |
| CO <sub>2</sub>                | 44         | 0.0000118        | 0.0000364     | 0.000011<br>8         | 0.0005192     | -                | -          |
| O <sub>2</sub>                 | 32         | 0.000526         | 0.000133      | -                     | -             | -                | -          |
| N <sub>2</sub>                 | 28         | 0.000133         | 0.000526      | -                     | -             | -                | -          |
| NH <sub>3</sub>                | 17         | -                | -             | 0.00118               | 0.02006       | -                | -          |
| H <sub>2</sub> O               | 18         | -                | -             | 0.08496               | 0.08496       | -                | 0.001015   |
| H <sub>2</sub> CO <sub>3</sub> | 61         | -                | -             | -                     | -             | -                | -          |
| Carbamate                      | 62         | -                | -             | -                     | -             | -                | -          |
| Total                          |            |                  | 0.0006954     |                       | 0.01055       |                  | 0.001015   |

147 Table 2: Absorber Output Streams

|                                |      | F        | 1<br>4   |          | <b>F</b> <sub>4</sub> | <b>F</b> <sub>5</sub> |           |
|--------------------------------|------|----------|----------|----------|-----------------------|-----------------------|-----------|
| Comp                           | Mol. | Mole     | Mass     | Mole     | Mass kg/hr            | Mole kmol/            | Mass      |
|                                | Wt   | kmol/ hr | kg/hr    | kmol/ hr |                       | hr                    | kg/hr     |
| CO <sub>2</sub>                | 44   | -        | -        | 0.02006  | 0.000484              | 0.0000118             | 0.0005192 |
| O <sub>2</sub>                 | 32   | -        | -        | 0.08406  | 0.000526              |                       | -         |
| N <sub>2</sub>                 | 28   | -        | -        | 0.000043 | 0.000133              |                       | -         |
| NH <sub>3</sub>                | 17   | -        | -        | -        | 0.0005713             | 0.0000118             | 0.02006   |
| H <sub>2</sub> O               | 18   | -        | 0.001015 | -        | 0.000286              | 0.000000701           | 0.08406   |
| H <sub>2</sub> CO <sub>3</sub> | 61   | -        | -        |          |                       | 0.000000701           | 0.000043  |
| Carbamat<br>e                  | 62   | -        |          | Č,       | -                     | 0.000000701           | 0.000053  |
| Total                          |      |          | 0.001015 |          | 0.00203               |                       | 0.1047    |

# 149 3.1.1.2 Knock-Out Drum 1






|                  | INPUT (F <sub>4</sub> ) |                |               | OUTPUT (F <sub>6</sub> ) |               | OUTPUT (F7)     |               |
|------------------|-------------------------|----------------|---------------|--------------------------|---------------|-----------------|---------------|
| Comp             | Mol.<br>/wt             | Mole<br>Kmol/h | Mass<br>kg/hr | Mole<br>kmol/hr          | Mass<br>Kg/hr | Mole<br>Kmol/hr | Mass<br>Kg/hr |
| CO <sub>2</sub>  | 44                      | 0.000484       | 0.000484      | -                        | -             | 0.000484        | 0.0005192     |
| O <sub>2</sub>   | 32                      | 0.000526       | 0.000133      | -                        | -             | 0.000526        | 0.000133      |
| N <sub>2</sub>   | 28                      | 0.000133       | 0.000133      | -                        | -             | 0.000133        | 0.000133      |
| NH <sub>3</sub>  | 17                      | -              | -             | -                        | 0.0029        |                 | -             |
| H <sub>2</sub> O | 18                      | -              | -             | -                        | 0.00116       | -               | -             |
| Total            |                         |                | 0.000203      |                          | 0.0000000203  |                 | 0.0011782     |

156 Table 3: Knock-Out Drum 1 Calculation Details

### **3.1.1.3 Flash Drum**



| INPUT STR                      | REAM                   |           | OUTPUT STREAM          |           |                        |          |  |
|--------------------------------|------------------------|-----------|------------------------|-----------|------------------------|----------|--|
|                                | <b>F</b> <sub>13</sub> |           | <b>F</b> <sub>15</sub> |           | <b>F</b> <sub>16</sub> |          |  |
| Comp                           | Mole                   | Mass      | Mole                   | Mass      | Mole                   | Mass     |  |
|                                | kmol/hr                | kg/hr     | kmol/hr                | kg/hr     | kmol/hr                | kg/hr    |  |
| CO <sub>2</sub>                | -                      | 0.0005192 | -                      | 0.0005192 | -                      |          |  |
| NH <sub>3</sub>                | -                      | 0.02006   | -                      | -         | 0.86                   | 0.02006  |  |
| H <sub>2</sub> O               | 0.000000701            | 0.08406   | -                      | -         | 0.000000701            | 0.08406  |  |
| H <sub>2</sub> CO <sub>3</sub> | 0.00118                | 0.000043  | -                      |           | 0.00118                | 0.000043 |  |
| Carbamate                      | 0.00118                | 0.000053  | -                      | -         | 0.00118                | 0.000053 |  |
| Total                          |                        | 0.1047    |                        | 0.0005192 |                        | 0.104216 |  |

## 169Table 4: Flash Drum Input and Output Streams

# **3.1.1.4 Stripper**

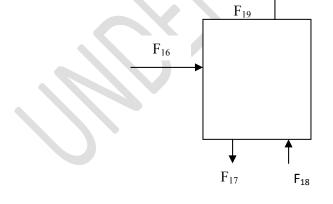



Fig. 5: Material Balance Diagram for Stripper

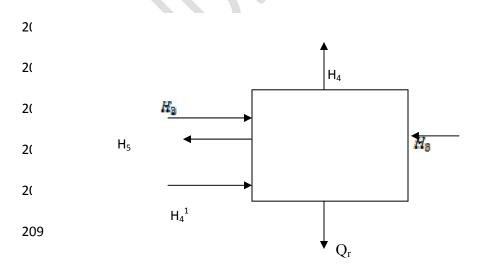
| INPUT ST                       | <b>TREAMS</b>          |               | OUTPUT STREAMS         |            |                        |               |                     |               |
|--------------------------------|------------------------|---------------|------------------------|------------|------------------------|---------------|---------------------|---------------|
|                                | <b>F</b> <sub>16</sub> |               | <b>F</b> <sub>18</sub> |            | <b>F</b> <sub>17</sub> |               | F <sub>19</sub>     |               |
| Comp                           | Mole<br>kmol/ hr       | Mass<br>kg/hr | Mole<br>kmol/<br>hr    | Mass kg/hr | Mole<br>kmol/<br>hr    | Mass<br>kg/hr | Mole<br>kmol/<br>hr | Mass<br>kg/hr |
| NH <sub>3</sub>                | -                      | 0.02006       | -                      | -          | -                      | 0.02006       | -                   | -             |
| H <sub>2</sub> O               | 0.00000701             | 0.08406       | -                      | 0.00004326 | -                      | 0.1690        |                     | 0.00004326    |
| H <sub>2</sub> CO <sub>3</sub> | 0.00118                | 0.000043      | -                      | -          | -                      | -             | -                   | -             |
| Carbamate                      | 0.00118                | 0.000053      | -                      | -          |                        |               | -                   | -             |
| CO <sub>2</sub>                | -                      | -             | -                      |            | -                      | 0.0005192     | -                   | 0.00055004    |
| Total                          |                        | 0.104216      |                        | 0.00004326 |                        | 0.1896        |                     | 0.0005933     |

## 182 Table 5: Stripper Input and Output Streams

## **3.1.1.5 Knock-Out Drum 2**

190 Fig. 6: Material Balance Diagram for Knock Out Drum 2

### 193Table 6: Knock-Out Drum 2 Input and Output Streams


| INPUT            | STREAMS                |               |            | OUTPUT STREAMS         |               |                 |            |
|------------------|------------------------|---------------|------------|------------------------|---------------|-----------------|------------|
|                  | <b>F</b> <sub>21</sub> |               |            | <b>F</b> <sub>22</sub> |               | F <sub>23</sub> |            |
| Comp             | Mole/ wt               | Mole<br>kg/hr | Mass kg/hr | Mole<br>kmol/hr        | Mass<br>kg/hr | Mole<br>kmol/hr | Mass kg/hr |
| CO <sub>2</sub>  | 44                     | -             | 0.0005501  | -                      | 0.0005501     |                 | -          |
| H <sub>2</sub> O | 18                     | -             | 0.00004326 | -                      | -             |                 | 0.00004326 |
| Total            |                        |               | 0.0005933  |                        | 0.0005501     |                 | 0.00004326 |

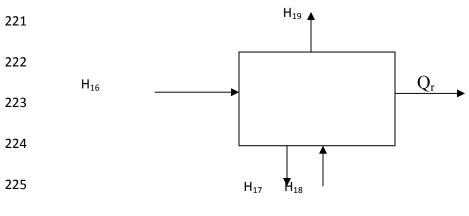
194

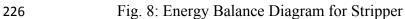
#### 195 **3.2 Energy Balance Results**

The conservation of energy differs from that of mass in that energy is generated (or consumed) in a chemical process. Material can change form; new molecular species was formed by chemical reactions where the total mass flow into a process unit must be equal to the flow out at the steady state (Aneke, 2009). The same is not true of energy. The total enthalpy of the outlet streams will not equal that of the inlet streams if energy is generated or consumed in the processed, such as that due to heat of reaction.

- 202 3.2.1 Energy Balance Summary Tables
- 203 **3.2.1.1 Absorber**

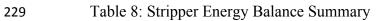



## Fig. 7: Energy Balance Diagram for Absorber

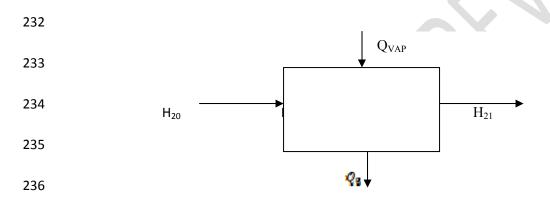

- 211
- 212 Where Qp = heat of the process, in this case Qp = 0 (Adiabatic process)
- 213 Qr = Heat of the reaction =  $\Sigma \Delta Hr^0$ )
- 214 Total heat input =  $H_3 + H_3^{-1} + H_8$
- 215 Total heat output  $= H_5 + H_4 + H_4^1$
- 216 Enthalpy input,  $H_3 = \int_{T_{ref}}^{T_3} \epsilon_n C_p dT$
- 217
- Table 7: Absorber Energy Balance Summary

| ENERGY         | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|----------------|---------------|----------------|
| H <sub>3</sub> | 0.1704        |                |
| H <sub>4</sub> | -             | 0.3329         |
| $H_4^1$        | -             | 0.1705         |
| H <sub>8</sub> | 3.9952        |                |
| H <sub>5</sub> | -             | 102.4708       |
| Qr             | 98.8085       | -              |
| Total          | 102.9741      | 102.9741       |

219


### 220 **3.2.1.2 Stripper**

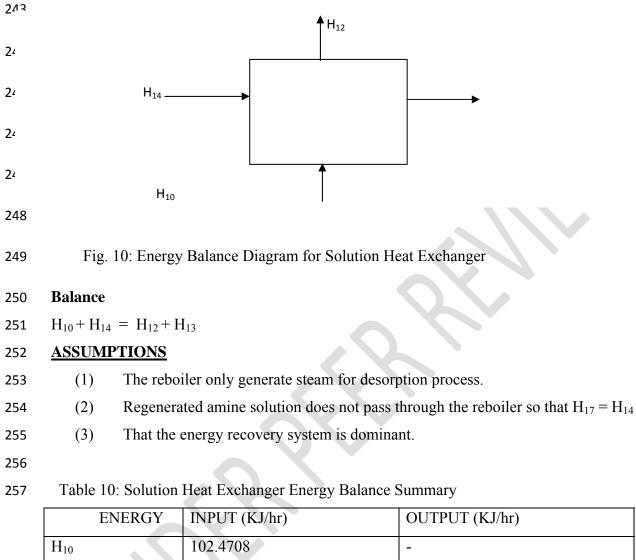




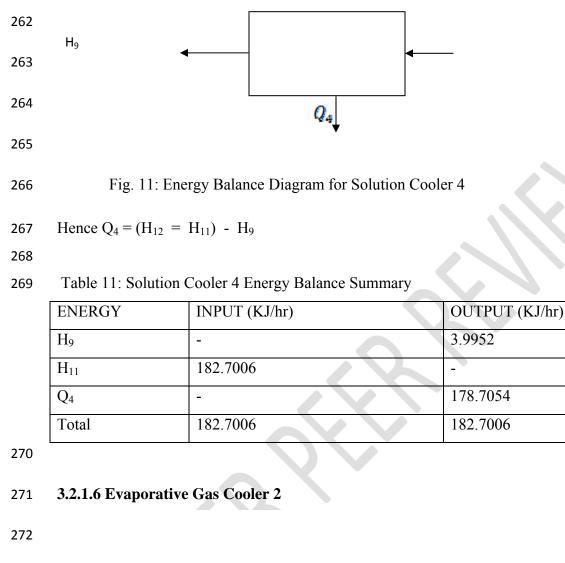

- 227
- 228

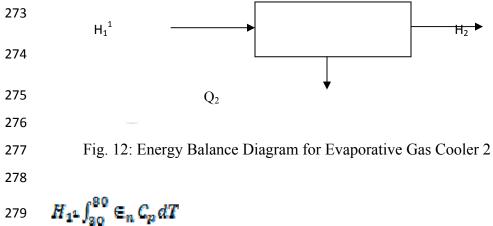
| ENERGY          | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|-----------------|---------------|----------------|
| H <sub>16</sub> | 47.4869       | -              |
| H <sub>18</sub> | 0.1326        | -              |
| H <sub>17</sub> | -             | 127.77         |
| H <sub>19</sub> | -             | - 76.5845      |
| Qr              |               | - 98.805       |
| Total           | 47.6195       | - 47.6195      |









# 238Table 9: Gas Cooler 5 Energy Balance Summary

| ENERGY           | INPUT (KJ/hr) | OUTPUT (KJ/hr) |
|------------------|---------------|----------------|
| H <sub>20</sub>  | 5.0624        | -              |
| H <sub>21</sub>  | -             | 2.5312         |
| Q <sub>VAP</sub> | 0.09769       | -              |
| Q5               | -             | 2.62889        |
| TOTAL            | 5.16009       | 5.16009        |



| H <sub>10</sub> | 102.4708 | -        |
|-----------------|----------|----------|
| H <sub>12</sub> | C        | 182.7006 |
| H <sub>13</sub> |          | 47.5402  |
| H <sub>14</sub> | 127.77   |          |
| Total           | 230.2408 | 230.2408 |





| ENERGY                      | INPUT (KJ/Hr) | OUTPUT (KJ/Hr) |
|-----------------------------|---------------|----------------|
| H <sub>1</sub> <sup>1</sup> | 0.8712        | -              |
| H <sub>2</sub>              | -             | 0.1704         |
| Q <sub>2</sub>              | -             | 0.7008         |
| TOTAL                       | 0.8712        | 0.8712         |

281 Table 12: Gas Cooler Energy Balance Summary

## 283 **3.3 Process Equipment Specifications**

## 284 **3.3.1** Absorber Specifications (Baum and Woehlck, 2003)

285 Absorption of  $CO_2$  in 20% w/w NH<sub>3</sub> solution

ы

$$- G\partial y = KGa (P_A - P_{AC}) \partial h$$

P<sub>Ae</sub> = partial pressure that would be in equilibrium with the bulk of liquid, because the liquid is a concentrated solution of NH<sub>3</sub>, the partial pressure of  $CO_2$ , P<sub>Ae</sub> in equilibrium with it is virtually zero. Also PA = yp where P is the total pressure.

290 -  $G\partial y = KGayp\partial h$ 

1

291 Rearranging and integrating

1

|     | <b>_</b>        | . <b>.</b> .    | - 11            |
|-----|-----------------|-----------------|-----------------|
| 292 | K <sub>Ga</sub> | K <sub>Ga</sub> | K <sub>Lo</sub> |
| 293 |                 |                 |                 |
| 294 |                 |                 |                 |
| 295 |                 |                 |                 |
| 296 |                 |                 |                 |
| 297 |                 |                 |                 |

298

299

- 300
- 301

- 303
- 304

| Equipment name               | Absorber                       |
|------------------------------|--------------------------------|
| Туре                         | Wetted wall column             |
| Packing type                 | Ceramic intallox paddle        |
| Packing size                 | 38mm                           |
| Packing factor               | 170m <sup>-1</sup>             |
| Column area                  | 0.0003142 <b>m<sup>2</sup></b> |
| Column diameter              | 0.01m                          |
| Height of absorption section | 1.0m                           |
| Height of wash section       | 0.2m                           |
| Bottom liquid depth          | 0.000044m                      |
| Top gas disengagement height | 0.3048m                        |
| Packing height               | 0.235m                         |
| Column material              | Stainless steel                |
| Design temperature           | 50 <sup>0</sup> C              |
| Design pressure              | 1.1atm                         |
| Column wall thickness        | 5mm                            |
| Column cover thickness       | 5mm (terrispherical)           |

305 Table 13: Results Summary of Absorber Specifications

The design of wet scrubbers or any air pollution control device depends on the industrial process 306 conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust 307 308 properties are of primary importance. Scrubber was designed to collect particulate matter and/or gaseous pollutants (Coulson and Richardson, 2005). Wet scrubbers remove dust particles by 309 capturing them in liquid droplets. Wet scrubbers remove pollutant gases by dissolving or 310 absorbing them into the liquid (Kohl and Nielsen, 1997). Droplets that are in the scrubber inlet 311 gas were separated from the outlet gas stream by means of another device referred to as a mist 312 313 eliminator or entrainment separator.

#### 314 **3.3.2 Evaporative Gas Cooler 2 specifications**

315

317

316 Area of cooler A =  $\underline{\phi}$ 

 $A = \underline{\emptyset}$  $U\Delta\zeta m$ 

The evaporative cooler (also swamp cooler, desert cooler and wet air cooler) is a device that was designed to cool air through the evaporation of water. Evaporative cooling differs from typical air conditioning systems which use vapour-compression or absorption refrigeration cycles. Evaporative cooling works by employing water's large enthalpy of vaporization (Demontigny,

- 322 Tontiwachwuthikal and Chakins, 2005). The temperature of dry air can be dropped significantly
- 323 through the phase transition of liquid water to water vapour, which requires much less energy
- than refrigeration.
- 325 326 327

Table 14: Results Summary of Evaporative Gas Cooler 2 Specifications

| Equipment name                  | Gas Cooler 2                        |
|---------------------------------|-------------------------------------|
| Туре                            | Horizontal C & R                    |
| Sub-type                        | Split-ring floating Head            |
| Shell type                      | Split-flow                          |
| Number of tubes                 | 130                                 |
| Number of tubes per pass        | 65                                  |
| Surface area of exchange        | 0.003m <sup>2</sup>                 |
| Heat load                       | 0.7008KJ/min                        |
| Tube bundle diameter            | 37.5mm                              |
| Shell inside diameter           | 48.5mm                              |
| Bundle clearance                | 11mm                                |
| Overall heat coefficient        | 0.082w/m <sup>2</sup> °C            |
| Tube-side heat coefficient      | 11.935 w/m <sup>2</sup> °C          |
| Shell-side heat coefficient     | 3.1391 w/m <sup>2</sup> °C          |
| Tube-side fouling factor        | 5000w/m <sup>2</sup> <sup>0</sup> C |
| Shell-side fouling factor       | 5000w/m <sup>20</sup> C             |
| Tube pitch                      | 25mm                                |
| Tube arrangement pattern        | Triangular                          |
| Baffle spacing                  | 9.7mm                               |
| Baffle cut                      | 25%                                 |
| Baffle type                     | Segmented                           |
| Baffle height                   | 76.275mm                            |
| No of support place nods        | 8                                   |
| Diameter of nods                | 9.5mm                               |
| Tube-side design press          | 2.2atm                              |
| Tube-side design temp.          | 70 °C                               |
| Tube-side pressure drop         | 0.215kpa                            |
| Shell-side design press         | 1.1atm                              |
| Shell-side design temp.         | 90 °C                               |
| Shell-side design pressure Drop | 169.77 kpa                          |
| Tube material                   | Mild steel                          |
| Shell material                  | Stainless steel.                    |
|                                 |                                     |

#### 329 **3.3.3 Solution Cooler 2 Specifications**

Basic design equation (Renato, Giuseppe and Marco, 2006)

331  $\varphi = UA\Delta Tm$ 

332 Shell – Side Heat Transfer Coefficient

$$\frac{h_s d_e}{k_f} = Jh x Re x pr x 0.33 \left(\frac{\mu}{\mu w}\right)^{-0.14}$$

- hs = shell side heat transfer coefficient, de = equivalent diameter
- Jh = heat transfer correction factor, Re = Reynolds number, Pr = prandth number
- $\mu = viscosity of fluid at mean temp, \mu w = viscosity of fluid at wall temp.$
- 337  $(\mu/\mu w)^{0.14}$  = viscosity correction factor.
- 338

333

#### 339 **Overall Heat Coefficient**

340 Kw for mild steel = 45w/m<sup>0</sup>C (Sinnott and Towler)

$$\frac{1}{U_0} = \frac{1}{ho} + \frac{1}{hod} + \frac{do \ln \frac{ao}{dl}}{2kw} + \frac{do}{dl}x \frac{1}{h_0}x \frac{do}{dl}x \frac{1}{hld}$$

341

342 Shell – Side Pressure Drop

$$\Delta P_s = 8 jf x \left(\frac{D_s}{de}\right) x \frac{L}{IB} \left(\frac{\rho u s^2}{2}\right) \frac{\mu^{0.14}}{\frac{\mu}{W}}$$

- 343
- 344 Neglecting viscosity correction factor
- 345 From figure 12 (Coulson and Richardson)
- 346  $\int f = 5.5 \times 10^{-2}$
- 347 Table 15: Results Summary of Solution Cooler 2 Specifications

| Equipment name           | Solution cooler            |
|--------------------------|----------------------------|
| Туре                     | Horizontal shell & tubes   |
| Sub-type                 | Split-ring floating head   |
| Shell-type               | Split-flow                 |
| Surface area of exchange | 0.304 <b>m<sup>2</sup></b> |
| Tube-inside diameter     | 16mm                       |
| Tube-outside diameter    | 20mm                       |
| Heat load                | 178.7054KJ/min             |

| Tube length                | 4.88m                                    |
|----------------------------|------------------------------------------|
| Tube-sheet                 | 0.03m                                    |
| Shell inside diameter      | 87.55mm                                  |
| Tube bundle diameter       | 37.55mm                                  |
| Bundle clearances          | 50mm                                     |
| Number of tubes            | 1                                        |
| Number of tube pass        | 1                                        |
| Number of tubes per pass   | 1                                        |
| Baffle spacing             | 17.51mm                                  |
| Baffle cut                 | 25 % (segmented type )                   |
| Tube pitch                 | 25mm                                     |
| Tube arrangement pattern   | Triangular                               |
| Overall heat coefficient   | 362.9896 w/m <sup>2</sup> <sup>0</sup> C |
| Tube-side pressure drop    | 0.000013kpa                              |
| Shell-side pressure drop   | 243.17kpa                                |
| Tube-side design pressure  | 2.7atm                                   |
| Shell-side design pressure | 2.2atm                                   |
| Tube-side design temp.     | 100 °C                                   |
| Shell-side design temp.    | 212 °C                                   |
| Shell wall thickness       | 5mm                                      |
| Tube material              | Mild steel                               |
| Shell material             | Stainless steel                          |

### 348 3.3.4 Cooler 5 (Condenser 5) Specifications

- 349 **A = surface area of exchange.**
- $350 = \underline{\phi}$
- $U\Delta T_m$
- 352 **Tube Bundle Diameter** (**D**<sub>b</sub>)

$$D_b = d_o(\frac{N_t}{K_i}) \quad \frac{1}{ni}$$

354 From Table 15 (Coulson and Richardson), for triangular pitch.

355  $K_1 = 0.175, ni = 2.285$ 

356

- 357 **Tube Inside Coefficient.**
- 358 Cross sectional area of one tube

$$=\frac{\pi(du^2)}{4}$$

360 Shell – Side Heat Transfer Coefficient

$$h_{s} = \frac{Kf}{de} x \ln x \, Re \, x \, pr^{0.33} \, x \left(\frac{\mu}{\mu w}\right)^{-0.14}$$

361

359

362 where hs = shell – side heat coefficient, Kf = thermal conductivity of fluid 363 Jh = heat transfer coefficient, R = Reynolds number, Pr = prandth 364  $\left(\frac{\mu}{\mu w}\right)^{0.14}$  = viscosity correction factor. 365 Jh

## 367 Table 16: Results Summary of Cooler 5 (Condenser 5) Specifications

| Equipment name           | Cooler 5                  |
|--------------------------|---------------------------|
| Туре                     | Shell & tube H.E          |
| Sub-type                 | Split-ring floating head  |
| Head load                | 2.62889kJ/min             |
| Shell type               | Two shell pass            |
| Number of tubes          | 1                         |
| Number of tubes pass     | 4                         |
| Number of tubes per pass | 1                         |
| Tube bundle diameter     | 5.88mm                    |
| Surface area of cooler   | $0.00245m^2$              |
| Shell inside diameter    | 63.88mm                   |
| Baffle spacing           | 494mm                     |
| Baffle cut               | 25%                       |
| Baffle height            | 0.75  Ds = 47.91 mm       |
| Baffle type              | Segmented                 |
| Tube pitch               | 31.25mm                   |
| Tube pattern             | Triangular pattern        |
| No of rods               | 12                        |
| Diameter of rods         | 9.5mm                     |
| Shell-side design press  | 5.984atm                  |
| Tube-side design press   | 2.75atm                   |
| Shell-side design temp.  | 310 <sup>°</sup> C        |
| Tube-side design temp.   | 160 <sup>°</sup> C        |
| Shell material           | Stainless steel           |
| Overall heat coefficient | 3.5142w/m <sup>20</sup> C |

| Shell wall thickness     | 5mm          |
|--------------------------|--------------|
| Shell cover thickness    | 5mm          |
| Tube-side pressure drop  | 0.0000079kpa |
| Shell-side pressure drop | 791.388kpa.  |

#### 369 3.3.5 Knock-Out Drum 1 Specification

Vapour-liquid separator was designed to separate a vapour-liquid mixture. The vapour-liquid separator is also referred to as a flash drum, knock-out drum, knock-out pot, compressor suction drum or compressor inlet drum. The vapour travels gas outlet at a design velocity which minimizes the entrainment of any liquid droplets in the vapour as it exits the vessel (Mani and Peruzzini, 2006).

### Table 17: Results Summary of Knock Out Drum 1 Specification

| Knock-Out Drum I  |
|-------------------|
| Vertical vessel   |
| 0.002m            |
| 0.004m            |
| Knitted wire-mesh |
| 0.152m            |
| 0.3m              |
|                   |
| 0.1524m           |
|                   |
| 0.31m             |
|                   |
| Stainless steel   |
| 7mm               |
|                   |

| Head and closure type    | Ellipsoidal      |
|--------------------------|------------------|
| Head and closure type    | 7mm              |
| Mist eliminator material | Stainless steel. |

# 377 3.3.6 Knock-Out Drum 2 Specifications

# Table 18: Results Summary of Knock Out Drum 2 Specifications

| Equipment name                             | Knock-Out Drum 2         |
|--------------------------------------------|--------------------------|
| Туре                                       | Vertical cylinder vessel |
| Drum diameter                              | 0.002m                   |
| Drum length                                | 1.0m                     |
| Mist eliminator type                       | Knitted wire-mush        |
| Mist eliminator thickness                  | 0.152m                   |
| Liquid depth                               | 0.1374m                  |
| Clearance b/w liquid surface and centre of | 0.05m                    |
| nozzle                                     |                          |
| Clearance b/w the centre of nozzle and the | 0.1m                     |
| mist eliminator                            |                          |
| Clearance b/w the mist eliminator and drum | 0.31m                    |
| top                                        |                          |
| Drum wall thickness                        | 5mm                      |
| Head and closure type                      | Tom spherical            |
| Head and closure thickness                 | 5mm                      |
| Mist eliminate material                    | Stainless                |
| Drum material                              | Stainless steel          |

## 382 3.3.7 Solution Heat Exchanger Specifications

A heat exchanger was designed for efficient heat transfer from one medium to another. The media is separated by a solid wall, so that they never mix, or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries, natural gas processing, and sewage treatment (Perry et al, 1997).

388 Table 19: Results Summary of Solution Heat Exchanger Specifications

| Equipment name            | Solution Heat exchanger  |
|---------------------------|--------------------------|
| Туре                      | Horizontal S&T           |
| Sub-type                  | Split-ring floating head |
| Head load                 | - 54.9306 KJ/min         |
| Shell type                | Split flow               |
| Number of tubes           | 1                        |
| Number of tubes pass      | 1                        |
| Number of tubes per pass  | 1                        |
| Tube bundle diameter      | 37.5504mm                |
| Surface area of exchanger | 0.019m <sup>2</sup>      |
| Shell inside diameter     | 87.5504mm                |
| Baffle spacing            | 17.6mm                   |
| Baffle cut                | 25%                      |
| Baffle height             | 135mm                    |
| Baffle type               | Segmented                |
| Tube pitch                | 25mm                     |
| Tube pattern              | Triangular pattern       |
| No of rods                | 8                        |
| Bundle diameter           | 124mm                    |
| Shell inside diameter     | 180mm                    |
| Tube outside diameter     | 20mm                     |
| Tube inside diameter      | 16mm                     |
| Tube length               | 4.88mm                   |
| Tube-sheet thickness      | 0.03m                    |
| Bundle clearance          | 50mm                     |
| Diameter of rods          | 9.5mm                    |
| Shell-side design press   | 1.1atm                   |
| Tube-side design press    | 1.1atm                   |

| Shell-side design temp.  | 160 <sup>°</sup> C                     |
|--------------------------|----------------------------------------|
| Tube-side design temp.   | 360 <sup>°</sup> C                     |
| Shell material           | Stainless steel                        |
| Overall heat coefficient | $300 \text{w/m}^{20} \text{C}$         |
| Shell wall thickness     | 5mm                                    |
| Tube -side coefficient   | 261.13w/m <sup>2</sup> <sup>0</sup> C  |
| Shell-side coefficient   | 361.324w/m <sup>2</sup> <sup>0</sup> C |
| Shell cover thickness    | 5mm                                    |

# **3.3.8 Flash Drum Specifications**

# 391 Table 20: Results Summary of Flash Drum Specifications

| Equipment name                              | Flash drum        |
|---------------------------------------------|-------------------|
| Туре                                        | Vertical gas      |
| Drum diameter                               | Liquid separator  |
| Drum length                                 | 0.002m            |
| Mist dominator type                         | Knitted wore mesh |
| Mist dominator thickness                    | 0.152m            |
| Liquid depth                                | 0.30m             |
| Clearance between liquid surface and centre |                   |
| of nozzle                                   | 0.30m             |
| Clearance between centre wilet nozzle &     |                   |
| mist dominator                              | 0.61m             |
| Clearance between mist dominator and drum   |                   |
| top                                         | 0.31m             |
| Drum material of construction               | Stainless steel   |
| Head and closure type                       | Ellipsoidal       |

#### **394 3.3.9 Optimal Values of CO<sub>2</sub> and Validation of the Experimental Data**

| Conc of Solvent        | Contact     | Volume of     | Predicted           | Experimental        | Percentage |
|------------------------|-------------|---------------|---------------------|---------------------|------------|
| (Mol/dm <sup>3</sup> ) | Time (Secs) | Solvent       | Amount of           | Amount of           | Error (%)  |
|                        |             | ( <b>ml</b> ) | CO <sub>2</sub> (%) | CO <sub>2</sub> (%) |            |
| 6.15                   | 59.21       | 107.84        | 5.021               | 5.41                | 2          |

Table 21: Optimum Conditions for CO<sub>2</sub> Capture

396

The optimum conditions obtained are concentration of solvent 6.15 mol/dm<sup>3</sup>, contact time 59.21 seconds, volume of solvent 107.84 with 5.021 percent of  $CO_2$  absorbed as shown in Table 21. Table 21 also depicts the validation of the optimal results of the sequestration process by performing the experiment with predicted optimum conditions, from the table it can be observed that the percentage error between the actual and predicted was 2 percent, this showed that the model was adequate in predicting the response for the absorption of  $CO_2$ .

#### 403 **4. Conclusion:**

The design of a plant to recover  $CO_2$  from spent air from aerobic fermentation was successfully 404 405 carried out. Material and energy balances were carried out on each equipment and then over the 406 entire process. These balances were used in the chemical and mechanical engineering design of the following equipment: absorber, knock out drum, flash drum, gas cooler, reboiler and 407 408 stripping column. The data obtained in this design were used to fabricate an absorption column by the research for  $CO_2$  and CO capture. The empirical relationship between amount of  $CO_2$ , CO 409 captured and the independent variables were obtained with the aid of a statistical package. The 410 statistical package was useful in analyzing and optimizing the amount of CO<sub>2</sub> and CO captured. 411 412 The Analysis of Variance (ANOVA) result for the model terms were obtained and were applied for estimating the significance of the model. The experimental data were also analyzed to 413 ascertain the correlation between the experimental and predicted gases captured, normal 414 probability and residual plot as well as actual and predicted plots while the 3D response surface 415 plots were generated to estimate the effect of the combinations of the independent variables on 416 the amount of the captured gases. 417

#### 418 **References:**

Aneke L.E. (2009), "Principles of Chemical Engineering Process Design". De-Adroil.
Innovation Enugu.

421 Aroonwilas, A. & Veawab, A. (2007). Integration of CO<sub>2</sub> capture unit using single- and blended-422 amines into supercritical coal-fired power plants: Implications for emission and 423 energymanagement. *International Journal of Greenhouse Gas Control*, 1, 143-150.

- Baum, J. A. & Woehlck, H. J. (2003). Interaction of inhalational anaesthetics with CO<sub>2</sub>
  absorbents. *Best Prac. Res., Clin. Anaesthesiol., Vol. 17*, 63-76.
- 426 Coulson, J. M. and Richardson, J.F. (1968). Chemical Engineering, Vol. 2. Pergamon, N.Y.
- Demontigny, D. Tontiwachwuthikal, P. & Chakins, A. (2005). Comparing the absorption
  performance of packed columns and membrane contactors. *Ind. Eng. Chem. Res,* 44, 5726-5732.
- Kohl, A., and Nielsen, B. (1997): "Gas Purification", fifth edition, Gulf Publishing Company,Houston, Texas.
- Liao, C. H. & Li, M. H. (2002). Kinetics of absorption of carbon (IV) oxide into aqueous solutions of monoethanolamine + N-methyloliethanolamin. *Chem. Eng. Sci.*, *57*, 4569-4582.
- Liao, C. H. Liu, W. T. & Tan, C. S. (2003). Removal of CO<sub>2</sub> by absorption in a rotating packed bed. *Ind. Eng. Chem. Res.*, *42*, 2381-2386.
- Lackuer D. and Klaus S. (2002): "Carbonate Chemistry for Sequestering fossil carbon", Annual
  Review of Energy and the Environment 27 (1): 193-232.
- 437 Mani, F. & Peruzzini, M. (2006). CO<sub>2</sub> absorption by aqueous NH<sub>3</sub> solutions: speciation of 438 ammonium carbamate, bicarbonate and carbonate by a CNMR study. *Green Chem.*, *8*, 995-1000.
- 439 Nwokedi, I. C. and Igbokwe, P. K. (2018). "Absorption Kinetics and Mass Transfer Coefficient
- for carbon (IV) oxide sequestration by Ammonia solution", The Pharmaceutical and Chemical
  Journal, Volume 5, Issue 6, pp. 45-53, December 2018, <u>http://tpcj.org/download/vol-5-iss-6-</u>
  2018/TPCJ2018-05-06-45-53.pdf.
- Perry, R.H., et al., (1997): "Chemical Engineers" Handbook, 7<sup>th</sup> Edition, McGraw- Hill, News
  York. pp. 244.
- 445 Qing, F. et. al. (2011). Kinetics of CO<sub>2</sub> absorption in aqueous ammonia solution. *International*446 *Journal of Greenhouse Gas Control*, 2010, 4(5), 729-738.
- Renato, B, Giuseppe, S. and Marco, M. (2006): "Process Design and Energy Requirements for
  The Capture of Carbon (iv) oxide from Air", Chemical Engineering and Processing, Vol. 45, pp.
  1047-1058.
- Sadik, Kakac and Hongtan (2002): "Heat Exchanges: Selection, Rating and Thermal Design",
   (2<sup>nd</sup> ed.) CRC Press ISBN.

- 452 Saunders, E.A.D. (1988) "Heat Exchangers: Selection Design and Construction", Longman.
- 453 Watson, R.T., (2001): "Climate Change", Synthesis Report, *Cambridge University Press, UK*.
- 454 Wiche, I. A. & Kennedy, R. J. (2002). Energy and Fuels. Vol. 14, pp. 56-66.
- 455 Zeng, Q. et. al. (2011). Mass transfer coefficients for  $CO_2$  absorption into aqueous ammonia
- solution using a packed column. Ind. *Eng. Chem. Research*, *50*, 10168-10175.