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QSAR and docking study of isatin analogues
As cytotoxic agents

Abstract:

Computational chemistry is a unique method in the drug discovery process?? Explain
Why?. In this study 109 molecules containing the isatin backbone were subjected to
quantitative structure-activity relationship analysis to find the structure requirements
for ligand binding. The structures were sketched and optimized in Hyperchem. The
structural invariants used in this study were those obtained from whole molecular
structures: by both hyperchem and dragon software (16 types of descriptors). Four
chemometrics methods including MLR, FA-MLR, PCR and GA-PLS were employed
to make connections between structural parameters and anticancer effects. MLR
models revealed the effects of constitutional, functional, geometrical, WHIM and
GETAWAY descriptors having higher impact on anticancer activity of the
compounds. GA-PLS showed functional, constitutional and chemical descriptor
indices to be the most significant parameters on anticancer activity. Moreover, the
result of FA-MLR analysis revealed the effects of functional descriptors on the
anticancer activity. A comparison between the different statistical methods employed
and the results indicated that GA-PLS represented superior results and could explain
and predict 81% and 78% variances in the PICs data, respectively. Docking studies
of these compounds were also investigated and promising results were obtained

showing that some compounds were introduced as a good candidate for cancer agents.

Introduction

The isatin (1H-indole-2,3-dione) derivatives show a broad spectrum of biological
activities such as antibacterial, antifungal, antiviral and anticancer drug candidates in
many synthetic compounds [1-5]. Among these properties antineoplastic activities of
these moieties were of our interest to study the quantitative structure-activity
relationships of a series of 109 isatin derivatives reported in literature.

Synthesis and evaluation of the biological activity of these novel compounds are

usually time-consuming to make and is expensive.Hence the use of computational
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techniques for designing biologically active compounds has opened a new window to
drug discovery research. Computational methods can accelerate the procedure of
discovering new drugs by designing new compounds and predicting activity of newly
synthesised or even non-synthesized compounds. Quantitative structure activity
relationships (QSAR) studies, is one of the most important subjects in chemometrics
andplays an important role in predicting activity of novel compounds [6-10]. Linear
QSAR models are mathematical equations that present us with good information
about the mechanism of biological activity of compounds by constructing a
relationship between chemical structures and biological activities. The most important
step in building QSAR models is the appropriate representation of the structural and
physicochemical features of chemical structures [11-14]. These features named
molecular descriptors have high impact on the biological activity of the compounds
[15-18]. Molecular descriptors have been classified into different categories such as
physiochemical, constitutional, geometrical, topological, and quantum chemical
descriptors. Dragon and hyperchem are two well-known computational softwares
which provide us more than 4000 of these descriptors [19,20].

Different QSAR methods including multiple linear regression (MLR), partial least
squares combined with genetic algorithm for variable selection (GA-PLS), factor
analysis—-MLR (FA-MLR), principal component regression analysis (PCR) were used
to make connections between structural descriptors and the anti-cancer activity of
compounds [21-24]. An important approach of the researchers in modifying the isatin
moiety has been to establish a comprehensive structure—activity relationship (SAR),
for this class of anti-cancer agents. It has been shown that the introduction of electron-
withdrawing halogens to the benzene ring of the isatin molecule is associated with
increased biological activity [25].The in vitro cytotoxic activities of isatin bromo-
derivatives were determined against the human monocyte-like, histiocytic lymphoma
cell line (U937), showing that the introduction of electron withdrawing groups at
positions C5, C6, and C7 significantly increased the cytotoxic activity when
compared with isatin molecules with the substitution at the 5-position being the best
[26]. Introduction of an aromatic ring with one or three carbon atom linker at N;
enhances the activity too [27]. In 2006, an isatin 5-fluoro-derivative (Sunitinib) was
approved by FDA for the treatment of gastrointestinal tumours and advanced renal
cell carcinoma [28,29]. Isatin bromo-derivatives have been shown to exhibit

anticancer activity [30-32]. In this paper, it was of interest for us to investigate the
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QSAR of isatin derivatives that have been reported to exhibit anti-cancer activity
against MCF7 in recent reports. Our QSAR analysis establishes a mathematical
relationship between biological activities and computable parameters such as
topological, quantum, physicochemical, stereo chemical or electronic indices. The
QSAR study of halogenated isatin analogues was reported by Sabet et al [33] and
showed that topological, chemical, geometrical and functional group were effective
on the cytotoxic activity. QSAR analysis of novel N-alkyl substituted isatin
derivatives were identified by RajK.Prasad et al [34] by using different multiple
regression approach. Three-dimensional quantitative structure—activity relationship
(3D-QSAR) and docking methods of isatin derivatives with anticancer activity against
human monocyte-like histiocytic lymphoma human U937 cells was reported by
Elidrissi B [35].

The molecular docking study helps us to understand the various interactions between
the ligands and enzyme active sites in detail and also help to design novel potent
inhibitors. Molecular docking simulation techniques were also performed on one-
hundred and nine compounds to investigate the molecular binding models for these

compounds interacting with the key active site of protein.

2.Methods

2.1. Descriptor generation

The structural features of the studied compounds are listed in Table 1. The two-
dimensional structures of molecules were drawn by Hyperchem 8.0 software
(Hypercube Inc.) to calculate whole molecular structure-based descriptors. The final
geometries were obtained with semi-empirical AM1 calculations in Hyperchem
program. The molecular structures were optimized using the Polak-Ribiere algorithm
until the root mean square gradient was 0.01 kcal mol™ [19]. Some physicochemical
parameters including molecular volume (V), molecular surface area (SA),
hydrophobicity (Log P), hydration energy (HE) and molecular polarizability (MP)
were calculated using Hyperchem Software. In order to calculate some molecular
descriptors including topological, constitutional and functional group descriptors, the

optimized molecules were transferred into the Dragon package, developed by the
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Milano chemometrics and QSAR Group [20]. The calculated descriptors from whole

molecular structures are briefly described in Table 2.

2.2. Data screening & model building

The selected descriptors from each class and the experimental data were analyzed by
the stepwise regression SPSS (version 22.0) software. The calculated descriptors were
collected in a data matrix whose number of rows and columns were the number of
molecules and descriptors, respectively. Multiple linear regressions (MLR) and partial
least squares (PLS) were used to derive the QSAR equations and feature selection was
performed by the use of genetic algorithm (GA). MLR with factor analysis as the data
pre-processing step for variable selection (FA-MLR) and principal component
regression analysis (PCRA) methods were also used to derive the QSAR equations.
The resulted models were validated by leave-one out cross-validation procedure
(using MATLAB software) to check their predictability and robustness.

A key step in QSAR modeling is evaluating the model’s stability and prediction
ability. We used cross-validation and external test set for these molecules. Cross-
validation has different variants such as leave-one-out (LOO), leave-group-out (LGO)
and v-fold. It was shown previously that LOO can leads to chance and overfitted
models whereas LGO is more sensitive to chance variables [36]. Therefore, we used
LGO for model-validation utilizing correlation coefficient and root mean square error
of cross-validation (q2 and RMSECV, respectively) as scoring function. In addition,
an external test set composed of 6 molecules was also used. The molecules in this set
did not have contribution in the model step and thus their predicted values can give a
final prediction power of the models as measured by correlation coefficient, root
mean square errors of prediction, relative error of prediction (R%, RMSEp and REP,
respectively).

The PLS regression method used in this study was the NIPALS-based algorithm
which exist in the chemometrics toolbox of MATLAB software (version 12 Math
work Inc.). Leave-one-out cross-validation procedure was used to obtain the optimum

number of factors based on the Haaland and Thomas F-ratio criterion [37].

2.3. Docking procedures
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An in house batch script (DOCK-FACE) for automatic running of AutoDock 4.2 was
used to carry out the docking simulations [38] in a parallel mode [39]. To prepare the
receptor structure, the three dimensional crystal structure of Caspase-3 inhibitory
activity (PDB ID: 1GFW) was acquired from Protein Data Bank (PDB data base;
http://www.rcsb.org) [40] and water molecules and co-crystal ligands were removed
from the structure. The PDB were then checked for missing atom types with the
python script as implemented in MODELLER 9.17 [41]. The ligand structures were
made by Hyper Chem software package (Version 7, Hypercube Inc). For geometry
optimization, Molecular Mechanic (MM"), followed by semi empirical AM1 method
was performed. The prepared Ligands were given to 100 independent genetic
algorithm (GA) runs. 150 population size, a maximum number of 2,500,000 energy
evaluations and 27,000 maximum generations were used for Lamarckian GA method.
The grid points of 80, 80, and 80 in x-, y-, and z directions 38, 34 and 23 were used.
Number of points in x, y and z were used respectively. All visualization of protein
ligand interaction was evaluated using VMD software [42]. Cluster analysis was
performed on the docked results using a root mean square deviation (RMSD)

tolerance of 1.98 A.

3. Results and discussion

3.1. Data set

The biological data used in this study was the anti-cancer activity against MCF7, (in
terms of -log ICsp), of a set of 109 isatin derivatives [43-51]. The data set was
classified into calibration and prediction set by kenardston algorithm of the 20
prediction molecules from the spaces of the calculated descriptors. The structural
features and biological activity of these compounds are listed in Table 1. Calculated

descriptors for each molecule are summarized in Table 2.

[Table 1. near here], [Table 2. near here]
3.2. MLR analysis

In the first step, separate stepwise selection-based MLR analyses were performed

using different types of descriptors, and then, an MLR equation was obtained utilizing
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the pool of all calculated descriptors. The resulted QSAR models from different types
of descriptors for the compounds (89 molecules as calibration and 20 molecules as
prediction sets) are listed in Table 3.

[Table 3. near here]

The equation E1 of Table 3 shows among chemical descriptors, the negative effect of
surface area of the molecules on cytotoxicity which shows the positive effect of log p
of the molecules on the activity. This equation indicates the hydrophilic molecules
show better cytotoxic effect. The second equation of Table 3 demonstrated the effect
of constitutional descriptors on the anti-cancer activity of these compounds. It shows
that increasing the number of halogen atoms (nX, nF, nCl, nBr) of the compounds
results in an activity enhancement, such as the molecular series 1-18, 89-109. It also
shows that the halogen substitution is better on the 5 or 7 position of the isatin ring. If
the substitution was Br, it gave the better the activity, confirming the E1 of this table
because Br undergoes lipophilic substitution. It also explain the positive effect of nDB
(number of double bonds), nCIC (number of rings), and nR09 (number of 9-
membered rings) such as the indol ring on activity (such as molecule series 19-24 and
25-30 have good activity).

The effect of the topological group count parameter on anti-cancer activity of the
studied compounds has been described by equation E; of Table 3. It shows that
among the topological descriptors, the structural information content (SIC2) and
spanning tree number (STN) have the positive effects on cytotoxic activity of the
compounds.

The equation E4 of Table 3 was found by using Mol-Walk descriptors (E4), which
explains the positive effect of MWCO03 index (molecular walk count of order 03) and
negative effect of MWCI10 (molecular walk count of order 10) and PIPC09
(molecular multiple path count of order 09) of the studied compounds on the anti-
cancer activity. It can explain and predict more than 61% of variances in the
biological activity data. The equation Es-E;4 and E;¢ of Table 3 demonstrated the
effect of positive and negative effects of BCUT, Galvz topological Charge indices, 2D
autocorrelations, Charge, Burden eigenvalues, RDF, 3D MoRSE, WHIM,
GETAWAY and charge descriptors on the anti-cancer activity of these compounds.
The MLR equation of Table 3 obtained from the pool of functional group descriptors,
E;s, explained the positive effect of the n oxim (number of oxim substitution) , n

pyridine (number of pyridine substitution), n isothiocyanate and n thiocyanate

6
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(number of isothiocyanate and thiocyanate substitution) (such as molecules of 25-30,
78, and 79) on the anti-cancer activity. The nC=S (number of C=S substitution) ,
nArNO, (number of aromatic nitro groups), n oxazole (number of oxazole
substitution), nThiazol (number of thiazole substitution), nCOOH (number of COOH
group), nCOOCH ( number of ester group) (molecules series 33-34, 55-56, 74- 76 and
77-84) have negative effects on the anti-cancer activity. The negative sign of this
group proposed that a decrease in the number of these descriptors resulted in an
activity enhancement. This equation, has a high statistical quality (R*=0.77, Q* =
0.72).

The statistical parameters of prediction, listed in Table 4, indicate the suitability of the
proposed QSAR model based on MLR analysis of molecular descriptors. The
correlation coefficient of prediction is 0.74, which means that the resulted QSAR
model could predict 74% of variances in the anti-cancer activity data. It has root mean

square error of 0.21.

3.3. GA-PLS model

Multicolinearity is a real problem in MLR analysis. This problem in the descriptors is
omitted by PLS analysis. In fact, in PLS analysis, the descriptors data matrix is
decomposed to orthogonal matrices with an inner relationship between the dependent
and independent variables. This modeling method coincides with noisy data better
than MLR, because a minimal number of latent variables are used for modeling in
PLS. In GA-PLS analysis, a variable selection method is used to find the more
convenient set of descriptors because redundant variables degrade the performance of
PLS analysis, similar to other regression methods.

In the present study, GA was used as variable selection method. The data set (n =
109) was divided into two groups: calibration set (n = 89) and prediction set (n = 20).
Given 89 calibration samples; cross-validation procedure was used to find the
optimum number of latent variables for each PLS model. In this work, in each run of
GA-PLS method, a large number of acceptable models were created. GA produces a
population of acceptable models in each run. In this work, many different GA-PLS
runs were conducted using different initial set of populations (50-250) and therefore a
large number of acceptable models were created. The most convenient GA-PLS
model that resulted in the best fitness contained 8 descriptors including, three

constitutional descriptor (nR09, nC=S, nX) and one chemical (logp) parameter and

7
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four functional descriptors (n isothiocyanate, nCOOH, npyridine, nArNO,). The
majority of these descriptors are functional indices, all of them being those obtained
by different MLR-based QSAR models. The PLS estimate of the regression
coefficients are shown in Figure 1.

This model not only has a high cross-validation statistic, but also represents a high
ability for modeling external test samples. It could explain and predict about 78% of
variances in the anti-cancer activity of the studied molecules. There is a close
agreement between the experimental and predicted values of anti-cancer activity data.

To measure the significance of the 8 selected PLS descriptors in the protein tyrosine
kinase inhibitory activity it was important to investigate the relative importance of the
variable which appeared in the final model obtained by GA-PLS method, variable
important in projection (VIP) was employed [52]. VIP values reflect the importance
of terms in the PLS model. According to Erikson et al. X-variables (predictor
variables) could be classified according to their relevance in explaining y (predicted
variable), so that VIP > 1.0 and VIP < 0.8 signifying highly or less influential,
respectively, and 0.8 < VIP< 1.0 meaning moderately influential. The VIP analysis of
PLS equation is shown in Figure 2. As it is observed, logp, n"COOH and nR09 indices
represent the most significant contribution in the resulted QSAR model. In addition,
functional group parameter such as nC=S, n isothiocyanate and nArNO, have been

found to be moderately influential parameters.

[Figure 1. Near here], [Figure 2. Near here]

3.4. FA-MLR and PCRA

FA-MLR was performed on the dataset. Factor analysis (FA) was used to reduce the
number of variables and to detect structure in the relationships between them. This
data-processing step is applied to identify the important predictor variables and to
avoid collinearities among them [53]. Principle component regression analysis,
PCRA, was tried for the dataset along with FA-MLR. With PCRA collinearities
among X variables are not a disturbing factor and the number of variables included in
the analysis may exceed the number of observations [54]. In this method, factor
scores, as obtained from FA, are used as the predictor variables [53]. In PCRA, all
descriptors are assumed to be important while the aim of factor analysis is to identify

relevant descriptors.
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Table 5 shows the four factor loadings of the variables (after VARIMAX rotation) for
the compounds tested for cytotoxic activity. As it is observed, about 82% of variances
in the original data matrix could be explained by the selected seven factors.

Based on the procedure explained in the experimental section, the following three-

parametric equation was derived (Table 6).

Y= -4.456(+1.004) -0.383(£0.077) nArNO,+2.234(+0.432) nR09+
5.417(+1.643) n COOH
R?=0.657 SSE=0.32 F=24.74 Q°=0.62 RMScv=0.15

This equation could explain about 65.7% of the variance and predict 62% of the
variance in plCsy data. It has a root mean square error of 0.18. This equation describes
the effect of functional descriptors (nArNO;, nR09 and n COOH) on cytotoxic
activity of the studied molecules.

When factor scores were used as the predictor parameters in a multiple regression
equation using forward selection method (PCRA), the following equation was

obtained (Table 7):

Y= 4.742(+0.043) +.654(+0.043) F1 +0.756 (+0.043) F6 - 0.456(+0.043) F3
+.321(20.043) F2
R?*=0.73 S.E.=0.23 F=15.54 Q°=0.70 RMScv=0.18

This equation could explain and predict 73% and 70% of the variances in pICs, data,
respectively. The root mean square error of PCRA analysis was 0.18. Since factor
scores are used instead of selected descriptors, and any factor-score contains
information from different descriptors, loss of information is thus avoided and the
quality of PCRA equation is better than those derived from FA-MLR. Whilst the data
of this analysis show acceptable prediction, we see that the predicted values of some
molecules are near to each other.

[Table 5 near here], [Table 6 near here], [Table 7 near here]

As it is observed from Table 5, in the case of each factor, the loading values for some
descriptors are much higher than those of the others. These high values for each factor
indicate that this factor contains more information about which descriptors. It should

be noted that all factors have information from all descriptors but the contribution of
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descriptor in different factors are not equal. For example, factors 1 and 2 have higher
loadings for the chemical, constitutional, functional, atom-center, BCUT
information, geometrical, Walk and path counts and 2D autocorrelation indices
whereas information about the Connectivity indices, 3D WHIM, MoRSE descriptors
and Functional descriptors are highly incorporated in factor 3 and 4. Factor score 5, 6

and 7 signify the importance of GETAWAY 4 2D autocorrelations, Functional and

Atom-center descriptors.

3.5. Robustness and applicability domain of the models

Leverage is one of the standard methods for this purpose. Warning leverage (h*) is
another criterion for interpretation of the results. The warning leverage is, generally,
fixed at 3k/n, where n is the number of training compounds and Kk is the number of
model parameters. A leverage greater than warning leverage h* means that the
predicted response is the result of substantial extrapolation of the model and therefore
may not be reliable [55]. The calculated leverage values of the test set samples for
different models and the warning leverage, as the threshold value for accepted
prediction, are listed in Table 8. As seen, the leverages of all test samples are lower
than h* for all models. This means that all predicted values are acceptable.

[Table.8 near here]

3.6. Molecular Docking Studies

The docking study was performed using the AutoDock 4.2. All the one-hundred and
nine isatin derivatives were docked into the active site of the enzymes Caspase-3
inhibitory (PDBID:1GFW) (How did you choose this enzyme?). All the docking
protocols were done on validated structures, with RMSD values below 2 A. The
conformation with the lowest ones was considered as the best docking result. Docking
binding energies of these active compounds were summarized in Table 1. Our results
indicated that 23 compounds, number 38-49 and 66-76 showed better docking scores
than corresponding co-crystal ligands. These compounds could be considered as
possible hits as cancer agents. Compounds having two indolin rings with electron

withdrawing groups at C-5 and C-7 position showed good docking scores. In general,
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increase in the number of the ring especially indolin ring and substitutions in C-5 and
C-7 such as halogen and ester on indolin moieties can cause better interaction with the
receptor. The interaction modes of 39,46 and 68-69 those with the best docking scores
are shown in Figure 3. Binding interaction of 4 compounds are presented in Table 9.
The NH and oxygen atom which exist in carbonyl group of indolin of ligand 39 had
H-bonding with Gly 122 and His 121 at receptor site, also NH atom of pyrrole ring
had H-bonding with Cys 163 and indolin ring showed Arene-Arene interaction with
Phe 256 at distance 3.65A°. At 46 compound, exist H-bond between carbonyl group
of indolin and Arg207, also NH group of chain formed H-bond with Phe 250 at
distance 2.90 A°. At 68 compound, NH and carbonyl group of indolin and NH group
of benzimidazole had H-bonding with Glu 248, Phe250, Ser 249 amino acid in order
side, the chlorine atom in position 5 of indolin showed hydrophobic interaction with
Gln 217 at distance 3.26 A’ and also benzene thiol ring formed Arene-Arene
interaction with Trp 206 at distance 3.76A°. at 69 compound exist five H-bond
between NH, carbonyl group of indolin and NH group of chain with Trp 214, Asn
208, Ser 209, Arg 207 and Phe 250 respectively.

[Table 9near here], [Figure 3 near here],

4.Conclusions

Quantitative relationships between molecular structure and anti-cancer activity of
isatin derivatives were discovered by four chemometrics methods: MLR, GA-PLS,
PCR and FA-MLR. MLR analysis show positive effect of the n oxim, n pyridine, n
isothiocyanate, n thiocyanate on the anti-cancer activity and it also indicate the nC=S,
nArNO;, n oxazole, nThiazol, nCOOH, nCOOCH have negative effects on activity.
GA-PLS analysis indicated that three constitutional descriptor (nR09, nC=s, nX) and
one chemical (log p) indices and four functional descriptors (n isothiocyanate,
nCOOH, npyridine, nArNO, parameters were the most significant parameters on
cytotoxicity activity of studied compound. The FA-MLR describes the effect of
functional descriptors (nArNO,, nR09 and n COOH activity of the studied molecules.
The quality of PCRA equation is better than those derived from FA-MLR. Factors 1
and 2 have higher loadings for the chemical, constitutional, functional, atom-center,
BCUT information, geometrical, walk and path counts and 2D autocorrelation indices
whereas information about the connectivity indices, 3D WHIM, MoRSE descriptors
and functional descriptors are highly incorporated in factor 3 and 4 Factor score 5, 6

and 7 signify the importance of GETAWAY s 2D autocorrelations, functional and
11
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atom-center descriptors. A comparison between the different statistical methods

employed revealed that GA-PLS represented superior results and it could explain and

predict 81% and 78% of variances in the pICs, data, respectively. As docking studies

revealed, 23 compounds, number 38-49 and 66-76 are introduced as good candidates

for cancer agents and the docking results show that increase in number of the ring

especially indolin ring and substitutions such as halogen and ester at C-5 and C-7 on

indolin moieties can cause better interaction with the receptor.
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716

Table 2. Brief description of some descriptors used in this study 717

718

Descriptor type

Molecular Description

Chemical

LogP (Octanol-water partition coefficient), Hydration Energy (HE),
Polarizability (Pol), Molar refractivity (MR), Molecular volume (V), Molecular
surface area (SA).

Constitutional

mean atomic van der Waals volume (MV), no. of atoms, no. of non-H atoms,
no. of bonds, no. of heteroatoms, no. of multiple bonds (nBM), no. of
aromatic bonds, no. of functional groups (hydroxyl, amine, aldehyde,
carbonyl, nitro, nitroso, etc.), no. of rings, no. of circuits, no of H-bond
donors, no of H-bond acceptors, no. of Nitrogen atoms (NN), chemical
composition, sum of Kier-Hall electrotopological states (Ss), mean atomic
polarizability (Mp), number of rotable bonds (RBN), mean atomic Sanderson
electronegativity (Me), number of Chlorine atoms (NCI), number of 9-

membered rings (NR09), etc.

Topological

Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av,
X2Av, X3Av, X4Av), information content index (IC), Sum of topological
distances between F..F (T(F..F)), Ratio of multiple path count to path counts
(PCR), Mean information content vertex degree magnitude (IVDM),
Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal hyper-
detour index (Rww), Eigenvalue coefficient sum from adjacency matrix
(VEA1), radial centric information index, 2D petijean shape index (PJI2),
mean information index on atomic composition(AAC), Kier symmetry
index(SOK), mean information content on the distance degree equality
(IDDE), structural information content (neighborhood symmetry of 3-order)
(SIC3), Randic-type eigenvector-based index from adjacency matrix (VRA1),
sum of topological distances between N..N (T(N..N)), sum of topological

distances between 0..0(T(0..0)),etc.

Geometrical

3D-Balaban index (J3D), span R (SPAN), length-to-breadth ratio by WHIM
(L/BW), sum of geometrical distances between N..N (G(N..N)), sum of
geometrical distances between N..O (G(N..0)), sum of geometrical distances

between 0..0 (G(0..0)), ect.

Walk-Mol

molecular walk count of order 08 (MWCO08), self-returning walk count of
order 05 (SRWO05), total walk count (TWC), etc.

Burden matrix

highest eigenvalue n. 1 of Burden matrix / weighted by atomic masses
(BEHM1), highest eigenvalue n. 7 of Burden matrix / weighted by atomic
masses (BEHM7), lowest eigenvalue n. 1 of Burden matrix / weighted by
atomic masses (BELM1), highest eigenvalue n. 1 of Burden matrix / weighted
by atomic van der Waals volumes (BELV1), highest eigenvalue n. 2 of Burden

matrix / weighted by atomic Sanderson electronegativities (BEHE2), etc.

Galvez

topological charge index of order 1 (GGI1), topological charge index of order
6 (GGI6),topological charge index of order 7 (GGI7), global topological charge
index (JGT), etc.

2D
autocorrelation

Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by
atomic Sanderson electronegativities (ATS7E), Moran autocorrelation -lag 4 /
weighted by atomic Sanderson electronegativities (MATS4E), Broto-Moreau
autocorrelation of a topological structure - lag 3 / weighted by atomic
Sanderson electronegativities (ATS3E), Broto-Moreau autocorrelation of a
topological structure - lag 3 / weighted by atomic van der Waals volumes

33




(ATS3V), etc.

Charge

maximum positive charge (QPOS), partial charge weighted topological
electronic charge (PCWTE), etc.

Aromaticity

Harmonic Oscillator Model of Aromaticity index,RCl;Jug RC index HOMA
aromaticity indices,HOMT;HOMA total (trial), etc.

Randic

DPO;molecular profile, SPO;shape profile; SHP;average shape profile index ,
etc.

RDF

Radial Distribution Function - 7.0 / unweighted(RDF070U),Radial Distribution
Function - 13.5 / unweighted(RDF135U),Radial Distribution Function - 1.0 /
weighted by atomic masses(RDF010M),Radial Distribution Function - 3.0 /
weighted by atomic masses(RDF030M),Radial Distribution Function - 4.5 /
weighted by atomic masses(RDF045M),Radial Distribution Function - 12.5 /
weighted by atomic masses(RFD125M),Radial Distribution Function - 2.0 /
weighted by atomic van der Waals volumes(RDF020V),Radial Distribution
Function - 8.5 / weighted by atomic van der Waals volumes(RDF085V),Radial
Distribution Function - 1.0 / weighted by atomic Sanderson

electronegativities(RDFO10E), etc.

3D-MoRSE

3D-MoRSE - signal 01 / unweighted (MOR01U)(01U,02U,...,32U), 3D-MoRSE -
signal 01 / weighted by atomic van der Waals volumes (MORO1V)(
01V,02V,...,,32V), ect.

WHIM

1st component symmetry directional WHIM index / weighted by atomic
polarizabilities (G1P), 2st component symmetry directional WHIM index /
weighted by atomic electrotopological states (G2S), D total accessibility

index / weighted by atomic van der Waals volumes (DV), etc.

GETAWAY

H autocorrelation of lag 1 / lag2/ lag3 weighted by atomic Sanderson
electronegativities (H1E,H2E,H3E), total information content on the leverage
equality (ITH), R maximal autocorrelation of lag 3 / lagd unweighted
(R3U+,R4U+), R maximal autocorrelation of lag 6 / weighted by atomic
masses (R6M+), R maximal autocorrelation of lag 5 / weighted by atomic van
der Waals volumes (R5V+), R maximal autocorrelation of lag 1 / lag 4
weighted by atomic Sanderson electronegativities (R1E+), R maximal

autocorrelation of lag 3 / weighted by atomic polarizabilities (R3P+), etc.

Functional

number of total secondary C(sp3) (NCS), number of ring tertiary C(sp3)
(NCRHR), number of secondary C(sp2) (n=CHR), number of tertiary amines
(aliphatic) (NNR2), number of N hydrazines (aromatic) (nN-NPH), number of
nitriles (aliphatic) (NCN), number of phenols (NOHPH), number of ethers

(aromatic) (NRORPH), number of solfures (NRSR), etc.

Atom-Centred

CHR3 (C-003), CR4 (C-004), X--CR..X (C-034), Ar-C(=X)-R (C-039), R-C(=X)-X / R-
CHX / X-=C=X (C-040), X--CH..X (C-042), H attached to C1(sp3) / CO(sp2) (H-
047), RCO-N< / >N-X=X (N-072),R2S / RS-SR (S-107), etc.

connectivity XO(connectivity index chi-0), connectivity index chi-1(x1), average
indices connectivity index chi-0(XOA)
information Uindex(Balaban U index), ICO(information content index), TICO(total
indices information content index)
edge adjacency EEig01x(Eigenvalue 01),EEig01r(Eigenvalue 01 from edge)
indices

eigenvalue-based Eiglv(Leading eigenvalue from van der Waals weighted distance
indices Eigenvalue sum from mass weighted distance matrix),SEigm
matrixeigenvalue-based indices

719

720
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Table 3. The results of MLR analysis with different types of desctitors.

722
1 Chemical logp SA | 0.489 16.28 | 0.40 0.37
2 constitutional | nF, nDB, nCl, - | 0.611 17.78 | 0.58 0.21
nRO9, nX,
nCIC,nBr
3 Topological -- SIC2, STN | 0.613 23.18 | 0.58 0.23
descriptors
4 | Molecular walk MWC03 MWC10, | 0.618 | 13.276 | 0.59 | 0.321
counts PIPCO9
5 BCUT descriptors BELmM3 BELv8 | 0.416 | 15.655 | 0.39 @ 0.226
6 | Galvz topol. Charge GGI7 JGI3 | 0.473 | 15.765| 0.43 | 0.480
in dices
7 | 2D autocorrelations GATS1IM ATS6e, | 0.567 | 17.564 | 0.52 | 0.337
MATS3E
8 | Charge descriptors Qpos SPP | 0.347 | 14.674 | 0.29 | 0.308
9 | Burden eigenvalues BEHM1 | - 0.546 | 21.567 | 0.51 | 0.112
10 Geometrical H3D, DISPV, | 0.578 | 13.478 | 0.52 | 0.214
descriptors G(cl..cl) MAXDP
11 RDF descriptors RDF085m, RDF100e | 0.567 | 18.543 | 0.53 | 0.336
RDF110u
12 | 3D MoRSE MOR30M, Mor06v | 0.543 | 23.432 | 0.52 | 0.454
descriptors Mor31u
13 WHIM descriptors Elm, P1P G2M | 0.654 | 32.678 | 0.61 | 0.241
14 GETAWAY R3v+,R1p+ HATS5e | 0.673 | 32.451 | 0.63 | 0.242
descriptors JHATS6N
15 | Fuctional group noxim, nC=S, 0.77 | 30.211 | 0.72 | 0.340
counts n pyridine, nArNO,,
n noxazole,
isothiocyanate, nThiazol,
nthiocyanate nCOOH,
nCOOCH3
16 | Charge descriptors QMEAN, QPOS -- 0.55| 34.231 | 0.51 | 0.321
723
724

35




737

Table 4.

725

Statistical parameters for testing prediction ability of the MLR, GA-FPIES,
PCR, and FA-MLR midels

MLR 0.71 0.67 0.23 0.74 0.21
GA-PLS 0.81 0.78 0.31 0.85 0.17
PCR 0.73 0.70 0.15 0.75 0.20
FA-MLR 0.657 0.62 0.31 0.74 0.32

36

728

729

R?: Regression Coefficient for Calibfafi0On set
R% 0ocy: Regression Coefficient for Leave One Out Cross V@Bdation
RMSE,,: Root Mean Square Error of cross vdBdation
R?p: Regression Coefficient for preditBidn set
RMSEp: Root Mean Square Error of preditfidn set

735
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738  Table 5. Numerical values of factor loading numbers 1-4 for descriptors after
VARIMAX r@gion
740
1 2 3 4 5 6 7
SIC2 -0.617 0.109 0.094 -0.364 -0.199 0.012 0.097
nC=S 0.948 -0.406 0.103 -0.032 -0.036 -0.092 0.155
logp 0.697 0.316 -0.673 0.084 0.050 -0.312 0.397
nF 0.164 0.555 -0.146 0.170 0.088 -0.047 0.029
nDB -0.123 0.047 0.286 0.109 0.035 -0.039 -0.036
G(Cl..Cl) 0.883 -0.031 0.853 0.009 0.109 0.053 -0.152
nCl 0.762 0.454 0.041 -0.081 0.099 0.017 0.106
nArNO2 0.609 0.067 0.159 0.039 -0.181 -0.106 0.856
nR09 0.807 0.134 -0.105 -0.159 -0.055 -0.157 0.017
nX 0.858 0.080 0.261 0.075 -0.106 -0.017 0.195
SA -0.779 0.229 0.232 -0.003 0.009 0.209 -0.001
Qpos 0.334 0.409 0.272 -0.017 -0.081 -0.028 0.155
nCIC -0.292 -0.073 -0.251 -0.163 0.039 0.114 0.397
STN 0.163 0.022 -0.195 -0.070 -0.159 0.077 0.029
MWCO03 -0.858 -0.188 0.100 0.827 0.075 0.262 -0.036
MWC10 -0.065 -0.130 -0.126 0.791 -0.003 0.277 -0.152
PIPCO9 0.518 0.107 0.853 -0.102 -0.017 -0.028 0.106
G(Cl..Cl) -0.123 0.134 0.041 -0.061 -0.163 0.114 0.856
BELm3 0.883 0.080 0.159 -0.651 -0.070 0.077 0.017
BELv8 0.762 0.229 -0.105 -0.007 0.827 0.262 0.195
GGI7 0.609 0.409 0.261 0.520 0.791 0.277 -0.001
JGI3 0.807 -0.073 0.232 0.149 -0.102 -0.023 0.016
GATS1IM 0.858 0.022 0.272 -0.052 -0.061 -0.066 -0.028
ATS6e -0.779 -0.188 -0.251 -0.175 0.046 -0.072 -0.076
MATS3E 0.334 -0.130 -0.195 -0.002 -0.033 0.072 0.084
JGI5 -0.292 0.107 0.100 0.261 0.008 0.026 -0.004
SPP 0.163 -0.017 -0.126 -0.651 -0.087 0.241 -0.023
SA -0.858 0.057 0.014 -0.007 0.078 -0.089 -0.010
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n pyridine -0.065 0.653 0.177 0.520 -0.056 0.039 0.122
nROR 0.518 0.734 0.161 0.149 0.046 0.138 0.005
Noxim -0.781 0.258 -0.085 -0.141 -0.033 0.156 0.108
isothiocyanate -0.927 0.009 -0.183 0.053 0.008 0.007 0.066
nArNO2 0.127 -0.038 0.086 -0.921 -0.087 0.084 -0.001
nAzole -0.865 0.124 -0.181 0.226 0.078 -0.024 0.258
nThiazol -0.629 -0.149 -0.312 -0.257 -0.056 -0.441 -0.043
nCOOH 0.044 0.066 -0.108 -0.359 0.039 0.770 0.111
nCOOCH3 0.022 0.447 -0.069 0.464 -0.365 0.199 0.008
nthiocyanate 0.677 0.528 0.186 0.164 -0.030 0.347 0.036
N piperidine 0.110 0.760 -0.081 0.458 -0.021 0.178 0.128
R3v+ 0.891 0.075 -0.279 -0.122 -0.048 0.195 0.031
HATS5e -0.629 0.266 -0.349 0.358 0.027 -0.163 0.085
HATS6n 0.275 0.645 0.125 -0.071 0.099 0.279 -0.340
% variances 37.86 15.85 7.91 7.65 4.45 4.28 3.15

741

742

743

744

Table 6. The results of FA-MLR analysis with different types ofdesddptors

Model Unstandardized Standardized t Sig. R? F Q® SE
Coefficients Coefficients
B Std.Error Beta
(Constant) - 1.004 - .001 0.657 24.74 0.62 .32
4.456 3.354
nArNO2 - 0.077 0.367 5.511 .000
0.383
nR09 2.234 0.432 0.305 3.372 .001
nCOOH 5.417 1.643 0.178 2.080 .000
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Table 7. The results of PCR afidsis
750

Unstandardized Standardized
Coefficients Coefficients

(Constant)  4.742 0.043 105.268 0.000 0.73 1554 0.70 0.23
F1  0.654 0.043 0.518 6.602  0.000
A
F6 0.765 0.043 0.241 3.078 0.003
F3 -0.456 0.043 -0.239 -3.050 0.003 5 %
F2 0321 0.043 0.157 1.998  0.049 y
~ 751

752
753
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754  Tabel 8. Leverage (h) of the external test set molecules for different models. The last

755  row (h*) is the warning leverage.

756

Molecule. no MLR GA-PLS PCR FA-MLR

6| 0.158855 0.101806 0.041009 0.060281

8 | 0.045048 0.13409 0.022111 0.063121

10 | 0.109807 0.227308 0.018691 0.025659

16 | 0.102708 0.198805 0.021734 0.045611

17 | 0.105906 0.127991 0.022526 0.016686

20| 0.117418 0.084609 0.026426 0.014426

23 | 0.058532 0.058078 0.03644 0.028202

27 | 0.087443 0.084802 0.101804 0.034729

30 | 0.087529 0.067963 0.092915 0.035335

59 0.04769 0.157524 0.03296 0.021066

60 | 0.081846 0.093302 0.016547 0.037432

70 | 0.077447 0.058078 0.026426 0.068055

73| 0.109807 0.07017 0.022111 0.063121

75| 0.102708 0.084802 0.06149 0.056011

90 | 0.105906 0.127991 0.106844 0.036003

96 | 0.081846 0.084609 0.10121 0.040156

102 | 0.071099 0.08314 0.102167 0.056011

104 | 0.054337 0.077263 0.06149 0.036003

105 | 0.081619 0.134119 0.023009 0.068055

108 | 0.097168 0.144921 0.023009 0.022631

h* 0.33707 0.2696 0.13483 0.10112
757
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775  Table9. binding interaction of compounds 39,46 and 68-69 in active site of enzyme
776

Compounds | Hydrogen bonds Aromatic bonds Hydrophobic interaction
Amino Distance | Amino Distance Amino acid | Distance
acid acid
Cysl63 3.62 Phe 256 3.65
His121 3.05
Gly122 2.85
Phe 250 2.90
Arg207 2.93
Phe250 2.66 Trp206 3.76 GIn217 3.26
Ser 249 3.03
Glu 248 3.01
Trp214 3.16
Asn208 3.08
Ser209 3.06
Arg207 2.80
Phe250 3.79

777
778

Figure 1. PLS regression coefficients for the variables used in GA-PLS model779
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Figure 2. Plot of variables important in projection (VIP) for the descriptors uséi7
in GA-PLS modeT88
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828

Figure 3. The docked configuration of 39 (A), 46(B), 68(C) and 69 (D) in the binding site &2AHFW
824

827
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