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ABSTRACT: 13 

An extended Tanh-function method with Riccati equation is presented for constructing multiple 14 
exact travelling wave solutions of some nonlinear evolution equations which are particular cases 15 
of a generalized equation. The results of solitary waves are general compact forms with non-zero 16 
constants of integration. Taking the full advantage of the Riccati equation improves the 17 
applicability and reliability of the Tanh method with its extension form. 18 

 19 
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1. Introduction 21 

Nonlinear partial differential equations (NLPDEs) play a major role in the study of nonlinear 22 
science. In recent decades, constructing the exact solitary travelling wave solutions and solitons 23 
of NLPDEs have become an important research subject due to the constant proposing of 24 
analytical methods, say, [1]–[9]. Among these methods, the powerful Hyperbolic Tangent (Tanh) 25 
method [2], [10] has been tremendously developed in the literature – for instance [3], [4], [11]. 26 
More precisely, the Extended Tanh method (later known as Tanh-coth method) and its modified 27 
form was introduced by [3]–[5], which has been successively utilized to obtain solution of 28 
NLPDEs. The Modified Extended Tanh method with Riccati equation [5], [11], [12] is widely 29 
recognized as one of the most powerful tools used in a favor of obtaining the explicit solitary 30 
travelling wave solutions of NLPDEs. 31 

The following NLPDE are proposed as a generalization of the mentioned equations, involving 32 
nonlinear dispersion and dissipation effects [13]: 33 

2 0t x x xx pxu uu u u u u         (1) 34 

where 0, 0    and p are all arbitrary constants. Considering the setting of these 35 

parameters to be equal to special values with 0  , equation (1) is reduced to KdV-Burgers 36 

                                                            
 



2 
 

equation ( 3,p   0  ), and to Kuramoto-Sivanshinsky 4, 0p   . Which they have 37 

the following well-known forms (respectively): 38 

3 0t x xx xu uu u u       (2) 39 

4 0t x xx xu uu u u       (3) 40 

However, the class of this NLPDE when 0  is considered in [14]. This paper is organized to 41 

fully present the algorithm of the considered method in Section.2, Analytical solution in the form 42 
of solitary travelling wave solutions of equation (1) with its special parameters’ values are 43 
obtained in Section.3. Finally in Section.4 concluding remarks are presented. 44 

2. Methodology of the method 45 

The solitary wave solution of a NLPDE in two variables ,x t :  46 

 1 , , , , , 0t x xt xxu u u u u   (4) 47 

are the solution of  the nonlinear ordinary differential equation NLODE : 48 

 2 , , , , 0U U U U     (5) 49 

which is obtained by the travelling wave transformation ( , ) ( ) ( )u x t U U x t    , and the 50 

prime denotes the ordinary derivative with respect to  . Introducing a new variable ( )   , 51 

that satisfies the Riccati equation of the form: 52 

2( ) ( )
d

k
d

   


   (6) 53 

where k  is a real constant. The modified Extended Tanh method with Riccati equation admits 54 

that the solution of (5) can be expressed by a polynomial in j : 55 

1 1 0

1 1
1 1

( , ) ( ) N N
N N

N N
N N

u x t U a a a a

b b b

   

  


   


     

   




 (7) 56 

where N  is the balancing integer. Substituting (6) along with (7) into (5) then setting the 57 

coefficients of all powers of  ( ) j   to zero, a nonlinear algebraic system is generated with 58 

respect to parameters 0 , , , ,j ja a b k  . By the test sign of k , the Riccati equation (6) has the 59 

well-known general solutions: 60 

1
( ) , 0k 


    (8) 61 

  
  

tanh
( ) 0

coth

k k x t
k

k k x t


 



    
   

 (9) 62 

  
  

tan
( ) 0

cot

k k x t
k

k k x t


 



  
 

 (10) 63 

 64 
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3. The solitary travelling wave solutions 65 

3.1  Explicit solution of KdV-Burgers equation 66 

Using the wave transformation prescribed in the previous section, gives rise to the NLODE: 67 

0U UU U U            (11) 68 

Integrating (11) with respect to  , to get: 69 

2

0 0
2

U U U U


           (12) 70 

where  0 is an arbitrary constant. With 2N  (balancing 
2U and U  ) therefore (7) admits the 71 

ansätz: 72 

2 1 2

0 1 2 1 2( ) ( ) ( ) ( ) ( )U a a a b b                (13) 73 

Substituting (13)  into (12) and with the use of (6), we obtain the following algebraic system by 74 

setting all  the coefficients of , 0, 1, 2j j    to zero: 75 
2

2 2
2

2
1 2 1 2

2
1

1 2 2 0 2

1 1 0 1 2 1 2

2
20

0 1 2 1 1 1 2 2 2

1 1 0 1 2 2 1

2
1

1 2 2 0 2

6 0,
2

2 2 ,

8 ,
2

2 2 ,

2 2 ,
2

2 2 ,

8 ,

0

0

0

0

2

0

0

b
k b

k b k b b b

b
k b k b b a b

k b b a b b a b

a
a k a k a b a b b a b

k a a a a k a a b

a
a k a a a a




  


   

    


       

    


   

 

 

    

   

       

  











   

1 2 1 2
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2

2
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6
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0

0

a a a a

a
a

  






 



 (14) 76 

The system in (14) is solved by the aid of Mathematica, and taking in consideration the solution 77 
of Riccati equation (8) - (10),   we obtain the following families of solution: 78 

Family1. 79 

2 2 2 2

0 1 2 1 22

144 25 12 12 12
, , , 0, ,

50 5100

k k k k
k a a a b b

      
   

 

  
 

and are an arbitrary

= = = = = = =
 (15) 80 

As it is noted the value of 0k   whenever  2
0  , thus the corresponding travelling wave 81 

solution is: 82 
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2

1

2
21 6 3

( ) (coth( ( )) 1)
25 25 10

( , ) xu x tt
   

   
   

 (16)
 83 

Family2. 84 

2 2 2

0 1 2 1 22

144 25 12 12 12
, , , , , 0

50 5100

k k
k a a a b b

      
   



  
   

 is an arbitrary.

= = = = =
 (17) 85 

Since 0k   whenever  2
0   thus the corresponding travelling wave solution is: 86 

2

2

221 6 3
tanh( ( )) 1

25 25 10
( , )t x tu x

   
   
   

    



  
 

 (18)
 87 

Family3. 88 

2 2 2

0 1 22

2
1 1 2 2

576 25 24 12 12
, , , , ,

50 5400

, , )

k k
k a a a

b ka b k a

      
   



  
  

  is an arbitrary

= = = = =

= =

 (19) 89 

Since 0k   whenever  2
0   thus the corresponding travelling wave solution is: 90 

2

3

1 3 3 3
tanh( ) tanh( ) coth( ) coth( )

50 25 4 25 4

1
, ( )

20

( , )
q q q q q

z z zu x t z

q z x t

    
  
  
 

              
    

  



 (20) 
91 

This can be reduced to obtain solitary wave solution(16). 
 92 

Family4. 93 

2 2

0 1 22

2

1 2

6 12
, 0, , , 0,

25 100

12 12
, , )

5

k
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k k
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 (21) 94 

Since 0k   whenever  2
0   thus the corresponding travelling wave solution is: 95 

22 2

4,5

1 6 3
( ) coth( ( )) 1
25 25

( , )
10

x t x tu
   

   
     
 


 (22)

 96 

Family5. 97 

2 2

0 1 22

1 2

6 12 12 12
, 0, , , , ,

25 5100

0, 0,

k
k a a a

b b

      
   



 
   

 is an arbitrary

 = = = = =

= =

 (23) 98 
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Since 0k   whenever  2
0   thus the corresponding travelling wave solution is: 99 

22 2

6,7

1 6 3
tanh( ( )) 1

25 25 10
( , )u x x tt

   
   
   

      



   (24)

 100 

Family6. 101 

2 2

0 1 22

2
1 1 2 2

6 24 12 12
, 0, , , , ,

25 5400

, )

k
k a a a

b ka b k a

      
  








 
  

 and  is an arbitrary

= = = = = =

= =

 (25) 102 

Since 0k   whenever 2( ) 0   thus the corresponding travelling wave solution is: 103 

   
2 2 2

9

2

8,

21 3 3 3
( ) tanh( ) 2 coth( ) 2
10 100 100

(

( , )

1
,

20
)

u x z

z xq t

t t

q






 
   



  

 

 





 (26) 
104 

which is reduced to obtain solitary wave solution (15) . 
105 

The graphical representation of some solitary wave solutions of (2) is illustrated as follows: 106 

 107 

Figure 1 The plots of solitary wave solutions (18) ( 10)   and (24) when 1, 1, 0.1      . 108 

 109 

3.2  Explicit solution of Kuramoto-Sivashinsky equation 110 

Making the wave transformation prescribed in the previous section, KS equation(3) is reduced to 111 
the following NLODE: 112 

(4) 0U UU U U            (27) 113 

Integrating (27) with respect to  once yields: 114 

2

0 0
2

U U U U


            (28) 115 
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where  0 is an arbitrary constant. With 3N  (balancing U  and 2U ) therefore (7) admits the 116 

ansätz: 117 

2 3 1 2 3

0 1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )U a a a a b b b                       (29) 118 

Substituting (13)  into (12) and with the use of (6), we obtain the following algebraic system by 119 

setting all  the coefficients of , 0, 1, 2, 3j j     to zero: 120 
2

3 3
3

3

2 2 3

2
3 22

1 3 3 1 3

2

2 2 1 2 3 0 3

2
2 1

1 1 2 0 2 3 3 1 3
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24 ,
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0

0

0
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2

b
k b

k b b b

b
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k b k b b b b a b

b
k b k b b a b k b b a b
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1 0 1 2 2 1 2 2 3

2
2 30

0 1 1 3 1 1 1 1

2 2 3 3 3 0

2

1 0 1 2 2 2 1 3 2

2
21

1 1 2 0 2 3 3 3 1

2

16 2 ,

2 6 2
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6 ,

16 2 ,

8 60 3 ,
2

4

0

0 2

0

0

0

b a b k b b a b a b

a
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a b b a b
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a
k a a a a a k a k a a b

k a

     


      

  

     


      



     

       

   

     

    



 







ò

2 1 2 3 0 3

2

2
1 3 3 1 3

2 2 3

2

3
3

,

6 1

0

14 3 ,
2

24 ,

60 0

0

0

2

a a a a a a

a
a k a a a a

a a a

a
a

   


   

 




  

  











 (30)

 122 

The system in (30) is solved by the aid of Mathematica, and taking in consideration the solution 123 
of Riccati equation (8) - (10),   we obtain the following families of solution: 124 

Family 1. 125 

2 2

0 1 2 3

0

2 3

1 2 3 0

11 3600 361
, , , 0, 0, 0,

76 722

60(38 ) 120
, 0, ,

19

k
k a a a a

k k k
b b b

   


 

  


 


      


    a  are arbitrand ries

ò

ò

 (31) 126 

As 0  , we see that 0k  . Consequently, we obtain: 127 
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2

1

15 11 1 11
( , ) coth( ) 9 11coth ( ) , ( )

19 19 2 19
u x t z z z x t

   


   
        (32) 128 

As 0  , we see that 0k  , the corresponding solution is: 129 

2

2

15 11 1 11
cot( ) 9 11cot ( ) , ( )

19 19 2 19
( , )u x t z z z x t

   


   
         (33) 130 

Family 2. 131 

2 2

0 1 2 3

0

2 3

1 2 3 0

3600 361
, , , 0,

76 722

60(38 ) 120
, 0, ,  and  are arbitararies

19

k
k a a a a

k k k
b b b

   


 

  


 


     


  

ò

ò

 (34) 132 

If 0  , then 0k  . Consequently, we obtain: 133 

2

3

15 1
coth( )( 3 coth ( )( , ) ), ( )

19 19 2 19
z z zu x x tt

  
 

   





      (35) 134 

If 0


 , then 0k  . Consequently, we obtain: 135 

2

4

15 1
cot( ) 3 cot ( ) , ( )

19 19 2 1
, )

9
(u x z z z x tt

   


   
        (36) 136 

Family 3. 137 

2 2

0 1 2 3

0

1 2 3 0

11 3600 361 60(38 ) 120
, , , , 0, ,

76 722 19

0,

k k
k a a a a

b b b

      


   



 
       

    and are arbitrarairs

ò

ò

 (37) 138 

If 0  , then 0k  . Consequently, we obtain: 139 

2

5

15 11 1 11
tanh( ) 9 11tanh ( ) , ( )

1
( , )

9 19 2 19
u x t z z z x t

  
 

   
       (38) 140 

If 0  , then 0k  . Consequently, we obtain: 141 

 6

15 11 1 11
tan( ) 9 11ta( , ) n( ) , ( )

19 19 2 19
z zu x t z x t

   


   


 
     (39) 142 

Family 4.  143 
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2 2

0 1 2 3

0

1 2 3 0

3600 361 60(38 ) 120
, , , , 0, ,

76 722 19

0,

k k
k a a a a

b b b

      


   



 
       

   and  are arbitraries

ò

ò    

144 

 (40)

 145 

If 0  , then 0k  and vice versa . Respectively, we obtain: 146 

2

7

15 1
( , ) tanh( ) 3 tanh( ) , ( )

19 19 2 19
u x t z z z x t

   


   

 
        (41) 147 

2

8

15 1
( , ) tan( )[3 tan ( )], ( )

19 19 2 19
u x t z z z x t

   


   
      (42) 148 

 149 

Family 5. 150 

2 2

0 1 2 3

0

3

1 1 2 3 3 0

11 14400 361 60(38 ) 120
, , , , 0, ,

304 722 19

, 0, ,

k k
k a a a a

b ka b b k a

      




   

 
        

     and are arbitraries

ò

ò

(43)

 

151 

If 0  , then 0k  and vice versa . Respectively, we obtain: 152 

3
2 3

9

3
2 3

15 19 15
( , ) ( ) tanh( ) tanh ( )

19 8 8

15 19 15
( ) coth( ) coth ( )

19 8 8

11 1 11
, ( )

19 4 19

q q
u x t q z z

q q
q z z

z x tq

 
 

  


 

 

 


 

    

  







  (44)  

153 

3
2 3

10

3
2 3

15 19 15
( , ) ( ) tan( ) tan

19 8 8

15 19 15
( ) cot( ) cot

19 8 8
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, ( )

1
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(

9 1

)

4 9

q q
u x t q z z

q q
q z

z x

z

q t

 
 

  


 

 

 


 

   

  


 



 (45) 154 

The solitary wave solutions (44) and (45) can be simplified so that 1( , )u x t  and 2( , )u x t are 155 

obtained respectively.  156 

Family 6. 157 
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2 2

0 1 2 3

0

3

1 1 2 3 3 0

14400 361 60(38 ) 120
, , , , 0, ,

304 722 19

, 0, ,

k k
k a a a a

b ka b b k a

      


 



 

 
       

      and are arbitraries

ò

ò

  (46) 158 

If 0  , then 0k  and vice versa . Respectively, we obtain: 159 

3
2 3 3

1

3
2 3

1

15 19 1 15
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19 8 4 8
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(
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1
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 (47) 160 
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3
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( ) tan( ) tan( , ( )

19 8 8
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( ) cot( ) cot ( )
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1
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1 4
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 (48)
  161 

The solitary wave solutions (47) and (48) can be simplified so that 3( , )u x t  and 4( , )u x t are 162 

obtained respectively.  163 

Family 7. 164 

3 2

0 0 1 2 32 2

2 3

1 2 3

900 361
0, , , , 0,

6859 3600

60(38 ) 120
, 0, ,  and are arbitaraies

19

k a a a a

k k k
b b b

  


 

  
 

 

        


  

ò

 (49) 165 

Since 0k  , it follows that: 166 

2

13

19 19
( , ) coth( ( )) 3 coth ( ( )

2 60 60
u x t x t x t

   
 

   
     

 
 

 (50) 167 

Family 8. 168 

3 2

0 0 1 2 32 2

2 3

1 2 3

9900 361
0, , , , 0,

6859 3600

60(38 ) 120
, 0, ,  and are arbitaraies

19

k a a a a

k k k
b b b

  


 

  
 

 

       


  

ò

 (51) 169 

Since 0k  , it follows that: 170 
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2

14

19 19
( , ) coth( ( )) 9 11coth [ ( )]

2 60 60
u x t x t x t

   
 

   
     

 
 

 (52) 171 

Family 9. 172 

3 2

0 0 12 2

2 3 1 2 3

900 361 60(38 )
0, , , , ,

196859 3600

120
0, , 0

k
k a a

a a b b b

    


  





       

     

ò

 (53) 173 

Since 0k  , it follows that: 174 

2

15

19 19
tanh( ( )) 3 tanh ( ( ))

2 60 60
( , ) x t tu xx t

   
 

   
     

 
 

 (54) 175 

Family 10. 176 

3 2

0 0 1 22 2

3 1 2 3

9900 361 60(38 )
0, , , , , 0,

196859 3600

120
, 0

k
k a a a

a b b b

    


  





       

    

ò

 (55) 177 

Since 0k  , it follows that: 178 

2

16

19 19
tanh( ( )) 9 11ta( , nh ( ( ))

2 60 6
)

0
u x x x tt t

   
 

   
    

 
 

 (56) 179 

Family 11. 180 

3 2

0 0 1 22 2

3

3 1 1 2 3 3

900 361 60(38 )
0, , , , , 0,

196859 14400

120
, , 0,

k
k a a a

a b ka b b k a

    


  





        

      

ò

 (57) 181 

Since 0k  , it follows that: 182 
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3 3

1
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tanh ( ) coth ( ) ,

14400
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, ( )

)

1 0

( ,

2

q
q z z

q
z z

q z q x
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 (58) 183 

Simplifying (58) the solitary wave solution (50) is obtained. 184 

Family 12. 185 
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3 2

0 0 1 22 2

3

3 1 1 2 3 3

9900 361 60(38 )
0, , , , , 0,

196859 14400

120
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k
k a a a
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ò

 (59) 186 

Since 0k  , it follows that: 187 

 

 

2

3

8

3 3

1

19(361)
tanh( ) coth( )

2 7200
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tanh ( ) coth ( )

14400
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( )
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( , )

,

q
q z z

q
z z

q

u x t

q z x t


 

 








  

 





 

 
 
 

 (60) 188 

Simplifying (60) the solitary wave solution (52) is obtained. 189 

The graphical representation of some solitary wave solutions of (3) is illustrated as follows: 190 

  191 

Figure 2 The plots of solitary wave solutions (32) and (33) when 01, 1, 4; ( 10)      ò . 192 

 193 

 194 

Figure 3 The plot of solitary wave solutions (52) when 1, 1, 4     . 195 

 196 
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Remark: All solutions are tested to satisfy their related PDEs and more generalized compact 197 
forms with nonzero constant of integration as mentioned in [15]. 198 

4. Conclusion  199 

In this presented work, we have established and successfully employed the modified Extended 200 
Tanh method with Riccati equation for obtaining the solitary travelling wave solutions for a given 201 
class of NLPDEs. The method has an advantage of being direct and concise. In addition 202 
Enormous variety of solutions was obtained with the aid of Mathematica software.  203 
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