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Abstract 6 

This article aims at estimating the scale parameter of the Weimal distribution using Bayesian 7 

method and comparing the estimators obtained to the estimator of the scale parameter obtained 8 

from the method of maximum likelihood. Under Bayesian approach, the estimators are obtained 9 

by using uniform prior and Jeffrey’s prior with the adoption of the precautionary, quadratic and 10 

square error loss functions. A derivation and discussion under maximum likelihood estimation is 11 

also done. The above methods of estimation employed in this paper are compared based on their 12 

mean square errors (MSEs) through a simulation study carried out in R statistical software with 13 

different sample sizes. The results indicate that the most appropriate method for the scale 14 

parameter is precautionary loss function under either uniform or Jeffrey’s prior irrespective of 15 

the sample sizes allocated and the values taken by the other parameters.  16 

 17 

Keywords: Weimal distribution; Bayesian Methods; Prior distributions; Loss functions; 18 

Maximum likelihood Estimation; Mean Square Error; Sample size. 19 

1. Introduction 20 

Ieren and Yahaya[1] developed a new distribution namedWeimal distribution as an extension of 21 

the Normal distributionwith two additional parameters for the scale and shape of the new 22 

distribution.The maximum likelihood estimates of parameters wereobtained by the method of 23 

maximum likelihood in [2]. The fitness of Weimaldistribution was tested by using two lifetime 24 

datasets and it was discovered that the new distribution provides a better fit for the skewed 25 

datasets when compared to other existing generalizations of the normal distribution including 26 

Kumaraswamy-Normal and Beta-Normal as well as the normal distribution. 27 

In statistics, we have two basicmethods ofparameter estimationand these are the classical and the 28 

non-classical methods. In the classical theory of estimation, the parameters are taken to be fixed 29 
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but unknown whereas we consider the parameters to be unknown and random just like variables. 30 

The most popular and unique method under classical theory is the method of maximum 31 

likelihood estimation while the Bayesian estimation method is considered under non-classical 32 

theory. But, in commonreal-lifeproblemsdescribed by life time distributions, the parameters 33 

cannot be treated as fixed in all the life testing periodaccording to [3] as well as[4] and [5].Based 34 

on this fact, it becomes obvious the frequentist or classical approach can no longer handle 35 

adequately problems of parameter estimationin life time models and therefore the need for non-36 

classical or Bayesian estimation in life time models.   37 

In order to achieve the gap above,many researchers have used Bayesian estimation methodfor 38 

parametersof different probability distributions and a list of some of these studies is as 39 

follows:Bayesian estimation for the extreme value distribution using progressive censored data 40 

and asymmetric loss by [6], Bayesian estimators of the shape and scale parameters of modified 41 

Weibull distribution using Lindley’s approximation under the squared error loss function, 42 

LINEX loss function and generalized entropy loss function by [7],comparison of Bayesian 43 

estimates of the shape parameter of Generalized Exponential Distribution based on a class of 44 

non-informative prior under the assumption of quadratic loss function, squared log-error loss 45 

function and general entropy loss function  (GELF) and maximum likelihood estimates by [8], 46 

Bayesian Survival Estimator for Weibull distribution with censored data by [9] as well as [10], 47 

[11]. Similarly, [12] studied the shape parameter of generalized Rayleigh distribution under non-48 

informative priors with a comparison to the method of maximum likelihood. Besides, a good 49 

number of loss functions have been shown to be performing during estimation under Bayesian 50 

method in so many studies including[13], [14], [15], [16], [17], [18]and [19]etc. 51 

 52 

Since the approach of estimating a parameter differs from one parameter of a distribution to 53 

another, this studyaims at estimating the scale parameter of the Weimal distribution using 54 

Bayesian approach and making a comparison between the Bayesian approach and the method of 55 

maximum likelihood estimation approach. The rest of this paper organizedin sections as follows: 56 

section 1 presents the introduction, Section 2 gives the materials and methods used in the article 57 

beginning with the distribution and likelihood function in sub-Section 2.1, estimation under 58 

uniform prior in 2.2, estimation under Jeffrey’s prior in 2.3 and estimation using method of 59 



 

3 

 

maximum likelihood in subsection 2.4. In section 3 we present the results and discussions and 60 

finally the conclusion in Section 4. 61 

2. Materials and Methods 62 

2.1 PDF and Likelihood function 63 

The pdf of the Weimal distributionwith unknown parameter vector ( ), , ,
T

θ α β µ σ= isgiven as: 64 
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respectively, where X−∞ < < ∞  represent any continuous random variable, 0σ >  is the 66 

dispersion parameter, µ−∞ < < ∞ is the location parameter, 0α > is the scale parameter and67 

0β >  isthe shape parameterof the distribution. 68 

The total log-likelihood function for θ is obtained from f(x) as follows: 69 
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The likelihood function for the scale parameter,α , is given by; 71 
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such that the above likelihood function becomes 75 

( ) ( ) { }| exp
n

L X α α αω∝ − .(2.1.3) 76 

where  77 
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2.2   Bayesian Analysis under the Assumption of Uniform Prior Using Three Loss 79 

Functions 80 

One crucial aspect when dealing with Bayesian approach is the selection of a prior distribution 81 

for the parameter of interest. Most at times priors are chosen according to one’s subjective 82 

knowledge and beliefs. Another important aspect of it is the choice of a loss function. 83 

To derive the posterior distribution of a parameter given some sample observations, we apply 84 

Bayes’ Theorem which is stated as follows: 85 
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where ( )p α  and ( )|L X α  are the prior distribution and the Likelihood function respectively. 87 

The uniform prior is defined as: 88 

( ) 1, 0p α α∝ < < ∞ . 89 

The posterior distribution of the scale parameter α  under uniform prior is obtained from 90 

equation (2.2.1) using integration by substitution method as 91 
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 93 

The Bayes estimators and posterior risksunder uniform prior using SELF, QLF and PLF are 94 

given respectively as follows: 95 
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 105 

2.3   Bayesian Analysis under the Assumption of Jeffrey’s Prior Using Three Loss 106 

Functions 107 

Also, the Jeffrey’s prior is defined as: 108 

( )
1

, 0p α α
α

∝ < < ∞ .(2.3.1) 109 

The posterior distribution of the scale parameter α  for a given data under Jeffrey prior is 110 

obtained from equation (2.2.1) using integration by substitution method as 111 
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The Bayes estimators and posterior risks under uniform prior using SELF, QLF and PLF are 113 

given respectively as follows: 114 
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2.4   Maximum Likelihood Estimation 126 

This part of the article estimates the scale parameter of the Weimal distribution using the method 127 

of maximum likelihood estimation. Let 1 2, , , nX X X… be a random sample from the Weimal 128 

distribution with unknown parameter vector ( ), , ,
T

θ α β µ σ= . The overall log-likelihood 129 

function for θ is obtained from f(x) as follows: 130 
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The likelihood function for the scale parameter,α , is given by; 132 
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Let the log-likelihood function, ( )log |l L X α=
, 

therefore 135 

logl n α αω= − .(2.4.3) 136 
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Differentiating � partially with respect toα , the scale parameter and solving for α̂  gives; 138 



 

7 

 

( )
0

l nθ
ω

α α

∂
= − =

∂
, 139 

ˆ
n

α
ω

= .(2.4.4)

 

140 

 

141 

3. Results and Discussions 

142 

3.1 Simulation and Comparison 143 

In this section, a package in R software named “newdistr” developed by [20]has been usedto 144 

generate random samples of sizes n = (5, 10, 15, 20, 25,30, 35, 55, 75, 100, 150) from Weimal 145 

distribution by using different values for the distribution parameters as stated in the headings of 146 

the tables below. These tables present the results of our simulation study by providing the Mean 147 

Square Errors (MSEs) for the estimators of the scale parameter of the Weimal distribution under 148 

the some of the concern estimation methods or loss functions such as Maximum Likelihood 149 

Estimation (MLE), Squared Error Loss Function (SELF), Quadratic Loss Function (QLF), and 150 

Precautionary Loss Function (PLF) under both Uniform and Jeffrey prior. 151 

Table 3.1: Mean Square Errors (MSEs) forestimate of thescale parameter based ondifferent 152 

sample sizes for 0.5α = , 3.5β = , 1.0µ =  and 1.0σ = . 153 

Sample  

sizes 

MLE Uniform Prior Jeffrey’s Prior 

SELF QLF PLF SELF QLF PLF 

5 0.4504 0.6854  0.2803 0.8216 0.4504 0.1752  0.5544  

10 0.1297  0.1501 0.1152  0.1622  0.1297  0.1066  0.1389  

15 0.0899 0.0924 0.0890 0.0943 0.0899 0.0897 0.0909 

20 0.0819  0.0811 0.0835  0.0809 0.0819  0.0859 0.0814  

25 0.0814 0.0796 0.0836 0.0789 0.0814 0.0862 0.0805 

30 0.0817  0.0796  0.0840  0.0786  0.0817  0.0866 0.0806  

35 0.0835 0.0814 0.0857 0.0805 0.0835 0.0880 0.0824 

55 0.0913 0.0897 0.0930 0.0889 0.0913 0.0948 0.0905 



 

8 

 

75 0.0978 0.0965 0.0991 0.0959 0.0978 0.1004 0.0972 

100 0.1037 0.1027 0.1047 0.1022 0.1037 0.1057 0.1032 

150 0.1116 0.1109 0.1122 0.1106 0.1116 0.1129 0.1112 

 154 

From Table3.1, it is observed that MSEs of the estimates increases as we increase the sample 155 

sizes and we also found that for all the samples the PLF has a minimum bias under both priors 156 

irrespective of the variation in the samples indicating that the PLFunder both priors is the best 157 

method for the scale parameter of the Weimaldistribution. 158 

Table 3.2: Mean Square Errors (MSEs) for estimate of the scale parameter based on different 159 

sample sizes for 1.0α = , 0.5β = , 1.5µ =  and 2.5σ = . 160 

Sample  

sizes 

MLE Uniform Prior Jeffrey’s Prior 

SELF QLF PLF SELF QLF PLF 

5 0.5882  0.7009  0.5406  0.7782 0.5882  0.5579  0.6339 

10 0.4647  0.4436  0.4917  0.4354  0.4647  0.5246  0.4537 

15 0.4938 0.4732 0.5159 0.4637 0.4938 0.5398 0.4835 

20 0.5206  0.5041  0.5377  0.4963 0.5206 0.5556  0.5124 

25 0.5441 0.5308 0.5577 0.5243 0.5441 0.5718 0.5374 

30 0.5616  0.5505  0.5730 0.5451 0.5616  0.5845  0.5561 

35 0.5746 0.5651 0.5842 0.5605 0.5746 0.5939 0.5699 

55 0.6155 0.6098 0.6213 0.6069 0.6155 0.6271 0.6126 

75 0.6401 0.6360 0.6442 0.6340 0.6401 0.6483 0.6380 

100 0.6596 0.6567 0.6625 0.6552 0.6596 0.6655 0.6581 

150 0.6841 0.6823 0.6860 0.6813 0.6841 0.6878 0.6832 

 161 

In the Table 3.2, it is also clear that MSEsfor all the estimators gets larger as sample size is 162 

increased.The PLF has alsothe minimum MSEs independent of the sample size and prior 163 

distribution which still indicates that it is a perfect estimator for the scale parameter of the 164 

Weimal distribution irrespective of the value of the shape, location and dispersion parameter. 165 

 166 
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 167 

Table 3.3: Mean Square Errors (MSEs) for estimate of the scale parameter based on different 168 

sample sizes for 1.5α = , 0.5β = , 2.5µ =  and 1.5σ = . 169 

Sample  

sizes 

MLE Uniform Prior Jeffrey’s Prior 

SELF QLF PLF SELF QLF PLF 

5 1.2261 1.2163  1.3009 1.2347  1.2261 1.4407 1.2133  

10 1.2998 1.2372 1.3683 1.2087 1.2998 1.4427 1.2685 

15 1.3976 1.3540 1.4429 1.3332 1.3976 1.4898 1.3760 

20 1.4592  1.4272 1.4919  1.4116  1.4592  1.5254 1.4433  

25 1.5067 1.4819 1.5319 1.470 1.5067 1.5574 1.4944 

30 1.5415  1.5214  1.5619 1.5115  1.5415  1.5824  1.5315  

35 1.5656 1.5488 1.5826 1.5405 1.5656 1.5998 1.5573 

55 1.6397 1.6298 1.6496 1.6250 1.6397 1.6595 1.6348 

75 1.6824 1.6756 1.6892 1.6722 1.6824 1.6961 1.6790 

100 1.7155 1.7107 1.7204 1.7082 1.7155 1.7253 1.7131 

150 1.7566 1.7536 1.7597 1.7521 1.7566 1.7627 1.7551 

 170 

From Table 3.3,it is obvious that PLF (under uniform and Jeffrey priors) method yielded the best 171 

estimate for the scale parameter despite the changes in the sample sizes. Besides, the MSEs still 172 

increase as sample sizes becomes larger and there is no change even with the different parameter 173 

values. 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 
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Table 3.4: Mean Square Errors (MSEs) for estimate of the scale parameter based on different 184 

sample sizes for 2.0α = , 0.5β = , 0.5µ =  and 0.5σ = . 185 

Sample  

sizes 

MLE Uniform Prior Jeffrey’s Prior 

SELF QLF PLF SELF QLF PLF 

5 2.3640 2.2318 2.5612 2.1913  2.3640 2.8234 2.2928 

10 2.6348 2.5307 2.7448 2.4819  2.6348 2.8607 2.5832  

15 2.8015 2.7348 2.8698 2.7026 2.8015 2.9398 2.7685 

20 2.8978  2.8503 2.9461  2.8270  2.8978  2.9952 2.8743 

25 2.9693 2.9330 3.0060 2.9152 2.9693 3.0430 2.9513 

30 3.0214  2.9923  3.0508 2.9780 3.0214  3.0803  3.0070 

35 3.0567 3.0325 3.0811 3.0205 3.0567 3.1057 3.0447 

55 3.1639 3.1499 3.1779 3.1430 3.1639 3.1919 3.1569 

75 3.2246 3.2150 3.2342 3.2103 3.2246 3.2439 3.2199 

100 3.2714 3.2646 3.2783 3.2612 3.2714 3.2851 3.2680 

150 3.3292 3.3250 3.3334 3.3229 3.3292 3.3376 3.3271 

 186 

More so the result fromTable3.4corresponds with the previous results showing that uniform and 187 

Jeffrey’s  priors with PLFhave the smallest MSEs which by comparison produces the best 188 

estimates for the scale parameter, and looking at all the results presented in the tables, we can 189 

conclude that Bayes estimates under precautionary loss function (PLF) using uniform prior and 190 

Jeffrey’s prior are associated with minimum MSEs when compared to those obtained using MLE, 191 

SELF, and QLF under both uniform and Jeffrey’s priors irrespective of the assumed parametric 192 

values and allocated sample sizes of n=5, 10, 15, 20, 25, 30, 55, 75, 100 and 150. 193 

 194 

4. Summary and Conclusion 195 

In summary, we obtained Bayesian estimators of the scale parameter of the Weimal distribution 196 

under Posterior distributions assuming Uniform and Jeffrey’s priors. Bayes estimators and their 197 

posterior risks have been derived and presented using three loss functions, namely:Squared Error 198 

Loss Function (SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF). 199 

The performance of these estimators is assessed based on theMean Square Errors (MSEs) of the 200 

estimates. A simulation study is carried out in R statistical software to compare the performance 201 
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of the estimators from the two methods considered in this paper and it is discovered that the PLF 202 

(under uniform and Jeffrey priors) produces estimates with minimum MSEs consistently 203 

irrespective of the parameter values and differences in sample size. Therefore, we conclude that 204 

Bayesian Method under both uniform and Jeffrey’s priors using precautionary loss function 205 

(PLF) is better compared to Maximum Likelihood Estimation and should be considered when 206 

estimating the scale parameter of the Weimal distribution irrespective of the differences in 207 

sample sizes and the parameter values. 208 
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