UPTAKE AND DISTRIBUTION OF NATURAL RADIONUCLIDES IN CASSAVA CROPS 2 FROM NIGERIAN GOVERNMENT FARMS

3

1

- 4
- 5

6 Abstract

7 Radioactivity distribution and transfer factor (TF) in plants are crucial parameters used to assess radioactive contamination in the environment, impact of soil radioactivity on agricultural crops and its 8 risks to humans. The root crop cassava (*Manihot esculenta*) provides about 50 percent of the calories 9 consumed in Nigeria. Gamma - ray spectroscopy was used to measure activity concentrations of ²²⁶Ra. 10 ²³²Th and ⁴⁰K in cassava root and soil. The average activity concentration of ⁴⁰K, ²²⁶Ra and ²³²Th in 11 cassava was 565.31± 13.17, 21.89±5.94 and 817.28±2.52 Bqkg⁻¹ respectively. The mean activity 12 40 K. 226 Ra and 232 Th in soil range from 92.07±35.08 to 689.28±14.35 Bgkg⁻¹ with a concentration 13 mean value of 413.64±21.22 Bqkg⁻¹, 5.37 ± 8.90 to 64.93 ± 7.23 Bqkg⁻¹ with a mean value of 54.43 ± 1000 14 3.22 and BDL to 928.15 \pm 2.36 Bqkg⁻¹ with a mean value of 561.67 \pm 2.21 Bqkg⁻¹. The transfer values 15 for 226 Ra, 232 Th and 40 K were in the range of 0 to 1.81, 0 to 3.41 and 0.68 to 4.5 respectively. The high 16 value of transfer factor for ⁴⁰k may be due to its importance in plant growth, fertilization and 17 adaptability of plant to environmental pressures. It may have also been enhanced by the application of 18 NPK fertilizers in those farms. Thorium showed the highest mean transfer factor which may be due to 19 its higher accumulation in soil and higher uptake by plants (Figure 3). The average transfer factors of 20 226 Ra (0.99) < 40 K (1.55) < 232 Th (1.66) show that although activity concentration of the natural 21 radioisotopes in the area under study are high, the rate at which they are transferred to cassava are still 22 moderate. The average values of radium equivalent activity (Raeq), absorbed dose rate (D), annual 23 effective dose rate (AEDE), internal hazard index and excess life cancer risk (ELCR) are 1009.27 Bqk⁻ 24 ¹, 346.50 nGyh⁻¹, 1.51 mSyy⁻¹, 2.78 and 3.92 x 10^{-3} for respectively. These values were higher than 25 their corresponding permissible values of 370Bqk⁻¹, 55nGyh⁻¹, 1.0 mSvy⁻¹, 1.0 and 0.29 x 10⁻³ 26 respectively. The mean values of H_{ex} and H_{in} are greater than unity and may, therefore, constitute a 27 significant radiological health risk. The mean annual gonad dose estimated value of 2943.90 mSvv⁻¹ 28 was above the world acceptable value of 300 mSvy⁻¹ and the annual effective dose in all the samples 29 except in few locations as shown in Figure 2, exceeded the safe value of 1.0 mSvv⁻¹. The use of soil 30 from these farms and the crops may constitute a threat to the bone marrow and general health 31 conditions of the inhabitants. 32

- 33
- Keywords: Manihot Esculenta, transfer factor, Spectroscopy, Radionuclide, Stochastic. 34
- 35
- 36
- 37
- 1. Introduction 38

Food is one of the most important needs of man and the increasing world population has become a threat to global food security. The need to increase food production therefore arises to ensure food security for the growing world population. Due to this important need of man, Chemical fertilizers are employed in agriculture to reclaim land and enhance crop yield [1]. Chemical fertilizers are chemical compounds that provide necessary elements and nutrients to the plants [2].

Just like the rest of the world, Nigeria's population is increasing and there is also the need to increase 44 availability of food by increasing the rate of food production via application of chemical fertilizers. The 45 major raw materials for the production of chemical fertilizers must therefore supply the essential nutrients 46 necessary for plant growth. The essential nutrients are Nitrogen, phosphorus and potassium. Natural 47 radioactivity of mainly Uranium-238(²³⁸U), Thorium-232 (²³²Th) and Potassium-40 (⁴⁰K) seen in 48 phosphate fertilizers emanate from the phosphate ore, (due to geological reasons) which is the main raw 49 material used for phosphate fertilizer production. The application of phosphate fertilizer globally for 50 51 increased crop production and land reclamation has risen to more than 30 million tons annually [3].

The supply of plant nutrient is limited and depleted with every harvest leading to a drastic reduction in quality and yield in crop plant. The normal concentration of uranium in phosphate rocks is between 30 and 260 ppm which by far exceeds its abundance in the earth's crust. The application of chemical fertilizers may increase the phosphate and uranium concentration in the soil thereby increasing the concentration in nutrients. Apparently, the fertilizers applied in the Niger-Delta region may redistribute naturally occurring radionuclides at trace levels throughout the soil and therefore become a source of radioactivity.

59 Uptake of radionuclides by plants occurs both via the root system and from atmospheric deposition 60 through activity trapping onto external plant surfaces [4]. The bioavailability of radionuclides in soils 61 and hence their transfer to plants are rather complex depending on several factors. These factors include 62 the chemistry of the specific radionuclides, soil type and climatic conditions, soil pH, solid/liquid 63 distribution coefficient and organic matter [5,6, 7]. The uptake of radionuclides by plant roots 64 constitutes the main pathway for the migration of radionuclides from the soil to humans, via food chain.

Cassava, a root crop exhibits greater root absorption of radionuclide than through the trapping onto 65 external plant surfaces though there is some level of atmospheric capture [8]. Cassava (Manihot 66 esculenta) represent about 50% of all calories consumed in sub-sahara Africa [9] and is the third most 67 important source of calories in the tropics [10]. The edible root varies significantly in size from 15 to 68 100 cm as well as in weight from 0.5 to 2.0 kg [11]. In addition to being the most consumed staple crop 69 in the study area and several other communities, cassava is also used as raw material for the production 70 of industrial starch, ethanol and animal feed [12]. Some of the most popular foods prepared from 71 Cassava is garri, fufu (local dish) and tapioca served with nuts and coconut or local dish (African 72 73 salad). Another Cassava product is the roasted or grilled and boiled Cassava from a special specie (red 74 bark).

The transfer factor (TF) expresses the plant intake of radionuclide from the soil and is commonly used in environmental transfer models to estimate dose impact on humans [5]. Many researches have shown clearly that any dose of radiation increases an individual's risk of developing cancer. However, radiation levels can be concentrated in the food chain and further consumption adds to the cumulative risk of 79 developing cancer and other diseases [13].

80 The radioactivity level in soil can plausible be used to show the magnitude of contamination in locally grown food crops, but it cannot describe the biological effects of radiation exposure to individuals who 81 consume that food [7]. Therefore the estimation of doses is usually carried out for assessing health 82 safety of an individual undergoing radiation exposure through ingestion of contaminated food. The 83 intake of radionuclide within food is dependent on the concentration of radionuclides in various food 84 crops and on the food consumption rates [7, 13]. The risks associated with an intake of radionuclides in 85 the body are proportional to the total dose delivered by radionuclides while staying in various organs. 86 In general, it is assumed that stochastic effects occur linearly with dose and usually the annual effective 87 dose quantities (AEDE) are used to define those risks when prolonged exposure to a single intake of a 88 89 radionuclide is being considered [9].

90

Radioactivity can be detected in food and water; the concentrations of these naturally-occurring 91 radionuclides vary depending on factors such as the type of food, local geology, climate and agricultural 92 93 practices [14]. Scientists have identified that some chemical constituents of food either initially present in the food, formed during preparation (especially cooking), or added for preservation are capable of 94 inducing cancers or tumors in high-dose rodent tests. Children have a higher risk of exposure to 95 carcinogens in food as they consume more foods, drink more liquids, and take in more air than adults 96 do. The fact that children have rapidly developing organ systems, especially the central nervous system 97 and the brain, makes them highly susceptible to chemical interference as they are also less able to 98 metabolize and excrete most toxic substances [15]. Some radionuclides have a tendency to concentrate 99 in certain tissues because of their interaction with normal physiological processes. For example, cesium 100 and strontium isotopes tend to congregate in bones, whereas the thyroid gland selectively concentrates 101 102 iodine [16, 17].

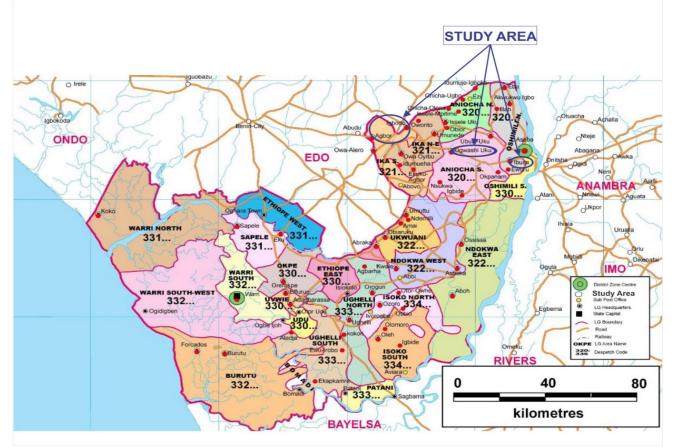
103

Absorption of radioisotopes from food stuff may damage the kidneys, lungs, liver, skeleton tissues and 104 muscles [18]. The accumulation of enormous levels of radioisotopes in these delicate organs affect the 105 health condition of persons such as weakening the immune system, sterility, cancer, inducing of 106 various shades of diseases and eventually increase mortality rate. There is then obvious need to know 107 the level of radionuclides concentration and ascertain its radiological health risks to the consumers of 108 109 those products. The aim of this study is to determine the soil to crop (plant) transfer factor (TF) in order to assess the impact of soil radioactivity on agricultural crops and the health implication on man who is 110 the final consumer. 111

112 113

114 2.0. Materials and Methods115

- 116 2.1 Study area
- 117


The study area includes the cities of Agbor, Ogwashi-Uku, Ibusa and Igbodo, of Delta state, Nigeria.
Agbor lies between Longitudes 6°25'N and Longitude 6°19'E. Ogwashi-Uku lies between Latitude 6
°18'N and Longitude 6°52'E, Ibusa lies within latitude 6°10'N and 6°37' while Igbodo is between

6°18'N and 6°22'E as shown in Figure 1. These four cities represent four different districts among the 121 twenty five LGAs in Delta state. Agbor and Igbodo lie between Orogodo and Namomah Rivers and are 122 known as Ika dialect speakers. They belong to Ika south and Ika-North-East LGAs. Ogwashi-Uku and 123 Ibusa are Aniocha South and Oshimili North LGAs respectively. Agbor is bounded on the east by 124 Emuhu, on the West by Alihame, on the north by Ottah in Edo state and on the south by Owanta. 125 Igbodo is bounded on the east by Onitcha-ugbo, west by Akumazi, on the north by Idumuje-Ugboko 126 and south by Obior. Ogwashi-ukwu is located at the west of Asaba, the capital of Delta State. Ibusa 127 (Igbuzo) is bounded on the east by Asaba and Ogwashi-ukwu on the west, Okpanam north-wise and 128 Aballa to the south. Delta State is under the Niger Delta Structural Basin, it has three major 129 sedimentary cycles which have occurred since the early Cretaceous. 130

131

132 The sub-surface stratigraphic units associated with the cycles are, the Benin, the Agbada and the Akata

- 133 Formations. The surface rock throughout the state consists of the Ogwashi-Ukwu formation. The
- Benin formation is about 1800m and has free, unconsolidated sands. Agbor and Igbodo lies within this
- formation, this formation previously known as the coastal Plain sands span over a considerable portion

of the coastal region of Nigeria, adjacent to the Deltaic Plain Sediments. The formation generally consists of unconsolidated sandy beds and clay-lenses [19]. The Agbada Formation which consists of sandstone and shales has an abundance of hydrocarbons. It is about 3000m and is underlain by the Akata Formation. The Ogwashi-Asaba Formation that underlies the north-east consists of a transposition of lignite seams and clay. The vegetation of the area is under the savannah vegetation.

Fig.1: Map showing the study Area (Source: Delta State Medium Term Development Plan
(DSMTDP; 2016-2019)

145

2.2 Sample Collection and Sample Preparation 147

12 samples of cassava crop and 12 samples of soil were collected from three (3) selected 149 Government farms in Niger Delta region of Nigeria. Six (6) samples each of cassava and soil were 150 taken from the Ministry of Agriculture, Agbor, in Ika-South LGA, two (2) samples of cassava and 151 soil each from Agricultural Development Program (ADP), Illoh-Ogwashi-ukwu in Aniocha South 152 LGA, and Ibusa in Oshimili North LGA respectively. All these farms uses fertilizer to improve the 153 crop yield. Two (2) Samples of cassava and soil were taken from an unfertilized farm as control 154 samples.

155

At each sampling site, about 2 kg cassava (fresh weight) samples were collected using plastic trowel and initially thoroughly washed with tap water and then in distilled water to remove surface sand. From each site soil samples of approximately 1.5 kg (wet weight) were collected into separate plastic containers. The two sets of samples were each placed into separate polyethylene bags. In the laboratory, the cuticles of the cassava were removed with a stainless steel knife and the edible parts were cut into pieces of about 10 mm and put together in polyethylene materials for refrigeration.

163 The samples were freeze-dried for three days and were pulverized by means of a cleaned industrial 164 blender and kept separately in their respective containers. About half of the samples from one farm 165 were put together and gave exhaustive mixing using a homogenizer and sub-sample of 700 g each 166 were put into fresh cleaned plastic containers and re-labelled.

167

The soil samples after oven drying at a temperature of 110 °C for 3 days were pulverized in a 168 pulverizer and the sub-samples prepared similarly as the cassava samples [20]. The samples were 169 further sieved in 110 µm mesh sieve to obtain smaller grain sized sand particles before they were 170 subjected to radioactivity measurement. The homogenized samples were weighted and hermetically 171 sealed packed in plastic 500 ml marinelli containers. The containers with the same size and 172 geometry were used for the reference materials for the efficient calibration of the detector system. 173 The samples were filled to an indicated mark on the marinelli container and the mass determined 174 by simple calculation after weighing empty container together with sample and the container alone. 175 The containers were closely tight to limit the escape of radon. Each marinelli container was 176 analyzed after 30 days after ²²⁶Ra and ²³²Th assumed secular equilibrium with their short-lived 177 decay products using sodium iodide detector. 178

179

180 **2.3 Determination of Specific Radioactivity in Samples**

181 The measurement of specific activity concentration of radionuclides in the samples under consideration

182 was made with a high resolution gamma-ray spectrometry system. A 2"×2" Sodium iodide [NaI (TI)]

183 detector connected to ORTEC digiBase Multichannel Analyzer (MCA) was used. The digiBase is

184 connected to a computer where data collection and analysis are carried out using ORTEC MAESTRO -

185 32 software. IAEA standard materials were used for calibration [19].

186

The radioactivity measurement of the samples was made by placing them on the detector inside the 187 lead shielding and spectrum was collected. The same geometry was used to determine peak area of 188 samples and references. Each sample was measured during an accumulation time of 36,000s. The 189 activity concentration were calculated based on the weighted mean value of their respective decay 190 products in equilibrium. The gamma ray lines of 295.2 (18.2), 351(35.1) keV from ²¹⁴Pb and 609.3 191 (44.6), 1764.5 (15.1) keV from ²¹⁴Biwere used to determine the activity concentration of ²²⁶Ra. The 192 gamma lines of 338.4, the 911.2 (26.6) keV from ²²⁸Ac, the 727.3 keV from ²¹²Bi and 583.2 (30.6) 193 keV from 208 Ti were used to determine the activity concentration of 232 Th. 194

195

The activity concentration of ⁴⁰K was measured directly by its own gamma ray at 1460.8 (10.7) keV. The values inside the bracket indicate the absolute emission probability of the gamma decay. The gamma-ray background around the detector inside the shielding was determined using an empty container under identical measurement conditions.. The background counts were determined by counting an empty container of the same dimension as those containing the samples and subtracting from the gross count. The activity content of the samples was evaluated by the net area under the photo peaks using:

$$A_c = \frac{C_n}{P_Y M \varepsilon}$$
 1

Where A_c is the activity concentration in Bqkg⁻¹, C_n is the net count rate under the corresponding peak; P γ is the absolute transition probability of the γ -ray. M is the mass of the sample (kg) and e is the detector efficiency at the specific γ -ray energy.

207 208

203

209 2.4 Radionuclide Uptake and Transfer factor

Natural radionuclides are in different concentrations in soil. Human activities like routine and accidental discharge of nuclear waste, production of energy, use of fertilizers and mining have altered their natural concentration in the environment. The earth contains varied degrees of radioactivity due to radioactive decay of ²³⁸U and ²³²Th series [21].

Generally plants take in radionuclides via foliar absorption and root uptake from the soil. The expected content of radioisotopes is described by the transfer factor parameter. It describes the radionuclides expected in plants sequel to their concentration in the soil. Absorption of radioisotopes is enhanced at the initial plant growth stage meaning that absorption varies with plant growth. The transfer factor depends also on the mass of plant. Equation 1 below expresses the dependence of transfer factor on mass [22].

220
$$TF(m) = TF(0)\left(\frac{m}{m_0}\right)^{\alpha-1}$$

221 Where m_0 is the initial plant mass, TF (0) is the initial value of the transfer factor at t = 0, $m = m_0$, α is 222 a function that determines the rate of decrease of transfer factor with increasing plant mass. Transfer

- factors can also be defined based on dry weight, as ratio of activity content (Bqkg⁻¹) in plant to activity
- content $(Bq\cdot kg^{-1})$ of soil or can be based on surface area of soil and expressed as $Bq\cdot kg^{-1}$ dry weight of plant to $Bq\cdot m^{-1}$ in soil [21].
- In most cases, the dissemination of radioisotopes is not homogeneous in depth. The International Union of Radioecology (IUR) recommends a standardized root location in order to deal with this soil depth variability. The recommended soil depth is 10 cm for grass and 20 cm for all other crops and trees (IUR 1999). The radioisotope content at this depth is homogeneous
- 230 This transfer factor is then expressed as:

$$TF = \frac{A_p Bq \ kg^{-1}}{A_s Bq kg^{-1}}$$

Where $A_P = Activity$ concentration in the plant (Bqkg⁻¹ dry weight) and $A_S = Activity$ concentration in soil (Bqkg⁻¹ dry weight).

3

234

231

235 **3.0 Results and Discussion**

236 3.1 Radioactivity Concentration in Cultivated Fertilized Soil and Cassava food crop

The radioactivity concentration of radionuclides in the fertilized soil and cassava crop samples are presented in Tables 1 and 2 respectively. With the exception of one sampling site (S-Illoh 1), the activity concentration of 40 K, 226 Ra and 232 Th in the soil samples are quite higher than those of the reference soil samples. The lower concentration at point (S-Illoh 1) could be attributed to sloping nature of the point which resulted in poor crop yield due to nutrient depletion. The activity concentration of 40 K, 226 Ra and 232 Th in soil were comparatively higher than the global average values of 400, 30 and 35 Bqkg⁻¹ respectively [23].

244

Table 1: Specific Activity Concentration of ⁴⁰K, ²²⁶Ra and ²³²Th in Soil Samples from Agricultural Farms

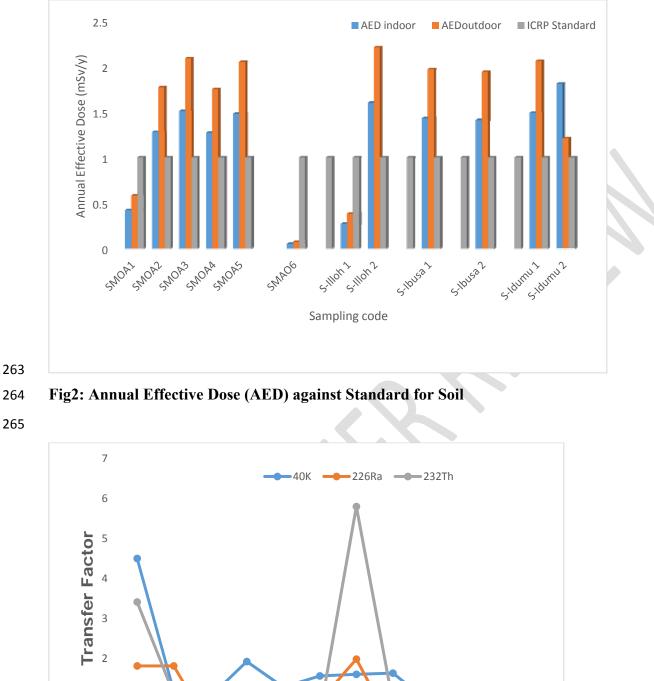
S/	Sample Sample	GPS Position	⁴⁰ K	²²⁶ Ra	²³² Th	Raeq
Ν	location code					
			Bqkg ⁻¹	Bqkg ⁻¹	Bqkg ⁻¹	Bqkg ⁻¹
1	Ministry of SMOA1	N: 6°15'37.0075	92.07 ± 35.08	$33.23 \pm$	229.96 ± 4.15	369.16
	Agriculture,	E:6°11'16.29683		4.46		
	Agbor					
2	Ministry of SMOA2	N:6°15'34.48112	556.21 ± 13.25	$35.15 \pm$	734.10 ± 2.75	1127.74
	Agriculture,	E:6°11'16.57248		8.15		
	Agbor					
3	Ministry of SMOA3	N:6°1529.38142	425.67 ± 13.79	$45.72 \pm$	880.37±2.36	1337.43
	Agriculture,	E: 6°11'15.45835		8.59		
	Agbor					

4	Ministry of Agriculture, Agbor	SMOA4	N: 6°15'40.235 E:6°11'16.39362	278.21 ± 23.62	64.93 ± 7.23	725.33 ± 2.76	1123.57
5	Ministry of Agriculture, Agbor	SMOA5	N:6°15'29.334 E:6°11'16.46425	347.10 ± 16.67	28.91 ± 7.43	880.37±2.36	1314.57
6	Ministry of Agriculture, Agbor	SMOA6	N: 6°15'35.434 E:6°11'16.54682	119.87 ± 53.69	33.23 ± 7.66	ND	42.46
7	ADP Illoh	S-Illoh 1	N: 6°6 4.90612 E: 6°3156.33285	315.68 ± 25.50	5.37 ± 8.90	146.10 ± 4.95	238.60
8	ADP Illoh	S-1lloh 2	N: 6°6 5.07892 E: 6°31'56.46072	487.31 ± 14.01	51.48 ± 3.68	928.15 ± 2.36	1416.26
9	ADP Ibusa	S-Ibusa1	N: 6°11' 1.58359 E: 6°39' 7.85948	448.63 ± 19.30	46.20 ± 6.13	826.74 ± 2.48	1262.98
10	ADP Ibusa	S-Ibusa 2	N: 6°11' 1'.59473 E:6°39' 7.73865	505.44 ± 12.90	25.55 ± 4.90	824.79 ± 2.46	1243.92
11	ADP Igbodo	S Idumu 1	N: 6°184.99745 E: 6°235.24733	689.16 ± 12.53	27.47 ± 5.18	864.77 ± 2.45	1317.16
12	ADP Igbodo	S Idumu 2	N:6°180'.94656 E: 6°23'0'.43534	689.28 ± 14.35	35.40 ± 6.47	718.69 ± 2.88	1317.44
	Average			413.64±21.22	54.43 ±3.22	561.67±2.21	1009.27

Table 2 : Specific Activity Concentration of ⁴⁰K, ²³⁸U and ²³²Th in cassava crop Samples from Agricultural Farms

S/N	Sample crop location	Sample code	GPS Position	Activity concentrations (Bqkg ⁻¹)			Raeq Bqkg ⁻¹
				⁴⁰ K	²³⁸ U	²³² Th	
1	Ministry of Agriculture, Agbor	CMOA 1	N: 6°1537.0075 E:6°11'16.29683	455.89 ± 14.72	60.13± 6.83	792.61 ± 2.53	1228.67
2	Ministry of Agriculture, Agbor	CMOA 2	N:6°1534.48112 E: 6°11'16.57248	654.11 ± 11.07	6.33±2.99	819.91 ± 2.60	1229.17
3	Ministry of Agriculture, Agbor	CMOA-3	N:6°1529.38142 E: 6°11'15.45835	443.80 ± 12.32	12.10 ± 8.67	776.03 ± 2.53	1156.00

4	Ministry of Agriculture, Agbor	CMOA 4	N: 6°15′40.235 E: 6°11′16.39362	534.45 ± 13.19	33.71± 6.66	833.56 ± 2.63	1266.85
5	Ministry of Agriculture, Agbor	CMOA-5	N:6°15'29.334 E:6°11'16.46425	544.11±11.79	26.99 ± 6.72	930.10 ± 2.40	1398.93
6	Ministry of Agriculture, Agbor	CMOA 6	N: 6°15′35.434 E:6°11′16.54682	753.22 ± 10.12	BDL	576.13 ± 2.85	887.05
7	ADP Illoh	C- Illoh 1	N: 6°6 4.90612 E: 6°31'56.33285	505.44±15.59	10.66± 7.62	848.19±2.47	238.60
8	ADP Illoh	C-Illoh 2	N: 6°6 5.07892 E: 6°31'56.46072	795.53± 9.96	13.54± 6.23	826.74±2.39	1262.49
9	ADP Ibusa	C-Ibusa 1	N: 6°11' 1.58359 E: 6°39' 7.85948	403.91 ± 18.00	26.99 ± 7.46	814.06 ± 2.48	1257.03
10	ADP Ibusa	C-Ibusa 2	N: 6°11' 1'.59473 E:6°39 7.73865	564.67 ± 14.93	28.43 ± 6.23	955.46 ±2.33	1222.20
11	ADP Igbodo	M- Idumu1	N: 6°184.99745 E: 6°23'5.24733	472.81± 10.26	24.59 ±10.87	918.40 ± 2.46	1438.22
12	ADP Igbodo	M-Idumu 2	N:6°180.94656 E: 6°230.43534	546.54 ± 10.77	25.07 ± 10.87	800.41 ± 2.47	1211.74
			Average	746.08 ± 0.48	24.83 ± 10.87	859.41 ± 2.47	1324.98


Table 3; Transfer factors of ⁴⁰K, ²²⁶Ra and ²³²Th for cassava crop

S/N	Sample Location	SAMPLE	⁴⁰ K	²²⁶ Ra	²³² Th
1	Ministryof Agriculture, Agbor	MOA 1	4.50	1.81	3.41
2	Ministry of Agriculture, Agbor	MOA 2	1.18	1.81	1.11
3	Ministry of Agriculture, Agbor	MOA 3	1.04	0.26	0.88
4	Ministry of Agriculture, Agbor	MOA 4	1.92	0.51	1.17
5	Ministry of Agriculture, Agbor	MOA 5	1.28	0	0
6	Ministry of Agriculture, Agbor	MOA 6	1.56	0.93	0.61

7	ADP Illoh	ADP Illoh 1	1.60	1.98	5.80
8	ADP Illoh	ADP Illoh 2	1.63	0.26	0.89
9	ADP Ibusa	ADP Ibusa 1	0.90	0.58	0.98
10	ADP Ibusa	ADP Ibusa 2	1.12	1.11	1.10
11	ADP Igbodo	Idumu 1	0.68	0.89	1.06
12	ADP Igbodo	Idumu 2 Average	0.71 1.55	0.76 0.99	1.28 1.66

258 259 Table 4: Radiological Risk Parameters for Soil

S/ N	Soil Sample location	Soil Sample	D (nGyh ⁻¹)	Indoor AED (mSvy ⁻¹)	Outdoor AEDE (mSvy ⁻¹)	AGDE Bqkg ⁻¹	ELCR	H _{ex}	H _{in}	Iyr	AUI
1	Ministry of Agriculture	SMOA1	162.40	0.42	0.58	1092.82	1.46	1.00	1.09	2.58	3.25
2	, Agoor Ministry of Agriculture , Agbor	SMOA2	496.58	1.28	1.77	3351.80	4.48	3.04	3.14	7.95	9.93
3	, Agoor Ministry of Agriculture , Agbor	SMOA3	587.17	1.51	2.09	3954.88	5.29	3.61	3.73	9.39	11.74
4	, Agoor Ministry of Agriculture , Agbor	SMOA4	493.33	1.27	1.75	3319.87	4.45	3.03	3.21	7.87	9.87
5	, Agoor Ministry of Agriculture , Agbor	SMOA5	576.17	1.48	2.05	3878.27	5.19	3.55	3.63	9.23	11.52
6	, Agoor Ministry of Agriculture , Agbor	SMAO6	20.28	0.05	0.07	140.32	0.18	0.11	0.20	0.30	0.41
7	ADP Illoh	S-Illoh 1	106.57	0.27	0.38	726.41	0.96	0.64	0.66	1.71	2.13
8	ADP Illoh	S-Illoh 2	622.14	1.60	2.21	4191.76	5.61	3.82	3.96	9.95	12.44
9	ADP Ibusa	S-Ibusa 1	554.93	1.43	1.97	3739.40	5.00	3.41	3.54	8.87	11.10
10	ADP Ibusa	S-Ibusa 2	546.551	1.41	1.94	3685.28	4.93	3.36	3.43	8.76	10.93
11	ADP Igbodo	S-Idumu 1	579.95	1.49	2.06	3916.02	5.23	3.56	3.63	9.29	11.60
12	ADP Igbodo	S-Idumu 2	492.43	1.81	1.21	3329.94	4.24	3.01	3.11	6.77	9.86
		Average	346.50	1.17	1.51	2943.90	3.92	2.68	2.78	6.89	8.73

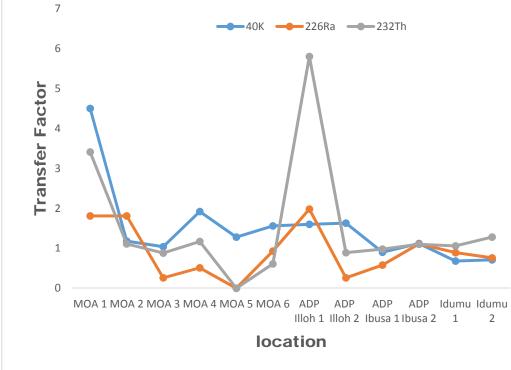


Fig.3: Variation of Transfer Factor according to sample location

269 **4. Discussion**

4.1 Activity concentration of ⁴⁰K, ²²⁶Ra and ²³²Th in soil and cassava crops

The average activity concentration of 40 K. 226 Ra and 232 Th in soil from cultivated government farms 271 were higher than the world average of 400, 35 and 30 Bgkg⁻¹ respectively. ADP Illoh had the highest 272 ⁴⁰K concentration which may be due to enhanced use of NPK fertilizers compared to other locations 273 with lower values, while ADP Igbodo had the highest average value for ²³²Th which may be due to 274 higher clay content compared to other locations with lower values. The average activity concentration 275 of ⁴⁰K, ²²⁶Ra and ²³²Th in cassava crop were found to be much greater than the world value of 50(25-276 75), 8(1-9) and 3(2-10) Bgkg⁻¹ [24]. By comparing Tables 1 and 2, it is obvious that the mean 277 concentration of ⁴⁰K and ²³²Th in the sample crops are repeatedly higher than their corresponding mean 278 activity composition in soil. The content of radioisotopes in the soil should be greater when related to 279 the corresponding food crop owing to radioisotope solubility. The opposite has been observed in this 280 work and may be due to difference in soil properties of the study area considered by Ole, relative to 281 radionuclide retention under different weather conditions. High values of ²³²Th and ⁴⁰K were observed 282 in all samples. This may be due to high clay content of the soil (for ²³²Th)[22, 25] and the use of 283 fertilizers (for ⁴⁰K). ⁴⁰K is also known as a very important nutrient for fertilization hence the high 284 uptake by plants. Also, the high values of thorium observed in the crops may have been acquired 285 during the process of sun drying in the open air during which natural radioactive particles in air could 286 settle on them [26]. The result of this work is generally higher than the results obtained in available 287 literatures [27, 28, 29, 30, 31]. These values suggest that the consumption of the cassava crop in this 288 area might pose a high potential health hazard to consumers. 289

290

The mean activity concentrations ⁴⁰K and ²³²Th in soil samples were higher than the world average 291 value of 400 Bqk⁻¹ and 30 Bqk⁻¹ [32]. It is pertinent to note that different soil properties and weather 292 conditions affect the accumulation of radioisotopes. The accumulation of ⁴⁰K may be affected by 293 several determinants such as cation exchange capacity (CEC), type and pH of the soil [7, 33]. The soil 294 295 type fall under the clay mineral property which usually bear a negative charge. According to Wild, [34], the negative charge on the clay is balanced by that on the cations through the CEC process. 296 Potassium is one of the basic cations and so the ability of the soil to hold cations increases its presence. 297 The high values of thorium obtained may be due to the occurrence of thorium erosion process during 298 which it is adsorbed in the soil immediately [34]. It may also have been due to the application of 299 fertilizers to the soil and high clay content [18]. It is important to note that the activity composition of 300 all radioisotopes in the control sample are less than the mean values measured in the experimental 301 samples. The average activity concentration of ²²⁶Ra shows a slight increase in concentration higher 302 than the world average of 35 Bqkg⁻¹ [32] which may be due to the application of fertilizers to recover 303 soils of depleted nutrients due to farming and erosion. The variation in activity concentration of ⁴⁰K. 304 ²³²Th and ²²⁶Ra in the three farms studied may be due to differences in fertilizer application and system 305 of farming. The result of activity concentration of ⁴⁰K, ²³²Th and ²²⁶Ra obtained in this study were 306 higher than those obtained in similar work done by other researchers except for potassium -40307 308 [2,8,18]. This may be due to differences in soil physio-chemical properties of the study areas and different fertilizers application. 309

The radiological health risk parameters calculated from activity concentration of radionuclides in the 311 soil are presented in Table 4. The average values of radium equivalent activity (Raeg), absorbed dose 312 rate (D), annual effective dose rate (AEDE), internal hazard index and excess life cancer risk (ELCR) 313 are 1009.27 Bgk⁻¹, 346.50 nGyh⁻¹, 1.51 mSvy⁻¹, 2.78 and 3.92 x 10⁻³ for respectively. These values 314 were higher than their corresponding permissible values of 370Bgk⁻¹, 55nGyh⁻¹, 1.0 mSvy⁻¹, and 0.29 x 315 10^{-3} respectively. The mean values of H_{ex} and H_{in} are greater than unity and may therefore constitute a 316 significant radiological health risk. The mean annual gonad dose estimated value of 2943.90 mSvy⁻¹ 317 was above the world acceptable value of 300 mSvy⁻¹ and the annual effective dose in all the samples 318 except in few locations as shown in Figure 2, exceeded the safe value of 1.0 mSvy⁻¹. The use of soil 319 from these farms and the crops may constitute a threat to the bone marrow and general health 320 conditions of the inhabitants[30]. 321

322

323 4.2 Transfer Factor

The transfer factor (TF) is the ratio that depicts the quantity of radionuclide expected to enter the crop 324 from soil [33]. TF for all radioisotopes were calculated using equation 3 and are recorded in Table 3. 325 For 40 K, the transfer factor range from 0.68(Idumu₁) to 4.50 (MOA) with an average value of 1.55. 326 ²²⁶Ra was from 0.00 (MOA₅) to 1.81(MOA) with an average value of 0.99 while TF for ²³²Th ranges 327 from 0.00 (MOA₅) to 3.41 (MOA₁) with an average of 1.66. These values imply a moderate rate of 328 radioisotope absorption by cassava. These values were above the recommended IAEA values for 329 Thorium (8.2×10^{-3}) and Uranium $(^{226}$ Ra) (8.9×10^{-2}) for cassava for tropical environments. The high 330 value of transfer factor for ⁴⁰k may be due to its importance in plant growth, fertilization and 331 adaptability of plant to environmental pressures [36]. It may have also been enhanced by the 332 application of NPK fertilizers. Thorium showed the highest mean transfer factor which may be due to 333 its higher accumulation in soil and higher uptake by plants (Figure 3). The average transfer factors of 334 226 Ra (0.99) < 40 K (1.55) < 232 Th (1.66) show that although activity concentration of the natural 335 radioisotopes in the area under study are high, the rate at which they are transferred to cassava are still 336 moderate. A lot of care must be taken in the use of transfer factor to determine food safety for 337 consumption [28]. The mean transfer factor for ⁴⁰K, ²²⁶Ra and ²³²Th cassava crop samples obtained in 338 this work are higher than the values of 0.18, 0.29 and 0.25 obtained by Ibitola et al., [37]. This could be 339 due to differences in soil type, pH, organic matter and other related factors. 340

341

Transfer factor varies with location and plant type (figure 3). From the definition of transfer factor, it is 342 assumed that the plant concentration increases with increased soil concentration. The result of this 343 work shows the opposite of this assumption. For example, the activity concentration of ⁴⁰K in soil 344 sample SMOA1 is 92.07 ± 35.08 Bgkg⁻¹ with a transfer factor of 4.50 while SMOA2 is 556.21 ± 13.25 345 Bqkg⁻¹ with a transfer factor of 1.18. Figure 3 show the variation of TF according to the sample 346 location. It is very obvious that ²³²Th recorded TF value of 5.80 at ADP-Illoh 1. ADP farm uses 347 phosphate fertilizer to improve soil fertility and such enhanced the concentration of thorium in that 348 soil. The TF result of this work buttresses the fact that TFs are not linearly related to soil concentration 349 [38]. Many factors affect the transfer factor such as physiochemical characteristics of radioisotopes and 350 soil, plant species, soil pH and fertility, plant type, organic matter content and soil management 351

practices. Comparing the result with available literatures, the transfer factor in this work is higher than the values obtained by Tchokossa *et al.*,[28] except for potassium. It is also higher for all radionuclides when compared with results obtained by other researchers [30, 39, 40 and 41]. This may be due to difference in soil properties and climatic conditions of the areas [19].

356

357 **5.** Conclusion

The uptake and distribution of natural radionuclide in cassava crops from Nigerian government farms 358 was determined using gamma spectroscopy and radiation models. The activity concentration of ⁴⁰K, 359 ²³²Th and ²²⁶Ra in soil and cassava crop samples were higher than the world average recommended by 360 UNSCEAR and IAEA respectively. The mean values of the transfer factor for ²²⁶Ra, ²³²Th and ⁴⁰K are 361 0.99, 1.66 and 1.55 respectively. These transfer factors for the radioisotope estimated show they are 362 higher than the safe limit of 8.9 x 10^{-2} for 226 Ra, 8.2 x 10^{-6} to 3.9 x 10^{-5} for 232 Th in cassava crop. The 363 concentration of radioisotopes in the food stuffs may not cause immediate health hazard to the public 364 but there may be a long term accumulative effect following the dose intake from the consumption of 365 the crops. The radiological parameters estimated from the activity concentration of radionuclide in soil 366 exceeded their respective permissible limits. This implies that the use of fertilizer in agricultural farms 367 enhances the concentration of nuclides in the soil thereby aiding the radiological contamination of 368 agricultural products. Consumption of such products like the cassava in this study could be detrimental 369 to human health. 370

371 **References**

- Alharbi W.R. (2013). Natural radioactivity and dose assessment for brands of chemical and organic fertilizers used in Saudi Arabia. *Journal of Modern Physics*; 4:344-348.
- Uosif, M.A.M., A.M.A. Mostafa, R. Elsaman and E. Moustafa (2014) Natural radioactivity levels
 and radiological hazards indices of chemical fertilizers commonly used in upper Egypt. *Journal of Radiation Resources, Applied Science*, 7: 430-437
- Ei-Taher, A. and Abbady Adel, G.E (2012). Natural radioactivity levels and associated radiation
 hazards in Nile river sediments from Aswan to El-minia, upper Egypt. *Indian journal*, volume
 50, 224-230
- [4] Vandenhove, H., Olyslaeger, G., Sanzharova N., Shubina O., Reed E., Shang Zand Velasco H.
 (2009). Proposal for new best estimates of the soil to plant transfer factor of U, TH, Ra, Pb and
 Po. J. Environ. Radioact. 100:721-732.
- Harb S. (2015). Natural Radioactivity concentration and annual effective dose in selected
 vegetables and fruits, Journal of Nuclear and particle Physics 5(3):70-73.
- 385
- [6] World Health Organisation (WHO, 2011). Guidelines for drinking-water quality 4, Fourth
 Edition.

- [7] Ononugbo, C.P, Avwiri, G.O, Tutumeni, G, (2016). Measurement of Natural Radioactivity and
 Evaluation of radiation hazards in soil of Abua/Odual district of Rivers state, Nigeria, using
 multivariate statistical approach. *British Journal of science*, Volume 4, No.1, 3-
- [8] Asaduzzaman, K. Khanadakar m.u., Anin Y.M, Bradley D.A. Mahat R.H. and Nor R.M. (2014).
 Soil-to- root vegetable transfer factors for ²²⁶Ra, ²³²Th, ⁴⁰K and ⁶⁸Y in Malaysia. *J. Environ. Radioact.* 135:120-127
- Long W.J., Leland W. Tarne and Malcolm P. North (2017). Aligning smoke management with
 Ecological and public health goals. J. Fores. 116(1):76-86.
- FAO, (2008). The state of food and Agriculture 2008. Biofuels; prospect, risks and opportunities. Viale delle terme di Caracalla, 00153 Rome, Italy
- Amposah, J. (2016). Insight: cassava farming in Ghanah ;the business in it. Available at https://www.topbusinessjournal.com/insight-cassava farming-ghana-business. Accessed 23/09/2017.
- 401 [12] Adjei-Nsia S. and Sakyi-Dawson O. (2012). Promoting cassava as an industrial crop in Ghana:
 402 effects on soil fertility and farming system sustainability. *Appl. Environ. Soil sci 1:1-8*
- 403
- 404 [13] Svetlana,G. Gordana, V. Branislava,M. and Petrujkić B. (2010). "Natural and anthropogenic
 405 radioactivity of foodstuffs, mosses and soil in the Belgrade environment", *Arch. Biol. Sci.*, 62
 406 (2), pp.301-307 2010.
- 407 [14] Faanu, A. Adukpo, O. Okoto, D., Diabor, E. Darko, E.A and Emi-Reynolds, A (2011).
 408 "Determination of Radionuclides in Underground Water Sources within the Environments of
 409 University of Cape Coast", *Research Journal of Environmental and Earth Sciences*, 3(3): 269410 274.
- 411 [15] IAEA-TECDOC 1472. (2004) "Proceedings of an international conference on naturally occurring radioactive materials (NORM IV)". Szczyrk, Poland, 17-21 May
- 413
- [16] UNSCEAR.(2000) "Sources, effects and risks of ionizing radiation". United Nations Scientific
 Committee on the Effects of Atomic Radiation, Report to the General Assembly, with Annexes,
 New York, 2000.
- [17] IAEA, (1996) "International safety standards for protection against ionizing radiation and the safety of radiation sources". Safety series No. 115: 10-16
- Tawalbeh, A. A., Samat, S. B., Yasir, M. S. and Omar, M. (2012) Radiological impact of drinks intakes of naturally occurring radionuclides on adults of central zone of Malaysia, *Malaysian Journal of Analytical Sciences*, 16(2),187 193.
- IAEA (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA TECDOC-1363
- IAEA (International Atomic Energy Agency) (1989). A Guidebook for the Measurements of
 Radionuclides in Food and the Environment, Technical Report Series 295, Vienna

426		
427 428 429	[21]	Saleh, I. H., Hafe, A.F., Alanary, N.H., Motaoveh, H. A. and Naim, M.A. (2007). Radiological Study of Soils, Foodstuff and Fertilizers in the Alexandria region, Egypt, Turkey <i>Journal of Environmental Science</i> , 31, 9-17
430 431 432	[22]	Shanthi, G., Kumaran, J. T. T., Raj, G. A. G. and Maniyan, C.(2012). Transfer factor of the radionuclides in food crops from high-background radiation area of south west India. Radiation Protection Dosimetry, 149(3), 327-332
433 434 435	[23]	Sabbarese, C., Stellato, L., Cotrufo, M.F., D'Onofrio, A., Ermice, A., Lubritto, C., Terrasi, F., Alfieri, S. & Migliore, G. (2002b) Dependence of radionuclide transfer factor on plant growth stage. Environmental Modeling and Software, 17(6), 545-551
436 437	[24]	IAEA (International Atomic Energy Agency) (1995). The interception, initial and post deposition retention by vegetation of dry- and wet-deposited radionuclides, Vienna
438 439 440	[25]	United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) (2008) Report to the general assembly. Annex B: exposures of the public and workers from various sources of radiation
441 442 443	[26]	Eriksson, J., Öborn I., Jansson G., Andersson A. (1996). Factors influencing Cd-content in crops. Results from Swedish field investigations. <i>Swedish Journal of Agricultural Resources</i> ; 26: 125–33.
444 445 446	[27]	Alsaffar, M. S., Jaafar, M. S., Kabir, N. A. and Ahmad, N (2015). Distribution of ²²⁶ Ra, ²³² Th, and ⁴⁰ K in rice plant components and physicochemical effects of soil on their transportation to grains. <i>Journal of Radiation Resources Applied. Science</i> , 8(3): 300-310.
447 448 449	[28]	Al-masri, M.S; Al-Akel, B. Nashawani, A. Amin, Y. Khalifa, K.H. and Al-Ain, F. (2008). Transfer of 40K, 238U,210Pb and210 Po from soil to plant in various locations in South of Syria. Journal of Environmental radioactivity. 99(2):322-331.nbgfre4wpthj. mn nnv nb
450 451 452	[29]	Tchokossa P, Olomo J B, Balogun F A and Adesanmi C A (2013) Assessment of radioactivity contents of food in the oil and gas producing area in Delta State, Nigeria International <i>Journal of Science and Technology</i> . 3 245–50
453 454 455	[30]	Ononugbo, C.P, Avwiri, G.O, Tutumeni, G, (2016). Measurement of Natural Radioactivity and Evaluation of radiation hazards in soil of Abua/Odual district of Rivers state, Nigeria, using multivariate statistical approach. <i>British Journal of science</i> , 4 (1): 3-48.
456 457 458	[31]	Avwiri, G.o., Agbalagba, E.A (2013). Assessment of natural radioactivity associated radiological health hazard indices and soil to crop transfer factors in cultivated area around a fertilizer factory in Onne, <i>Nigerian Journal of Environmental Radioactivity</i>
459 460 461	[32]	Dragovic, S. Jankovic-Mandict, L. DragovicM. Dokie, M. and Kavacevic J. (2014). Lithogenic radionuclides in surface soils of Serbia: Spatial distribution and relation to geological formations. Journal of Geochemical exploration.142:4-10.

462 [33] Jibiri, N.N and Abiodun T.H. (2012). Effects of Food diet preparation techniques on
463 Radionuclide intake and its implications for individual ingestion effective dose in Abeokuta,
464 Southwestern Nigeria. *World Journal of Nuclear Science and Technology, 2: 106-113.*

465

- 466 [34] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000)
 467 Sources and effects of ionizing radiation (Report to the General Assembly).United Nation,
 468 New-York
- [35] Nkuba, L.L. and Sungita, Y.Y. (2017). Radioactivity Levels in maize from high background radiation areas and dose estimates for the public in Tanzania. Physical science international journal, 13(3): 1-8.
- Idowu, M. (2014). Physics in Radiation Application and Safety for National Technological
 Advancement. Nigeria Institute of Physics Conference [36] Pulhani, V., Dafauti, S., Hegde, A.,
 Sharma, R. and Mishra, U. (2005) Uptake and distribution of natural radioactivity in wheat
 plants from soil. *Journal of Environmental Radioactivity*, 79(3), 331-346
- Ibiotola,A. Gilbert, Ajanaku Olanrewaju, ilori, Abiola Olawale, Aremu, R.O. and Omosebi,A.A.I (2018).measurement of ⁴⁰K, ²³²Th and ²³⁸U and the associated Dose rates in soil and commonly consumed foods (vegetables and tubers) at Okitipupa, Ondo State, Southwestern Nigeria. Asian Journal of Research and Reviews in Physics. 1 (1): 1-18.
- [38] Martinez-Aguirre, A., Garcia-Leon, M., (1997).Radioactivity impact of phosphate ore
 processing in a wet marshland in southwestern Spain. *Journal of Environmental Radioactivity*.34, 45–57.
- [39] Saeed, M.A., Yusof, S.S., Hossain, I., Ahmed, R., Abdullah, H.Y., Shahid, M., Ramli, A.T.,
 (2012).Soil to rice transfer factor of the natural radionuclides in Malaysia. *Roman Journal of Physics*, 57 (9–10), 1417–1424
- [40] Karunakara, N., Rao, C., Ujwal, P., Yashodhara, I., Kumara, S. and Ravi, P. (2013). Soil to rice transfer factors for ²²⁶ Ra, ²²⁸ Ra, ²¹⁰ Pb, ⁴⁰ K and ¹³⁷ Cs: a study on rice grown in India. *Journal of Environmental Radioactivity*, 118, 80-92.
- [41] Osiga, A. D. (2014). Radiation Level Measurement in Delta State University, campus 1, Abraka,
 Nigeria. Science-African Journal of Scientific Issues, Research and Essays. 2(11): 479-490
- 491
- 492

- 493
- 494 495