1
 Original Research Article

 2
 2

 3
 INTERACTIONS OF EXTRACTS OF SELECTED MACROFUNGI AND

 4
 MALARIA PARASITE, Plasmodium berghei berghei IN BALB/C STRAIN

 5
 ALBINO MICE

 6
 7

8 10 11 **ABSTRACT**

12 Malaria is a global menace that claimed many lives. The potential of mushroom at appropriate dosage, concentrations and suitable condition especially as 13 antiplasmodial agents against malaria is important. Therefore, this study 14 investigated the interactive effects of some fungi extracts (Pleurotus tuber-regium, 15 16 Pleurotus pulmonarius, Fomes lignosus, Lentinus subnudus, Termitomyces robustus) and their combinations with malaria parasite, Plasmodium berghei berghei 17 in BALB/c strain albino mice. Intraperitoneal injection of experimental animals with 18 0.2 mL of 5x10⁶ parasitized blood was done before or after oral administration of the 19 extracts of 0.1 mL fungi extracts at five concentrations. There were 3 replicates. The 20 percentage parasitemia, packed cell volume (PCV), the weight loss of the albino 21 mice were monitored. The extract; and concentration levels recorded highly 22 significant (p< 0.01) effects on the parasitemic level (137.96; 329.26), PCV 23 24 (4539.48; 2357.93) and weights (53.46; 510.56) of experimental animals in prophylactic and therapeutic experiments. Also, highly significant interactions (of 25 521.30) was obtained from extracts x concentrations. Lentinus subnudus and 26 Fomes lignosus as well as P. tuber-regium had the best prophylactic and 27 therapeutic potentials of 30%; 36% and 36% respectively. Lentinus subnudus could 28 be considered a good prophylaxis in prevention of malaria as it exceeds therapeutic 29 effect. Concentrations 0.4 mg/mL and 0.04 mg/mL were found to be the most 30 effectives; producing similar effect as chloroquine (20mg/kg body weight) used as 31 32 control. Therefore, the optimum activity of the fungi extracts was interactive against the malaria parasite. Plasmodium berghei berghei in the albino mice. 33

- 34 Keywords: Fungi extracts, *Plasmodium species*, Antiplasmodial potentials, Albino mice,
- 35

Interactive effects.

36 37

3839 1. INTRODUCTION

40

Mushrooms are higher fungi growing on decaying wastes [1]. They are highly rich in 41 nutrients and medicinal compounds, such as lentinan, glycans etc. [2]. These in 42 43 addition to other bioactive compounds enhanced human's health [3]. According to World Health Organization [4], malaria outbreak is a global problem associated with 44 resistant Plasmodium strains. There is the need to search for drugs especially of 45 natural origin that are effective against strains of *Plasmodium* responsible for the 46 spread of malaria parasite. Therefore, this work aimed at studying the interactions of 47 fungi extracts, and their concentrations that enhance therapeutic potentials of 48

49 selected higher fungi against malaria parasite, *Plasmodium berghei berghei* in 50 albino mice.

51

52 2. MATERIAL AND METHODS

53 Sources of fungi extracts, experimental animals and malaria parasite

Fungi samples (Pleurotus tuber-regium, P. pulmonarius, Termitomyces robustus, 54 Fomes lignosus and Lentinus subnudus) were collected from different locations. 55 Extraction of the five fungi were done separately with ethanol using soxhlet 56 apparatus [5]. The extracts (40 mg/mL) were serially diluted to 4, 0.4, 0.004 and 57 58 0.0004 mg/mL before administering orally to the mice. The malaria parasite, Plasmodium berghei berghei; and BALB/C strain albino mice (Mus musculus) of 4-5 59 weeks old of an average weight of 22 grammes were used. Passaging was carried 60 out as the albino mice were intraperitoneally injected with 0.2 mL of 5 x 10^6 61 Plasmodium berghei berghei infected blood sample. They were monitored for about 62 12 days for parasitemia. Also, the packed cell volume (PCV) and weights of animals 63 64 were determined.

65 Statistical Analysis

Data collected were analysed using SAS version 2.0 to compute Analysis of
Variance (ANOVA) while Means were separated by Duncan's Multiple Range Tests
(DMRT) at p < 0.05.

69 70

71 3. RESULTS AND DISCUSSION

The prophylactic effects of extract types, replicates, concentration and their 72 73 interactions on parasitemia in albino mice for the days of infection (Table 1). The fungi species produced a highly significant (p< 0.01) prophylactic and therapeutic 74 75 effects on the parasitemia, PCV, and weights of BALB/c albino mice. Extract and concentration produced high significant (p< 0.01) prophylactic effects on 76 77 parasitemia except on the first and twelfth days of infection. The third order of interaction; concentration and replicates was significant only on the second day. The 78 fungi extract types, concentration and their first order of interaction (extract x 79 concentration) had prophylactic effects on the packed cell volume of albino mice on 80 the first and third days of infection, while only Concentration produced significant 81 82 effect on the twelfth day after infection (Table 2).

83 The result shown in Table 3 reveals that the extracts produced higher prophylactic 84 effect on the weight of the experimental animals. Due to the effect of the extracts, weight loss in the animals was minimal on the first and second days of infection. 85 The results in Tables 4 and 5 show the effects of the extracts, concentrations, 86 87 interactions of the extracts and concentrations were highly significant 88 (therapeutically) on the parasitemia and PCV in the animals throughout the period of 89 the experiment. The effect of the concentrations, extracts and concentrations was highly significant (P<0.01) on the seventh day of parasitic infection, while the 90 interactive effect of the extracts and replicates was significant (Table 6). The 91 92 interactions of the parameters on the parasitemia, PCV, weight showed highly 93 significant (P<0.01) therapeutic effect for Extract x Concentration. Similar results were obtained in the therapeutic experiments. This reveals the efficacy of the fungi 94 extracts for both prophylactic and therapeutic experiments. 95

96 The findings from this study show that higher fungi especially mushroom possess

97 antiplasmodial potentials. The fungi extracts reduced the parasitemic infection in the

98 mice in accordance with previous report of Katsaval et al.[6]. The evaluation of invivo single and interactive effects of the fungi extracts at different concentration 99 levels against the malaria parasite, Plasmodium berghei berghei was observed for a 100 101 period of time was established as previously confirmed by Jonathan et al. [7]. The single interactive effects of the extract types, concentrations, as well as the 102 combination of extract and concentrations increased prophylactic effect on the 103 104 parasitemia with the exception of the day of infection of the plasmodium on the 105 albino mice. This is in accordance with the report of White et al. [8].

106 The prophylactic and therapeutic effects of the fungi extracts was enhanced except in the replicate and in the co-interaction of the Extracts X Replicate at all levels of 107 interaction in parasitemia, PCV and weights of the experimental animals. This was 108 109 in agreement with the findings on inhibitory effects of some botanicals against 110 Fusarium species [9; 10; 11]. The interactions of the extract by concentration increased the preventive and curative potentials of the fungi. This could be 111 attributed to the pharmacological compounds and bioactive components of the fungi 112 113 extracts. They evidenced the biological and medicinal qualities of the higher fungi. These are naturally-occurring chemical compounds play the roles of protecting 114 human health [12, 13, 14, 15, 16]. 115

The parasitemia infections in the mice were effectively suppressed by the 116 117 interactions of the fungi extracts. This indicates the efficacy of the extracts against 118 the malaria parasite as earlier reported by Chelela et al. [17]. As a result of the potency, moderate percentage of parasitemia was recorded for the extracts 119 120 administered at different concentration levels throughout the period of infection. The results of the interactions of extract and replicate, concentration and replicate could 121 be due to the non-significance of the replicates. The efficacy of the extracts and the 122 prompt activities in reducing the parasitemia of the mice, stabilizing the PCV and 123 reducing weight loss in the animals established the potency of the fungi extract as 124 reported by Walker et al. [18]. 125

- 126
- 127

128 **Table 1: Interactive effects of extract types, replicates, concentration on** 129 **parasitemia in albino mice for the days of infection**

			%	Parasiter	nia		
Source of Variation	df	Day 1	Day 2	Day 3	Day 4	Day 5	Day 12
Extract Types	5	6.9 ^{ns}	56.54**	57.46**	54.25**	18.79 [*]	137.96**
Replicate	2	7.17 ^{ns}	0.48 ^{ns}	3.90 ^{ns}	2.53 ^{ns}	2.05 ^{ns}	68.07 ^{ns}
Concentration	5	9.65 ^{ns}	94.40**	88.01**	98.98**	95.44**	329.26**
Extract x Replicate	10	8.46 ^{ns}	2.43 ^{ns}	3.61 ^{ns}	6.11 ^{ns}	2.94 ^{ns}	27.01 ^{ns}
Extract x Concentration	25	8.62 ^{ns}	19.46**	15.18**	22.56**	26.67**	68.50 ^{ns}
Concentration x Replicate	10	8.65 ^{ns}	8.01 [*]	5.42 ^{ns}	3.36 ^{ns}	8.87 ^{ns}	30.01 ^{ns}
Error	50						
Total	108						
Corrected Total	107						

ns, *, and ** are not significant, and highly significant at p < 0.05; and p<0.01

131 respectively.

132

133

1	35
---	----

137 on PCV of	albino	mice for the	e days of inf				
				Cell Volu	•	•	
Source of Variation	df	Day 1	Day 2	Day 3	Day 4	Day 5	Day 12
Extract Types	5	164.25 [*]	2794.49 ^{ns}	205.12 ^{ns}	534.52 ^{ns}	300.6 ^{ns}	307.16 ^{ns}
Replicates	1	4.01 ^{ns}	3200.00 ^{ns}	490.89 [*]	193.39 ^{ns}	1530.89 ^{ns}	196.68 ^{ns}
Concentration	5	272.98**	3246.85 ^{ns}	225.39 ^{ns}	522.12 ^{ns}	1041.00 ^{ns}	1489.22**
Concentration 2	x 5	63.31 ^{ns}	2599.90 ^{ns}	79.99 ^{ns}	39.29 ^{ns}	405.06 ^{ns}	134.71 ^{ns}
Replicate				**			
Extract x Replicate	5	106.51 ^{ns}	2482.43 ^{ns}	169.19	66.42 ^{ns}	90.32 ^{ns}	369.71 ^{ns}
Extract x Conc.	25	129.15 [*]	2480.06 ^{ns}	208.89	283.45 ^{ns}	407.18 ^{ns}	688.42 ^{ns}
Error	25						
Total	72						
Corrected Total	71						
138 ns, *, and ** are r	not sign	ificant, and I	nighly signifi	cant at p	< 0.05; a	nd p<0.01	
139 respectively.							
140							
141							
142							
143							
144				*			
145Table 3: Interactive					nd concen	tration on	
145Table 3: Interactive146weights of albino r			iod of infect	tion	nd concen	itration on	
146 weights of albino r	nice du	ring the per	riod of infect We	tion eight			
146weights of albino rSource of Variation	<u>nice du</u> df	ring the per Day 1	iod of infect We Day 2	tion eight Day 3	Day 4	Day 5	Day 12
146weights of albino rSource of VariationExtract Types	nice du df 5	Day 1	iod of infect Wa Day 2 23.42**	tion eight Day 3 23.06 ^{ns}	Day 4 19.59 ^{ne}	Day 5	50.08 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicate	nice du df 5 2	Day 1 21.72** 21.84**	tiod of infect Wo Day 2 23.42 ^{**} 48.51 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*]	Day 4 19.59 ^{ns} 44.53 [*]	Day 5 ³ 46.71 [*] 76.44 ^{**}	50.08 ^{ns} 152.12 ^{**}
146weights of albino rSource of VariationExtract TypesReplicateConcentration	nice du df 5 2 5	Day 1 21.72 ^{**} 21.84 ^{**} 3.08 ^{**}	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x Replicate	nice du df 5 2 5 10	Day 1 21.72 ^{**} 21.84 ^{**} 3.08 ^{**} 2.93 ^{ns}	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x Concentration	nice du 6f 5 2 5 10 10 10	Day 1 21.72 ^{**} 21.84 ^{**} 3.08 ^{**} 2.93 ^{ns} 9.95 ^{**}	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns} 18.99*	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentration	nice du df 5 2 5 10	Day 1 21.72 ^{**} 21.84 ^{**} 3.08 ^{**} 2.93 ^{ns} 9.95 ^{**}	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicate	mice du df 5 2 5 10 21 x 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39 ^{ns}	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns} 18.99*	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateExtract plicateExtract plicateExt	<u>mice du</u> 6f 2 5 10 x 10 x 50	Day 1 21.72** 21.84** 3.08** 9.95** 5.39**	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns} 18.99*	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotal	mice du df 5 2 5 10 10 x 10 50 108	Day 1 21.72** 21.84** 3.08** 9.95** 5.39 ^{ns} 8	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns} 18.99*	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns}	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147ns, *, and ** are r	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42** 48.51** 3.17 ^{ns} 6.24 ^{ns} 18.99*	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147148respectively.	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147148respectively.149	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147148respectively.149150	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147148respectively.149150151	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147148respectively.149150151152	mice du df 5 2 5 10 2 10 x 10 50 10 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}
146weights of albino rSource of VariationExtract TypesReplicateConcentrationExtract x ReplicateExtract x ConcentrationConcentrationReplicateErrorTotalCorrected Total147148respectively.149150151	mice du df 5 2 5 10 2 10 x 10 50 10 10	Day 1 21.72** 21.84** 3.08** 9.95** 5.39** 8 7	iod of infect We Day 2 23.42 ^{**} 48.51 ^{**} 3.17 ^{ns} 6.24 ^{ns} 18.99 [*] 28.36 ^{**}	tion eight Day 3 23.06 ^{ns} 32.78 [*] 4.30 ^{ns} 10.42 ^{ns} 16.18 ^{ns} 27.33 [*]	Day 4 19.59 ^{ns} 44.53 [*] 15.19 ^{ns} 7.14 ^{ns} 20.87 ^{**} 33.41 ^{**}	Day 5 46.71 [*] 76.44 ^{**} 90.96 ^{**} 15.02 ^{ns} 44.25 ^{**} 41.80 ^{**}	50.08 ^{ns} 152.12 ^{**} 510.56 ^{**} 34.95 ^{ns} 44.36 ^{ns}

136	Table 2: Interactive effects of the extract types, replicates, concentration and
137	on PCV of albino mice for the days of infection

160							
		effects of e					
162 parasit	emia	during the					
				Parasitem			
Source of Variation	df	Day 7	Day 8	Day 9	Day 10	Day 11	Day 14
Extract Types	5	26.44**	14.44**	11.62**	24.15**	31.84**	20.32**
Replicate	2	14.01	11.61 ^{ns}		3.52 ^{ns}	5.68 ^{ns}	0.67 ^{ns}
Concentration	5	30.80**	29.91**	20.59	26.60**	22.39**	23.61**
Extract x Replicate	10	5.69 ^{ns}	2.49 ^{ns}	3.90 ^{ns}	2.06 ^{ns}	1.83 ^{ns}	2.82 ^{ns}
Extract x Concentration	21	11.29**		23.68**	18.21**	21.31**	23.60**
Concentration x	10	3.30 ^{ns}	4.55 ^{ns}	1.39 ^{ns}	2.99 ^{ns}	4.11 ^{ns}	3.17 ^{ns}
Replicate	40						
Error	42						
Total	96						
Corrected Total	95						
	t signi	ficant, and h	highly signifi	cant at p	< 0.05; and	d p<0.01	
164 respectively.							
165							
166							
167		-			_		
		ects of extra			oncentratio	on on	
169 PCV durin	g the	period of in			(= = + *)		
Course of Variation				ell Volume		D 44	D 44
Source of Variation	df	Day 7	Day 8	Day 9	Day 10	Day 11	Day 14
Extract Types	5	1294.51	3336.35	3815.00**	4539.48**	4282.39	3245.45
Replicate	2	190.21 ^{ns}	285.18 ^{**}	24.83 ^{ns}	95.30 ^{ns}	120.02 ^{ns}	
Concentration	5	399.71 ^{**}	518.46 ^{**}	443.72 ^{ns}	804.79 ^{**}	992.81 ^{**}	
Extract x Replicate	10	52.86 ^{ns}	69.87 ^{ns}	199.78 ^{ns}	52.40 ^{ns}	42.64 ^{ns}	61.18 ^{ns}
Extract x Concentration	21	427.47 ^{**}	329.13 ^{**}	521.30 ^{**}	423.41 ^{**}	438.71 ^{**}	
Concentration x	10	46.11 ^{ns}	86.61 ^{ns}	92.77 ^{ns}	115.27 ^{ns}	114.11 ^{ns}	⁵ 130.06 ^{ns}
Replicate	40						
Error	42						
Total	96						
Concentrated Total	95						
170 ns, *, and ** are not	t signi	ficant, and h	highly signifi	cant at p 🧃	< 0.05; and	d p<0.01	
respectively.							
172							
173							
74							
175							
176							
177							
178							
179							
180							
181							

183 184 Table 6: Therapoutic offer

184	Table 6:	Therapeutic	effects of	extract	types,	replicates,	concentration	on
185	weig	hts in albino	mice during	g the peri	od of in	fection		

			Ī	Veight		
Source of Variation	df	Day 7	Day 8	Day 9	Day 10	Day 11
Extract Types	5	53.46**	46.34**	65.55 [*]	73.31 [*]	54.21 ^{ns}
Replicate	2	0.99 ^{ns}	5.26 ^{ns}	23.99 ^{ns}	39.46 ^{ns}	1.37 ^{ns}
Concentration	5	27.40 ^{**}		40.05 ^{ns}	76.33	110.19 ^{ns}
Extract x Replicate	10	10.17		54.99 ^{ns}	49.95	34.38 ^{ns}
Extract x Concentration	21	18.57		50.16**	63.91 [*]	76.80**
Concentration x Replicate	10	13.65**	21.09**	52.63 ^{ns}	51.93 [*]	34.38 ^{ns}
Fror	42					
otal	96					
Corrected Total	95				_	
ns, *, and ** are not	signific	ant, and h	nighly signifi	cant at p	< 0.05; an	a p<0.01
respectively.						
3						
)						
				\sim		
				6		
			2	~		
			R	~		
			R			
			R			
			8		o funci ov	4-0.040
_Table 7: Quantita			nical compo Fom			
Table 7: Quantita	ent	Mix	Fom	PP	PT	Term
Table 7: Quantita Phytochemicals Lo Tannin 0.	ent .52	Mix 0.02	Fom 0.53	PP 0.17	PT 0.67	Term 0.50
Table 7: Quantita Phytochemicals Lo Tannin 0. Steroid 0.	ent .52 .64	Mix 0.02 3.35	Fom 0.53 1.06	PP 0.17 1.24	PT 0.67 0.91	Term 0.50 1.76
Table 7: Quantita Phytochemicals Le Tannin 0. Steroid 0. Oxalate r	ent .52 .64 nd	Mix 0.02 3.35 0.01	Fom 0.53 1.06 nd	PP 0.17 1.24 nd	PT 0.67 0.91 0.01	Term 0.50 1.76 0.01
Table 7: Quantita 7 Table 7: Quantita 6 Phytochemicals Letter 7 Tannin 0. Steroid 0. 0. Oxalate r r Saponin r r	ent .52 .64 nd nd	Mix 0.02 3.35 0.01 nd	Fom 0.53 1.06 nd nd	PP 0.17 1.24 nd 0.12	PT 0.67 0.91 0.01 nd	Term 0.50 1.76 0.01 nd
Table 7: Quantita Phytochemicals Lo Tannin 0. Steroid 0. Oxalate r Saponin r Flavonoid r	ent .52 .64 nd nd nd	Mix 0.02 3.35 0.01 nd nd	Fom 0.53 1.06 nd nd nd	PP 0.17 1.24 nd 0.12 0.72	PT 0.67 0.91 0.01 nd nd	Term 0.50 1.76 0.01 nd 0.58
Table 7: Quantita Phytochemicals Lo Tannin 0. Steroid 0. Oxalate r Saponin r Flavonoid r Alkaloid r	ent .52 .64 nd nd nd nd	Mix 0.02 3.35 0.01 nd nd 0.01	Fom 0.53 1.06 nd nd nd nd nd	PP 0.17 1.24 nd 0.12 0.72 nd	PT 0.67 0.91 0.01 nd nd nd	Term 0.50 1.76 0.01 nd 0.58 nd
P23423457Table 7:QuantitaPhytochemicalsLaTannin0.Steroid0.Steroid0.OxalaterFlavonoidrAlkaloidrCyanogenic	ent .52 .64 nd nd nd	Mix 0.02 3.35 0.01 nd nd	Fom 0.53 1.06 nd nd nd	PP 0.17 1.24 nd 0.12 0.72	PT 0.67 0.91 0.01 nd nd	Term 0.50 1.76 0.01 nd 0.58
Table 7: Quantita Phytochemicals Le Tannin 0. Steroid 0. Oxalate r Saponin r Flavonoid r Alkaloid r Oyanogenic 0	ent .52 .64 nd nd nd nd .15	Mix 0.02 3.35 0.01 nd nd 0.01 0.01	Fom 0.53 1.06 nd nd nd nd 0.10	PP 0.17 1.24 nd 0.12 0.72 nd 0.20	PT 0.67 0.91 0.01 nd nd 0.15	Term 0.50 1.76 0.01 nd 0.58 nd 4.00
7 Table 7: Quantita 7 Table 7: Quantita 9 Phytochemicals Le 1 Tannin 0. 9 Steroid 0. 1 Oxalate r 1 Saponin r 1 Flavonoid r 1 Alkaloid r 0 Cyanogenic 0 1 glucoside 1 Phenol 0	ent .52 .64 nd nd nd nd	Mix 0.02 3.35 0.01 nd nd 0.01	Fom 0.53 1.06 nd nd nd nd nd	PP 0.17 1.24 nd 0.12 0.72 nd	PT 0.67 0.91 0.01 nd nd nd	Term 0.50 1.76 0.01 nd 0.58 nd

198

DPPH- 2, 2–diphenyl-1-picrylhydrazyl; nd- not detected; FOM - *Fomes lignosus;* PT - *Pleurotus tuber-regium;* PP - *Pleurotus pulmonarius;* Term- *Termitomyces robustus;* Lent - *Lentinus subnudus*; Mix - Mixture of all the fungi samples in equal proportion.

205 4. CONCLUSION

206

It is apparent from this study that the tested fungi possess prophylactic and therapeutic antiplasmodial potentials. *L. subnudus* and *P. tuber-regium* gave the best prophylactic and therapeutic effect against the malaria parasite, *Plasmodium berghei berghei* in the albino mice. Concentrations 0.4 mg/mL and 0.0 4mg/mL produced the best effect against the malaria parasite. Therefore, the study on interactions of the higher fungi in the prevention and treatment of malaria could be integrated in antimalarial study.

214

215 **Ethical Approval:**

As per international standard or university standard written ethical approval has been
collected and preserved by the author(s).

219 220

220

222

223

224 COMPETING INTERESTS

225 Authors have no competing interest.

226

227 228

229 **REFERENCES**

1.Dubuex, JCB. Jr., Sollenberger, LE., Interrante, SM., Vendramini, JMB and Steward, RL.,
 Jr. Litter decomposition ad mineralization in bahiagrass pastures managed at different
 intensities. Crop Sci., (2006) 46: 1303 – 1310.

2. Jonathan, S.G. Vegetative growth requirements and antimicrobial activities of some higher
 fungi in Nigeria. Ph.D thesis, University of Ibadan (2002).

3. Opige, M., Kateyo, E. and Olila, D. Indigenous knowledge and indigenous usage of edible
and medicinal mushrooms among the Teso people of Eastern Uganda. Journal of Food
Technology(2006) 4(4): 325-330.

4. WHO. Guidelines for the treatment of malaria. Fact Sheet'94 (2015)

5. Redfren J, Kinnimonth M, Burdass D, Verran J (2014) Using soxhlet ethanol extraction to

produce and test plant material (essential oils) for their antimicrobial properties. *J Microb. Biol. Edu* 15(1): 45-46

242 6. Katsayal, UA., Abdurahman, EM., Abubakar, MS., Musa, KY., Ambah, SF., and Jahun,

MB. Fungi as potential source of antimalarial agents. Nig Journal Pharma.Sci(2009)8(1): 138-142.

7. Jonathan, SG., and Olawuyi, OJ., Popoola, OO. and Aina, DA. Antibacterial activities of
extracts of *Daldina concentrica*. African J. Biomed. Res. (2011)14: 57 – 61.

8. White, SR., Obradovic, T. Imeh, KM., Wheaton, MJ. The effects of
methylenedioxmethamphetamine (MDMA, "Estasy") on monoaminergic neurotransmission in
the central nervous system. Progress in Neurobiology (1996)49:455-479

9. Agbenin, NO., Marley, PS. *In vitro* assay of some plant extracts against *Fusarium oxysporum* F. sp lycopersici causal agent of tomato wilt. Journal of Plant Protection
 Research in Plant Biology (Poland) (2006) 46: 117-121

- 10. Babu, J., Muzafar, AD., Vinod, K. Bioefficacy of Plant Extracts to control *Fusarium solani*F. sp Melanogenae Incitant of Brinjal Wilt. Global Journal of Biotechnology and Biochemistry
 (2008).3(2): 56-59
- 11. Akanmu, AO., Olawuyi, OJ., Abiala, MA., Yaya, OS., Odebode, AC. Interactive effects of
 some botanicals and *Fusarium* spp on the growth of millet seedlings. Research in Plant
 Biology. (2013) 4(1): 01-11
- 12. Hasler, CM., Blumberg, JG. Symposium on phytochemicals: Biochemistry and
 Physiology.Journal of Nutrition (1999)129:7565-7575.
- 13. Smith, RA., Mettlin CJ., Davis, KJ., Eyre, H. American Cancer Society guidelines for the earlydetection of cancer. A cancer Journal for Clinicians. (2000) 50(1): 34-49.
- 14. Saxena, J. and Patra, AK. Dietary phytochemicals as rumen modifiers: a review of the effects of on microbial populations. Antonie van Leeuwenhoek(2009)96: 363-375
- 265 15. Gracia, EJ., Oldoni, TLC., de Alencar, SM., Reis, A., Luguerio, AD., Grande, HM.
- Antioxidant activity of DPPH of potential solution to be applied on bleached teeth. Branzilian Dental Journal(2012)23(1): 22-27
- 16. Ilondu, EM. Myco- chemical composition and efficacy of four mushroom extracts in the control of *Rhizoctania solani*, a damping-off pathogen of garden egg (*Solanum melongena*
- 270 L.) seedlings. American Journal of Scientific and Industrial Research(2013) 4(5):429-437.
- 271 17. Chelela, BL., Chacha, M., Matemu, A. O. Wild edible mushroom value chain for improved
- 272 livelihoods in Southern Highlands of Tanzania. American Journal of Research
 273 Communication 2014 2(8):1-14
- 18. Walker, MG., Page, CP., Hoffman, BF., Curtis, M. Integrated Pharmacology. (3rd ed.). St.
- 275 Louis: Mosby. 2006. ISBN 0-323-04080-2
- 276 277