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ABSTRACT:

An extended Tanh-function method with Riccati equation is presented for constructing multiple
exact travelling wave solutions of some nonlinear evolution equations which are particular cases
of a generalized equation. The results of solitary waves are general compact forms with non-zero
constants of integration. Taking the full advantage of the Riccati equation improves the
applicability and reliability of the Tanh method with its extension form.

Keywords: Extended Tanh method, Riccati equation, Solitary waves, Evolution equations.

1. Introduction

Nonlinear partial differential equations (NLPDES) play a major role in the study of nonlinear
science. In recent decades, constructing the exact solitary travelling wave solutions and solitons
of NLPDEs have become an important research subject due to the constant proposing of
analytical methods, say, [1]-[9]. Among these methods, the powerful Hyperbolic Tangent (Tanh)
method [2], [10] has been tremendously developed in the literature — for instance [3], [4], [11].
More precisely, the Extended Tanh method (later known as Tanh-coth method) and its modified
form was introduced by [3]-[5], which has been successively utilized to obtain solution of
NLPDEs. The Modified Extended Tanh method with Riccati equation [5], [11], [12] is widely
recognized as one of the most powerful tools used in a favor of obtaining the explicit solitary
travelling wave solutions of NLPDEs.

The following NLPDE are proposed as a generalization of the mentioned equations, involving
nonlinear dispersion and dissipation effects [13]:

2
U, +auu, + puu, +vu, +uu, =0 1)

where aff#0,vu=0 and pare all arbitrary constants. Considering the setting of these
parameters to be equal to special values with £ =0, equation (1) is reduced to KdV-Burgers
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equation (p=3, avu#0), and to Kuramoto-Sivanshinsky p =4, avu = 0. Which they have
the following well-known forms (respectively):

u, +auu, +vu, + uug, =0 )
u, +auu, +vu, +uu,, =0 3)

However, the class of this NLPDE when S = Qis considered in [14]. This paper is organized to

fully present the algorithm of the considered method in Section.2, Analytical solution in the form
of solitary travelling wave solutions of equation (1) with its special parameters’ values are
obtained in Section.3. Finally in Section.4 concluding remarks are presented.

2. Methodology of the method

The solitary wave solution of a NLPDE in two variables x, t :

¥, (u,u,u,u,u,...)=0 (4)

are the solution of the nonlinear ordinary differential equation NLODE :

¥,(U,UU"U",..)=0 (5)
which is obtained by the travelling wave transformation u(x,t) =U({)=U(x—-wt), and the

prime denotes the ordinary derivative with respect to § . Introducing a new variabley = (<),
that satisfies the Riccati equation of the form:

VO =Ky ©)

where K is a real constant. The modified Extended Tanh method with Riccati equation admits

that the solution of (5) can be expressed by a polynomial in 1//j :

u(x,t)=U(§)=aNy/N +aN71'//N totay+a,

-1 -N-1 -N (7)
+hy T+ by T+

where N is the balancing integer. Substituting (6) along with (7) into (5) then setting the
coefficients of all powers of g//(g“)j to zero, a nonlinear algebraic system is generated with
respect to parameters ao,aj,bj ,K, . By the test sign of k , the Riccati equation (6) has the
well-known general solutions:

1
1 k=0 8
v($) 5 ®)
—ﬁtanh(ﬂ(x—wt))
y(¢)= k<0 ©)
—J=K coth(v/=k (x-at))
Vi tan (Vi (x-at))
w(¢)= k>0 (10)

~JKkcot(vk (x-at))
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3. The solitary travelling wave solutions

3.1 Explicit solution of KdV-Burgers equation

Using the wave transformation prescribed in the previous section, gives rise to the NLODE:
—aJ +cUU + WU+ 0" =0 (1)

Integrating (11) with respectto &, to get:
a 2 ’ "

—oU +—U "+ '+ U " +7, =0 (12)
2

where 77yis an arbitrary constant. With N = 2 (balancing U 2and U ") therefore (7) admits the
ansatz:

U(¢) =a, +aw($) +aw’ () +by () +by () (13)

Substituting (13) into (12) and with the use of (6), we obtain the following algebraic system by
setting all the coefficients of ), j =0, £1, + 2to zero:

2
6k2ub, + “:2

-0,

2k? b, — 2kvb, +abyb, =0,

2
—kvb, + “;1 +8K b, — b, + aagh, =0,
2k ub, — b, + aa,b, —2vb, + aab, =0,
2
n-a, +%+ kva, +2k*ua, —vb +aab, +2ub, + aa,b, =0,
2k pa, — wa, + aaya, + 2kva, +aa,h, =0,
2

va, +%+8k,ua2 -wa, +aa,a, =0,

2ua, +2va, +aaa, =0,

2
a.
6ua, + “22 =0

The system in (14) is solved by the aid of Mathematica, and taking in consideration the solution
of Riccati equation (8) - (10), we obtain the following families of solution:

Familyl.
% 144kv? + 250° -12ku+w 12kv 12k?u
=- T A= 8 = 8 =23,=0b= b, = -
100 507 a 5 a (15)

n and o are an arbitrary

As it is noted the value of k <0 whenever (v,u)2 >0, thus the corresponding travelling wave
solution is:

(14)
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1,607 3’

u, (X, t)=—— w)— (coth(—(x o)) —1)?
25au
Family2.
2 2 2 _
k=__V 2’0!:144kv + 25w 8 = 12kﬂ+w,a1:—&,a2— 12,u b =b, =0
100 507 a 5a

w is an arbitrary.

Since k <0 whenever ( ) >0 thus the corresponding travelling wave solution is:

Uy (x,t) == (S;ﬂmj ;;aﬂ(t h(—(x wt)) - 1}

Family3.
% 576kv? + 250° 24Ky + o 12v 12u
= 2‘a: ’a0: s :—_laZZ—_,
400 507 a 5 a

b, = —ka,,b, = k®a,, @ is an arbitrary)

Since k <0 whenever ( ) >0 thus the corresponding travelling wave solution is:

Uy (x,t) = 1[ﬂ+wJ+%tanh(z)[ qf tanh(z)j qu coth(z)( 4q coth(z)j

a

This can be reduced to obtain solitary wave solution(16).

Family4.
612 V2 12k u+w
= __, = O, k = Il = ! - - 0’
H " 250" 1002 °" " a 2
2
b, - 12kv b, = _1Kp , @ is an arbitrary)
5a a

Since k <0 whenever ( ) >0 thus the corresponding travelling wave solution is:

2 2
Uy (X, t)_l(GL ) -2 [ coth(- (x—tw)) -1
25au 10u
Family5.
_6v? v? 12k +w 12v 124
=F—, :O,k:— , = a, =———,a, = ———,
R TIS 1002 % x AT TR,

b,=0b,=0, wisan arbitrary

(16)

17

(18)

(19)

(20)

(1)

(22)

(23)
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Since k <0 whenever (v,u)2 >0 thus the corresponding travelling wave solution is:

Ug , (X,1) = l( o, a)j ¥ [tanh(%(x — t)) —1)
)7

al\ 25u 25au (24)
Family6.
_6v° v 24k u+ 12v 12
H=F M=0,k=- 518 = ol 731:——.32:——#,
25w 400 a 5a a (25)
b, = —ka,,b, = k’a, @ and o is an arbitrary)
Since k <0 whenever (vu)? >0 thus the corresponding travelling wave solution is:
2 2 2
U () == (4 )~V (tanh(t) — 2)° ——Y— (coth(z) — 2)°
’ a 10u 100cu 100cru
v 1
==, z=—q(x-ot (26)
q P 20 q( )

which is reduced to obtain solitary wave solution (15) .

The graphical representation of some solitary wave solutions of (2) is illustrated as follows:

Figure 1 The plots of solitary wave solutions (18) (7 =10) and (24)when v =1, u = -1, 0 =0.1.

3.2 Explicit solution of Kuramoto-Sivashinsky equation

Making the wave transformation prescribed in the previous section, KS equation(3) is reduced to
the following NLODE:

—aJ'+UU + W+ U0 =0 (27)

Integrating (27) with respect to £ once yields:

—o 42U WU U 4, =0 (28)
2
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n

where &is an arbitrary constant. With N = 3 (balancing U " and U 2) therefore (7) admits the

ansatz:

U(¢) =a, +aw({) +ay’ () +ay’ (§) +by () +by (&) +by () (29)

Substituting (13) into (12) and with the use of (6), we obtain the following algebraic system by
setting all the coefficients of ', j =0, 1, +2, +3to zero:

2

3 ab; B
—60k yba +T =0,

3
—24K" b, +ab,b, =0,
2

6k b, + 22 i =
— /ubl +T—114k Ile3 —3ka3 + ab1b3 = O,

2
—40k” ub, — 2kvhb, + abb, — b, + aa b, =0,
2

b
—8k2ub, —kvb, + “Tl — b, +arayh, — 60k ub, — 3vb, + aab, =0,

—ob, +aayb, —16kub, —2vh, + aab, + aa,b, =0,
2

Qg 2 3
—-oa, + 5 +2k"pa, +kva, +6k”pa, —2kub, —vb, +aab,

+aa,b, —6ub, + aab, +9, =0,

-oa, +ad,a +16k’ ua, + 2kva, +aab, + aagb, =0,
a 2
8kua, +va L wa, +aaya, + 60k’ ua, + 3kva, +aab, =0,
2

40k pra, + 2va, + aa,a, — wa, + aaya, =0,

2

aa,

6ua + +114kpa, +3va, + aa,a, =0, (30)

24a, + aa,a, =0,
2
aa,

60ua, +— =0

The system in (30) is solved by the aid of Mathematica, and taking in consideration the solution
of Riccati equation (8) - (10), we obtain the following families of solution:

Family 1.
) 11y 3600ky> + 3610° L2 08 -0 0
==, =—, =0, =0, =0,
76, 7220, ST RS
(31)
60(38k 1 + k 120k*
b, = M b, =0,b, = 2 wand 0, are arbitraries
19« a

As vu >0, we see that k < 0. Consequently, we obtain:
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129

130
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132

133

134

135

136

137

138

139

140

141

142

143

15v |11 1 fll
ul(x,t):ﬁ——v w—vcoth(z)[g—llcothz(z)], Z=E é(x—wt)

a 19« 7

As vu <0, we see that k > 0, the corresponding solution is:

o 15v 11v 2 1 11y
u,(x,t) =——-——,[-——cot(z)| 9+11cot (z)], z=— [-—(x-wt)
a 19« 194 2 194

Family 2.

v 3600kv’ + 3610’ L2 a0
=——oa=—" ¢ =—,q=a,=3=_
61 7220, T TR
60(38k” 1 + kv) 120k° . o
bj=————",b,=0,b,= , o and 0, are arbitararies
19« a

If vie>0,then k < 0. Consequently, we obtain:

o 15 -v 2 1 |-v
Uy (X, 1) = =+ ——v /—coth(z)([s—coth @] z2== [ (x - ot)
a 19a \19u 2\ 19u

If A < 0, then k > 0. Consequently, we obtain:
7

o 15v v 2 1 |v
u,(x,t) =—+— —cot(z)[3+cot (z)}, Z=—, [—(x—-ot)
a 19« \19u 2\ 19u

Family 3.

11y 3600kv° +361w° w 60(38k 1 +v)
= a:—,ao :—,a1 =—F—,a

76u 7220, a 19a a

b =b,=b, =0, @ and 9, are arbitrarairs

If vie >0, then k < 0. Consequently, we obtain:

o 15 11v 2 1 [11v
U, (1) = =~ ——v, |=— tanh(z) [ 9-11tanh’ (2) ], z==, |=—(x~at)
a 19« \19u 2\19u

If viu <0, then k > 0. Consequently, we obtain:

o 15v |-1lv

1 [-11v
tan(z)[9+11tan(z)], z=— (X — ot)
19« \ 194 2\ 194

Ug(X,1) =—+——

Family 4.

(32)

(33)

(34)

(39)

(36)

@37

(38)

(39)



v 3600kv” + 361w° ) 60(38k 1 + v) 120u
ks—a=———"——3=—a=————,3,=0,8, =—,
144 761 7220, a 19¢ a
145 b =b, =b, =0, w and 0, are arbitraries
(40)

146 If viu <0, then k < 0 and vice versa . Respectively, we obtain:

o 15v -v
147 U (xt) = —+— tanh(z)[s tanh(z)’ |, 2= | at) 41)
a 19« \[19u 2\19u
o 15v 1 v
148 ug(x,t)y =———— —tan(z)[3+tan’(2)], z==,|—(x—at) (42)
a 19a\19u 219,
149
150 Family 5.
11y 14400kv° + 3610° w 60(38K 1 + V) 120u
k=- o= 8, =—, =——————,a8,=0,8, =———,
151 304 1 7220, a 19« a

b, = —ka,,b, = 0,b, = —k’a,, @ andd, are arbitraries

(43)
152 If vu <0, then k < 0 and vice versa . Respectively, we obtain:
15q , 19 15uq’
U0t =2+ 20 (2 g2 +v) tanh(z) + —29- tanh® (2)
a 19 8 8«
15q & 19 Syq
153 +—(——yq +v)coth(z) + ———coth®(z)
19 (44)
111/ 11v
=—,[—(X-at)
19y 19u
159 19 15u0°
Uy (0, t) = 2 - 20 (2 40?4 tan(z) - 2 tan® (2)
a 19 8
15 15u9°
154 +19—q(— uq’ +v)cot(z) + #4 cot3(z) (45)
[04

-11v -11v
= , (X — wt)
19u 19u
155  The solitary wave solutions (44) and (45) can be simplified so that U;(X,t) and U,(X,t)are

156  obtained respectively.

157 Family 6.
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159

160

161

162
163

164

165

166

167

168

169

170

v 14400kv? + 3610°
k= = 8, =
3044 7220,

60(38k i+ v) 120u

’ :_—la :01 == 1
a 19a ? % a (46)

Q|8

=—ka,,b, =0,b, = —k’a,, ® and ¢, are arbitraries

If viu <0, then k < 0 and vice versa . Respectively, we obtain:

o 159 19 15 ,uq

Uy, (%, 1) = —+—(=— uq° +v)tanh(— (X - at)) +———tanh’(z)’
a 19 8 8a
15q 19 15
+ 2922 07 ) coth(z) + Ha’ coth® (2) 47)
192 8 8a
—V
q= z:—q(x wt)
19/1
15 ’
U, (X,t) = 2——q(—ﬂq +v)tan(z) - 1o tan’(z)
a 19
15 15
—q(—yq +v)cot(z) + ua’ cot’(2)
19« 8a (48)

V
q= Z=—q(x wt)
194

The solitary wave solutions (47) and (48) can be simplified so that U(X,t) and u,(X,t)are
obtained respectively.

Family 7.
5 —0 900v° y 3610° G a—a-a -0
Ozllu:— S = — 2,0:—, =a, = =0,
6859w 3600v a (49)
60(38k 1 + kv) 120k o
b=——"——,0b,=0,b, = , o and o are arbitaraies
19« a
Since k <0, it follows that:
19 19
U (%, 1) = 2+ 2 coth(—s (x - a)t))(S— coth? (2 (x - a)t)) (50)
a 2a 60v 60v
Family 8.
5 9900° 3610’ L0 a—a—a -0
, =0, 4= ~k=- -8, =—,a =a,=a,=0,
6859w 3600v a (51)
60(38k > + kv) 120k
b=———,b,=0,b, = , o and o are arbitaraies
19« a

Since k < 0, it follows that:
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172

173

174

175

176

177

178

179

180

181

182

183

184

185

a 2a 60v

U, (x,1) = 9—ﬂcoth(w—”(x—wt))(g—ncothz[?T“’(x —a)t)]j
14

Family 9.
. 900v° 3610 w
OOIOI#:_ 21k:_ 2'a0:_
68590 3600v a
120
a,=0,a =——% b =b =b =0
(04

Since k < 0, it follows that:

a1:

60(38k i +v)
19« ’

19 19
U (X, 1) = 2+~ tanh(— (x —mt))(B—tanhz(—w(x—tw)))
2 60 60v

(04 (24 |4
Family 10.
o =0, 99001/32 P 3616()22 AP
6859w 3600v a
2 :_%’blzbz :ba =0
(24

Since k < 0, it follows that;

0 1
Uy (X, 1) = ———tanh(—
a 2a
Family 11.
. 900v° 3610’
OOIO’/u:_ 2|k:_ S
6859w 14400v
120
a, =———" b =—ka,b, =0,b, = —k’a,
(04

Since k < 0, it follows that;

o q (-19(361)

U, (%,t) =—+—| ———
a 2a 7200

6859.q°

+—
14400

o 19
q==,2="—d(x-at)
v 120

(tanh®(2) +coth3(z)),

2
aOZ_‘alz
a

60(38ku +v) a

19a 2

9w ( , 190 j
(x—wt))| 9—11tanh” (—— (x — wt))
60v 60v

60(38ku +v) a
19« ,

uq’ + v)(tanh(z) +coth(z))

Simplifying (58) the solitary wave solution (50) is obtained.

Family 12.

10

2

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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192

193

194
195

196

99001/° 3610’

R 1) 60(38ku +v)
00:07/12 P =- Zlaoz_lalz_—vazzov
6859 14400v a 19a (59)
120
a,=———" b =—ka,b, =0b, = k’a,
(94
Since k < 0, it follows that;
~19(361
U, (1) = 3+1(¥qu + vj(tanh(z) + coth(z))
a 2a 7200
6859 10"
+2H (e (2) + coth® (2)) (60)
14400
19
q=2=—0q(x-ot)
120

Simplifying (60) the solitary wave solution (52) is obtained.

The graphical representation of some solitary wave solutions of (3) is illustrated as follows:

Figure 2 The plots of solitary wave solutions (32) and (33) when v =1, u =1, 0 = 4; (60 =-10).

Figure 3 The plot of solitary wave solutions (52) when v =1, u =1, w = 4.
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Remark: All solutions are tested to satisfy their related PDEs and more generalized compact
forms with nonzero constant of integration as mentioned in [15].

4, Conclusion

In this presented work, we have established and successfully employed the modified Extended
Tanh method with Riccati equation for obtaining the solitary travelling wave solutions for a given
class of NLPDEs. The method has an advantage of being direct and concise. In addition
Enormous variety of solutions was obtained with the aid of Mathematica software.
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