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 4 
ABSTRACT 5 
 6 
Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the 7 

second most important role in Indian agricultural economy, next to food grains, in terms of area and 8 

production. Oilseeds production in India has increased with time, however, the increasing demand for 9 

edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. 10 

The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate 11 

appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds 12 

production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely 13 

used model for forecasting time series. One of the main drawbacks of this model is the presumption of 14 

linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the 15 

oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical 16 

models well-known for time series forecasting. The results obtained by the GMDH are compared with the 17 

results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better 18 

than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), 19 

and root mean square error (RMSE). The experimental results of both models indicate that the GMDH 20 

model is a powerful tool to handle the time series data and it provides a promising technique in time series 21 

forecasting methods. 22 

Keywords: Oilseeds, Forecasting, Autoregressive Integrated Moving Average, Group Method of Data 23 
Handling, Mean Absolute Percentage Error, Mean Absolute Error, Root Mean Square Error. 24 
 25 
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1. INTRODUCTION: 27 
 28 

India is one among world’s largest producers and consumers of vegetable oils. Oilseeds have been 29 

the backbone of India’s agricultural economy since long. Indian vegetable oil economy is the fourth largest 30 

in the world, next to USA, China, and Brazil. The country’s contribution is 7 percent of the global vegetable 31 

oils production with 14 per cent share in the area. Oilseed crops play the second most important role in the 32 
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Indian agricultural economy next to food grains in terms of area and production. The Indian climate is 33 

suitable for the cultivation of oilseed crops; therefore, large varieties of oilseeds are cultivated here. The 34 

major oilseeds cultivated in our country are Groundnut, Rapeseed and Mustard, Castor seed, Sesame, 35 

Niger seed, Linseed, Safflower, Sunflower and Soybean. However, Groundnut, Rapeseed and Mustard, 36 

Sesame, Soybean and Sunflower account for a major chunk of the output. At present, more than 27 million 37 

hectares of land is under oilseeds cultivation. The area under oilseeds has been increasing over time and 38 

the production has registered many fold increase; however, the productivity is still low as compared to the 39 

other oilseed producing countries in the world. The low and fluctuating productivity is primarily because 40 

cultivation of oilseed crops is mostly done on marginal lands, which are lacking in irrigation and low levels 41 

of input is used here. To improve the situation of oilseeds in the country, Government of India has been 42 

pursuing several development programs, such as Oilseed Growers Cooperative Project, National Oilseed 43 

and Development Project, Technology Mission Oilseeds (TMO) and Integrated Scheme on Oilseeds, 44 

Pulses, Oil Palm and Maize (ISOPOM) etc. The concerted efforts of these development programs register 45 

significant improvement in annual growth of productivity and area under oilseed crops [2]. The combined 46 

efforts have been reflected in oilseeds production. But the growth in the domestic production of oilseeds 47 

has not been able to keep pace with the increase in demand in the country. As a result of which, India still 48 

imports a significant proportion of its requirement of edible oil. Edible oil is the largest imported (30 percent) 49 

commodity in India next only to petroleum products even though India had the world’s second largest area 50 

under oilseeds [23]. 51 

In this paper, an effort has been made to forecast oilseeds production for the next five years (2016-52 

17 to 2020-21). The model used for forecasting is an Autoregressive Integrated Moving Average (ARIMA) 53 

model. As the model was introduced by Box and Jenkins in 1960, this model is also known as Box-Jenkins 54 

model. The model is used for forecasting a single variable. Although it is used across various functional 55 

areas, its application is very limited in agriculture, mainly because of unavailability of required data and 56 

because agricultural output depends typically on monsoon and other factors [7]. The primary reason behind 57 

choosing ARIMA model for forecasting is that it assumes non-zero autocorrelation between the successive 58 

values of the time series data [12]. But ARIMA model can only capture linear feature of time series data 59 

[18] to deal with non-linearity of time series data, Group Method of Data Handling (GMDH) has also been 60 



 

    3   
 

used in our analysis for forecasting oilseeds production. This model was first used in 1968 by Prof. Alexey 61 

G. Ivakhnenko [11].  62 

2. REVIEW OF LITERATURE: 63 

Padhan Purna Chandra (2012) [17], has applied ARIMA model on a 60years’ time series data (from 1950 64 

to 2010) to forecast annual productivity of selected agricultural product (34 different products). The validity 65 

of the model is verified with various model selection criteria such as minimum of AIC (Akaike Information 66 

Criteria) and lowest MAPE (Mean Absolute Percentage Error) values. Among the selected crops, tea 67 

provides the lowest MAPE values, whereas cardamom provides lowest AIC values.  68 

Kumar Manoj and Anand Madhu (2014) [12] forecasted sugarcane production in India by using ARIMA 69 

model. The order of the best ARIMA model was found to be (2, 1, 0). They suggested that the forecast 70 

results have shown the annual sugarcane production will grow in 2013, then there will be a sharp dip in 71 

2014 and in subsequent years 2015 through 2017, it will continuously grow with an average growth rate of 72 

approximately 3 percent year-on-year.  73 

Arivarasi R and Ganesan Madhavi (2015) [6] have also used the ARIMA Model to forecast the area and 74 

production of vegetables in the in the feeder zones (zone 1-Kancheepuram district & zone 2 -Thiruvallur 75 

district) of Chennai city. The ARIMA (0, 1, 2) model is suitable for the cultivation area of the zone 2 and 76 

ARIMA (2, 0, 1) model is suitable for zone 1. ARIMA (2, 0, 1) model is highly suitable for the vegetable 77 

production in both the zones. The model performances are validated by comparing the regression co-78 

efficient values. While the model was used for forecasting for the period 2011-12 to 2014-15, decreasing 79 

trend was found in cultivated area and production of vegetables in zone 1.However, in zone 2 increasing 80 

trend was found in cultivated areas but decreasing trend was found for the vegetable production. Hence, it 81 

can be concluded that if this situation remained the same for a long period, then the further cultivation of 82 

vegetable crops will no longer be possible in both the zones.   83 

Borkar Prema & Bodade V.M, (2017) [7] have applied the ARIMA model to forecast annual productivity of 84 

selected pulse crops. Applying annual data from 1950-51 to 2014-15, forecasted values have been 85 

obtained for another 5 years since 2016. The evaluation of forecasting of pulses production has been 86 

carried out with Root Mean Squares Percentage Error (RMSPE), Mean Absolute Percentage Error (MAPE) 87 

and Relative Mean Absolute Percentage Error (RMAPE). 88 
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Amanifardet. al., (2008a) [4] presented two meta-models based on the evolved group method of data 89 

handling (GMDH) type neural networks for modeling of both pressure drop (∆P) and Nusselt number (Nu). 90 

It was shown that some interesting and important relationships like useful optimal design principles involved 91 

in the performance of micro-channels can be discovered by Pareto based multi-objective optimization of the 92 

obtained polynomial meta-models representing their heat transfer and flow characteristics. They concluded 93 

that, such important optimal principles would not have been obtained without the use of both GMDH type 94 

neural network modeling and the Pareto optimization approach. 95 

Amanifardet. al., (2008b) [5] presented a quadratic model based upon some experimental results, using 96 

evolved GMDH-type neural networks for modeling of the transient evolution of spiky stall cells in an axial 97 

compressor. They concluded that the methodology applied in this work could sufficiently derive such 98 

complex model of unstable flow of rotating stall based on experimental input–output data. The prediction 99 

ability of such polynomial model has also been presented for some unforeseen data. 100 

Ahmadiet. al., (2015) [3] proposed an intelligent approach to determine the output power and torque of a 101 

Stirling heat engine. The approach employs the GMDH method to develop an accurate predictive tool for 102 

determining output power and torque of a Stirling heat engine in manner that is inexpensive, fast and 103 

precise. Consequently, based on the output results, the GMDH approach can help energy experts to design 104 

Stirling heat engines with high levels of performance, reliability and robustness and with a low degree of 105 

uncertainty. 106 

Osman Dag and Ceylan Yozgatligil (2016) [16] in their study, the R package GMDH is presented to make 107 

short term forecasting through GMDH-type neural network algorithms. The GMDH package has options to 108 

use different transfer functions (sigmoid, radial basis, polynomial, and tangent functions) simultaneously or 109 

separately. Data on cancer death rate in Pennsylvania from 1930 to 2000 are used to illustrate the features 110 

of the GMDH package. The results based on ARIMA models and exponential smoothing methods are 111 

included for comparison. GMDH algorithms show the same or even better performance than the other 112 

methods. 113 

3. MATERIAL AND METHOD: 114 

The specific objective of the study is to attempt a short-term forecasting of the future oilseeds 115 

production by using Autoregressive Integrated Moving Average (ARIMA) forecasting model and also 116 
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through Group Method of Data Handling (GMDH) - neural network which is an important model of time 117 

series data (one the sub-model of Artificial Neuron Networks).  118 

3.1 Data 119 

The study used data of oilseeds production in India for the last 50 years, i.e., from 1966-67 to 2015-16 120 

which have been collected from “Latest APY State Data”, uploaded by the Ministry of Agriculture and 121 

Farmers Welfare, Govt. of India. 122 

3.2 Autoregressive Integrated Moving Average (ARIMA) 123 

The model used in this study is the autoregressive integrated moving average (ARIMA).The ARIMA is an 124 

extrapolationi method, which requires historical time series data of underlying variable.  125 

The model in specific and general forms may be expressed as follows.  126 

Let  is a discrete time series variable which takes different values over a period of time. The 127 

corresponding AR (p) model of series,  128 

Which is the generalizations of autoregressive model, can be expressed as:                                     129 

AR (p) Yt 130 

= μ + + + …+ +   ………(1)  131 

Where, is the response variables at time t,  132 

, is the respective variables at different time with lags;  133 

, , …,  are the coefficients; and is the error factor. is a 134 

white noise process, where E( ) = 0, var ( ) = σ2>0, cov( ) = 0,  t, h ≠ 0 135 

Similarly, the MA (q) model which is again the generalization of moving average model may be specified 136 

as:  137 

MA (q): = µ+ - - -... - ………(2)  138 

Where,  is the constant mean of the series; 139 

…  is the coefficients of the estimated error term;  is the error term.   140 

By combining both the models, we get the Autoregressive Moving Average or ARMA models, which has 141 

general form as:  142 

= μ + + + …+ + - - - … - ……(3) 143 
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Box and Jenkins argue that a non-stationary series can be transformed either into a stationary or an 144 

almost stationary series, if it is differenced an appropriate number of times. Thus, if we have a stochastic 145 

process {Yt, t= 0, ±1, ±2, ... } which is non-stationary and has a trend, we can find a positive integer ‘d’ such 146 

that the transformed series Wt = dYt becomes stationary,  being the difference operator, viz. Yt = Yt -Yt-1, 147 

2Yt =Yt - 2Yt-1+Yt-2 and so on. After the transformed into a stationary or to an almost stationary series, the 148 

model transforms to ARIMA [9]. 149 

     If  is stationary at level or I(0) or at first difference I(1) or at second difference I(2) determines the 150 

order of integration. After the stationary of the series was attained, ACF (Auto Correlation Function) and 151 

PACF (Partial Auto Correlation Function) of the stationary series are employed to select the order p and q 152 

of the ARIMA model. The parameters were estimated using the non-linear least square method as 153 

suggested by Box and Jenkins (1976).  is a white noise process, where E( ) = 0, var ( ) = σ2 >0, cov 154 

( ) = 0,  t, h ≠ 0. Based on the model diagnostic tests and parsimony we obtained the best fitting 155 

ARIMA model. 156 

The complete procedure of model building and forecasting are fully described by Box and Jenkins 157 

1976. In short, they have suggested four basic steps viz., (i) Identification of the model, (ii) Estimation of 158 

parameters of the model, (iii) Diagnostic Checking of the model, and (iv) Forecasting. The details of the 159 

estimation and forecasting process are discussed below. 160 

Identification: The first step of applying Box-Jenkins forecasting model is to identify the appropriate order 161 

of ARIMA (p, d, q) model. Identification of ARIMA model implies selection of order of AR(p), MA(q) and I(d). 162 

The order of d is estimated through I(1) or I(2) process of unit root stationary tests. The model specification 163 

and selection of order p and q involved plotting of autocorrelations functions (ACF) and partial 164 

autocorrelations functions (PACF) or correlogram of variables at different lag length. If the PACF displays a 165 

sharp cutoff while the ACF decays more slowly (i.e., has significant spikes at higher lags), we say that the 166 

series displays an AR signature. However, if the ACF displays a sharp cutoff while the PACF decay more 167 

slowly, we say that the series displays an MA signature [14]. The autocorrelation functions specify the order 168 

of moving average process, q and partial autocorrelations function select the order of autoregressive 169 

process p.  170 

Estimation of the model: ARIMA models are fitted and accuracy of the model has tested based on 171 

diagnostics statistics. Once the order of p, d, and q are identified, their statistical significance can be judged 172 
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by t-distribution. The next step is to specify appropriate regression model and estimate it. ARIMA models 173 

are fitted and accuracy of the model was tested based on diagnostics statistics. 174 

Diagnostic checking: Now a question may arise that how we know whether the identified model is 175 

appropriate. One simple way to figure that out is by diagnostic checking the residual term obtained from 176 

ARIMA model by applying the same ACF and PACF functions. First obtaining the ACF and PACF of 177 

residual term up to certain lags of the estimated ARIMA model, and then checking whether the coefficients 178 

are statistically significant or not. The best model was selected based on the following diagnostics,  179 

(i) Low Akaike Information Criteria (AIC): AIC is estimated by AIC = −2loge ( ) + 2 , where  = +  180 

and  is the likelihood function. 181 

(ii) Low Bayesian Information Criteria (BIC): The Bayesian information criterion is a criterion for model 182 

selection among a finite set of models. It is based, in part, on the likelihood function, and it is closely related 183 

to Akaike information criterion (AIC). Sometimes, Bayesian Information Criteria (BIC) is also used and 184 

estimated by BIC = −2loge ( ) + loge (N) . Where N is number of observation and m is the number of 185 

parameters. 186 

(iii)  The minimum Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) are 187 

used as a measure of accuracy of the models. RMSE=        and   MAPE 188 

= , 189 

 Where, X Actual,t  and XForecast,t  are actual and forecast output at time t, 190 

(iv) These may also be judged by Ljung-Box Q (LBQ) statisticii under null hypothesis that 191 

autocorrelation co-efficient up to lag k is equal to zero. LBQ is used to assess assumptions after fitting a 192 

time series model (ARIMA), to ensure that the residuals are independent. 193 

Forecasting: Once the first three steps of ARIMA model are over, then we can obtain the forecasted 194 

values by estimating the appropriate model, which is free from problems. The forecasted values are 195 

reported for a maximum of 5 years, as long-term forecasting might not be appropriate. 196 

The major drawback of ARIMA model is presumption of linearity, hence, no nonlinear patterns can 197 

be recognized by ARIMA model. Sometimes, the time series often contain nonlinear components; under 198 

such condition the ARIMA models are not adequate in modeling and forecasting [23]. To overcome this 199 

difficulty, GMDH (Group Method of Data Handling) model has been successfully used. To deal with 200 
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uncertainty, linearity or nonlinearity of time series data in a wide range of disciplines GMDH is more 201 

effective. 202 

3.3 Group Method of Data Handling (GMDH): 203 

GMDH is a family of inductive algorithms for computer-based mathematical modeling of multi-204 

parametric datasets that features fully automatic structural and parametric optimization of models [26]. 205 

GMDH is an original method for solving problems of structural and parametric identification under 206 

conditions of uncertainty [13]. It is an important model of time series data which is one sub-model of ANNiii 207 

(Artificial Neural Network). The main idea of the GMDH is to build an analytical function in a feed-forward 208 

network based on a quadratic node transfer function whose coefficients are obtained by using a regression 209 

technique. The GMDH is a self-organizing, unidirectional structure with multiple layers, each of which is 210 

composed of several neurons that have a similar structure. Weight is inserted inside each neuron as 211 

definite and constant values based on singular value decomposition method by solving normal equations 212 

[15]. 213 

The GMDH was introduced as a multivariate analysis method for modeling and identification of 214 

complex systems. In this model, the general connection between inputs and output variables can be 215 

expressed by a complicated polynomial series in the form of the Volterra series, known as the Kolmogorov-216 

Gabor polynomial [11]. 217 

…… (4) 218 

where{ ,  ,  , .…..} is the vector of input variables and { , , ,…..} is the vector of 219 

coefficients of variables in the polynomial, n is the number of inputs, Y is a response variable, xi and xj are 220 

the lagged time series to be regressed. However, for most application the quadratic form are called as 221 

partial descriptions (PD) for only two variables is used in the form 222 

      yn  = G (xi, xj) =   +  xi +  xj + xixj  +  xi
2   + xj

2   223 

to predict the output. The input variables are set to { ,  ,  , .…..,xn} and output is set to {y}. The aim of 224 

the GMDH algorithm is to find i unknown coefficients of Volterra series. The coefficients (weights)  for i = 225 

0, 1, 2, 3, 4, 5 are determined using the least square method for each pair of xi and xj input variables [10]. 226 

The GMDH algorithm considers all pairwise combinations of p lagged time series. Therefore, each 227 

combination enters each neuron. Using these two inputs, a model is constructed to estimate the desired 228 
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output. In other words, two input variables go in a neuron, one result goes out as an output. The structure 229 

of the model is specified by the Ivakhnenko polynomial in equation 4 where n = 2. This specification 230 

requires six coefficients in each model to be estimated [16].  231 

The main function of GMDH is based on the forward propagation of signal through nodes of the net 232 

similar to the principle used in classical neural nets. Every layer consists of simple nodes, each of which 233 

performs its own polynomial transfer function and passes its output to nodes in the next layer. The 234 

computation process comprises three basic steps [8]: 235 

Step 1: Select input variables { ,  ,  , .…..,xn} where n is the total number of input. The data are 236 

separated into training and testing data sets. The training data set is used to construct a GMDH model and 237 

the testing data set is used to evaluate the estimated GMDH model.  238 

Step 2: Construct L numbers of new variables Z ={z1, z2, z3, ……,zL} in the training data set for all 239 

independent variables and choose a PD of the GMDH. Conventional GMDH has been developed using 240 

polynomial, PD of the following form 241 

          zl  = G(xi, xj) = + xi + xj+ xixj +  xi
2+ xj

2  for l =1,2,3..,, L. 242 

where, L = n(n-1)/2 243 

Select new variables as input of the next middle layer and truncate the subsequent computation. 244 

With the identification of the optimal output of partial polynomials at each layer, the selection of new 245 

variables enables the network to quickly converge to the target solution. Once the partial polynomial 246 

equations at each unit are selected, the residual error in each layer is further checked to determine whether 247 

the set of equations of the model should be further improved within the subsequent computation.  248 

Step 3: Estimate the coefficient of the PD. The vectors of coefficients of the PDs are determined using the 249 

least square method. 250 

Step 4: Determine new input variables for the next layer.  There are several specific selection criteria to 251 

identify the input variables for the next layer. In our study, we used two criteria. The first criteria, the single 252 

best neuron out of these L neurons, Z׳ identified according to the value of mean square error (MSE) of 253 

testing dataset. In second criteria, eliminate the least effective variables, replace the column of { ,  ,  , 254 

.…..,xn}  by those column {z1, z2, z3, ……,zl} that best estimate the dependent variable y in the testing 255 

dataset. 256 
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Step 5: Build the final model and compute the predicted value. The final prediction model can be obtained 257 

with selected variables in each layer and the coefficients of partial polynomials between the connected 258 

layers. Check the stopping criterion. The lowest value of selection criteria using GMDH model at each layer 259 

obtained during this iteration is compared with the smallest value obtained at the previous one. 260 

The structure of the GMDH algorithm is illustrated in Figure 1. Those shadowed nodes in Fig 1 that 261 

have significant contribution to the output and are selected to be input in the next layer [25]. 262 

                          263 

Figure (Fig.) 1: Structure of the GMDH algorithm. 264 
 265 

The GMDH algorithm is a system of layers in which there exist neurons. The number of neurons in a 266 

layer is defined by the number of input variables. To illustrate, assume that the number of input variables is 267 

equal to p; since we include all pair-wise combinations of input variables, the number of neurons is equal to 268 

h = pc2 [16].  269 

3.3.1 Time series prediction by GMDH 270 

A classical method for time series forecasting problem, the number of input nodes of nonlinear 271 

model, such as the GMDH is equal to the number of lagged variables (yt-1, yt-2, yt-3…,y t-p), where p  is the 272 

number of chosen lagged. The outputs, yt, the predicted value of a time series defined as    273 

         yt = f (yt-1, yt-2, yt-3…,y t-p), 274 

However, there is no suggested systematic way to determine the optimum number of lagged p. The 275 

number of lagged p is chosen either in an adhoc basis or from traditional Box Jenkins methods. The lagged 276 

variables obtained from the Box-Jenkins analysis are the most important variables to be used as input 277 
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nodes in the input layer of the GMDH model [19]. In our study, a time series model is considered as 278 

nonlinear function of several past observations and random errors as follows:   279 

       yt = f[ (yt-1, yt-2, yt-3…,y t-p),( , …, )] 280 

where f is a nonlinear function determined by the GMDH.   281 

3.3.2 Data structure of GMDH  282 

An illustration of time series data structure in GMDH algorithms is presented in Table 1. Since we 283 

have a time series data set with t time points and p inputs. We construct the model for the data with time 284 

lags, the number of observations presented under the subject column in the table is equal to t-p; and the 285 

number of inputs i.e, lagged time series, is p. In this table, the variable called y is put in the models as a 286 

response variable, and the rest of the variables are taken into models as lagged time series xi, where i = 287 

1,2,...,p. The notations in Table 1 are followed throughout this paper. 288 

 Table 1: An illustration of time series data structure in GMDH algorithms 289 

 290 

 291 

 292 

 293 

 294 

A better model which explains the relation between response and lagged time series is captured via 295 

transfer functions.  296 

4. RESULTS AND DISCUSSION: 297 

4.1 ARIMA Model:  298 

The preliminary understating about the nature of data showed that there is no consistency in the production 299 

of oilseeds over the time period (Fig. 2). The variable shows increasing trend. 300 

 301 

                       302 
       Fig 2. Time series plots of oilseeds       Fig 3. Plots of 1st difference              Fig 4. Plots of 2nd difference 303 

Subjects Y x1 x2 x3  xp 
1 yt yt-1 yt-2 yt-3  yt-p 

2 yt-1 yt-2 yt-3 yt-4 yt-p-1 

3 yt-2 yt-3 yt-4 yt-5  yt-p-2 

     
….      
t-p yp+1 yp yp-1 yp-2 y1 



 

    12   
 

Identification: 304 

Identification of the model was concerned with deciding the appropriate values of (p, d, q). Auto regressive 305 

and moving average terms are identified based on ACF and PACF values. The ACF helps in choosing the 306 

appropriate values for ordering of moving average terms (MA) and PACF for those autoregressive terms 307 

(AR).  308 

ARIMA model is generally applied for stationary time series data. Stationary vs. non-stationary can 309 

check through correlogram or autocorrelation functions. If autocorrelation coefficients don’t die out slowly, 310 

then the series is probably non-stationary. The general procedure to convert a non-stationary series to a 311 

stationary series is through first difference or second difference. In general, most of the variables are I (1) 312 

i.e., first difference or I (2) i.e., second difference, thereby ARMA model is applied at I(1) or maybe I(2). 313 

Both the first differences and the second difference time series data of production are given in Fig 3 and Fig 314 

4, respectively. Comparing the figures, it has been observed that in the first figure, difference magnitude of 315 

auto correlation is lower than that in the second difference data. Hence, we considered I(1) for making the 316 

series stationary. 317 

 ACF and PACF of production of oilseeds are presented in Figs 5 and 6.  Based on these figures, the 318 

initial ARIMA model has been developed. It can be seen from Figs 5 and 6 that there is a slow decay in the 319 

PACF, but it also has a cut-off only at lag1, suggesting AR (1). The ACF also has one significant spikes at 320 

lag1. This pattern is typical to an MA process of orders 1. 321 

    322 

Fig. 5: ACF of 1stdifferenced series by lag               Fig.6: PACF of1stdifferenced series by lag  323 

Estimation of the model: Once the orders of p, d, and q are identified, the next step is to specify 324 

appropriate ARIMA model and estimate it. With the help of SPSS software, various orders of ARIMA model 325 

has been estimated. After the identification process has completed, the number of possible models are 326 

identified. According to identification process, the model has been identified as ARIMA (1, 1, 1). However, 327 
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the coefficient of AR (1) is not statistically significant. Hence in addition to ARIMA (1, 1, 1), the study also 328 

attempts to estimate ARIMA (1, 1, 0) and ARIMA (0, 1, 1) model. The results of ARIMA (1, 1, and 1), 329 

ARIMA (1, 1, 0) and ARIMA (0, 1, and 1) are summarized in Table 2. 330 

Table2: Coefficients of estimated values of fitted ARIMA models 331 

 332 
We proceeded to further statistically analyze these two possible models. The best model is selected based 333 

on the diagnostics checking. 334 

Diagnostic checking: Now a question may arise that how we know whether the identified model is 335 

appropriate. After an estimation of the parameters, we test the adequacy of the model based on Box-Pierce 336 

(Q) and Ljung-Box (LB) statistics. The statistics is calculated from the ACF of residual term up to 16 lags of 337 

the estimated ARIMA model. We also check the statistical significance of the parameters. An adequate 338 

model does not always generate good forecasts. Further, we select the model having low Bayesian 339 

Information Criteria (BIC), lowest root means square error (RMSE), lowest mean absolute percent error 340 

(MAPE), and highest stationary R-Square and R-Square. 341 

Comparing these three models, the ARIMA (0,1,1) model is found to be the best for oilseeds 342 

production. Only in this model, the estimated coefficient is statistically significant. LB and Q statistics of the 343 

model is also statistically significant. At the same time, RMSE, MAPE, MAE and BIC of ARIMA (0,1,1) have 344 

shown a value lower than that of ARIMA(1,1,0) and ARIMA(1,1,1) models. The summary of the estimates of 345 

ARIMA (0,1,1) models is given in Table 3.  346 

Table3: RMSE, MAPE, BIC values and Q statistics of fitted ARIMA models 347 

 348 

Sl.No Variable Model Constant AR(1) MA(1) 
1 Production ARIMA(0,1,1) 0.028 - 0.596 

SE 0.009  0.126 
t- value 3.216  4.718 

2 Production ARIMA(1,1,0) 0.027 -0.479 - 
SE 0.015 0.128 - 
t- value 1.804 -3.743 - 

3 Production ARIMA(1,1,1) 0.028 -0.093 0.519 

SE 0.010 0.261 0.234 

t- value 2.901 -0.357 2.214 

Sl. 
No 

Variable Model RMSE MAPE MAE BIC Stationary 
R2 

R2 Ljung Box  
Q Statistics 

Df 

1 Production ARIMA 
(0,1,1) 

2811.85 11.72 2008.66 16.04 0.26 0.87 13.03 17 
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Based on the parameter estimates in the Table 2 and model statistics presented in the table 3, the study 349 

chose the ARIMA (0,1,1) as the best model for the oilseeds production in the India. The model is thus given 350 

as:  351 

                 352 

 This model is a special case of ARIMA model, which is called an Integrated Moving Average Model. 353 

Forecasting: Once the identification, estimation of the model and diagnostic checking steps of ARIMA 354 

model is over, then we can obtain forecasted values by estimating the appropriate model, which is free 355 

from problems. The forecasted values obtained from ARIMA model are reported in Table 4. The forecasted 356 

values are reported for a maximum 5 years as long-term forecasting might not be appropriate. 357 

Table 4: Forecast values with ARIMA model 358 

 359 

In our study, ARIMA (0,1,1) is the best model for oilseeds production. Based on this model, 360 

forecasted values of oilseeds production will be 30062 thousand tonnes, 30987 thousand tonnes, 31939 361 

thousand tonnes, 32922 thousand tonnes and 33934 thousand tonnes during 2016-17, 2017-18, 2018-19, 362 

2019-20 and 2020-21, respectively. It is clear that oilseeds production will be slightly increasing over time. 363 

4.2 GMDH Model 364 

In this section we analyze the short-term forecasting results of oilseeds production through GMDH-365 

type neural network algorithmsiv by using GMDH Shell software. GMDH-neural network selects the model 366 

of optimal complexity and such a selection depends on the form of external criterion realization. K-fold 367 

cross validation is one of such criteria. In our study, we used this k fold validation method. In this validation, 368 

original sample was randomly partitioned into k subsamples. A single subsample was taken as the 369 

validation data for testing model, and the other k – 1 sub-samples were used as training data. The cross-370 

validation process was repeated k times using each of the k subsamples exactly once. The value of k 371 

obtained from the K folds can produce a single estimation. The advantage of this method over repeated 372 

random sub-sampling is that all observations are used for both training and validation, and each 373 

observation is used for validation exactly once. The experiment was carried out using RMSE validation 374 

Model 
ARIMA 
(0,1,1) 

 

Variable Value Years 

Production 
(000 tonnes) 

 2016-17 2017-18 2018-19 2019-20 2020-21 

Forecast 30062 30987 31939 32922 33934 
Lower 22069 22181 22330 22510 22715 
Upper 40062 42195 44372 46601 48887 
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criterion [13]. Therefore, the optimal time series forecasting model was selected by minimum value of 375 

RMSE, calculated for the testing sample. This validation criterion defines model selection criterion for both 376 

the core algorithmv and variables rankingvi (Solver, GMDH shell documents). In our time series analysis 377 

under GMDH-neural network model, based on k- cross validation criterion, our forecasting model is an 378 

optimal with k=2.  379 

In this model the variables ranking are selected by error. Variables are dropped after rank 600. The 380 

neural–type method used as a core of algorithm in our model. The summary of the results of our model 381 

depict that model complexity (it informs about the number of coefficients in the model and the number of 382 

layers) is 2 of 6. It means that the model has two layers and six coefficients or weight of polynomial. 383 

Maximum number of layer selected in our model are 33 with initial layervii width 1. The Criterion value of this 384 

model is 0.060354 which informs about the value of validation criterion configured in the Solver moduleviii. 385 

Top-ranked model has the smallest criterion value. Our model’s low criterion value indicates that the model 386 

is suitable for this data. 387 

The formula of suggested forecasting model under GMDH –neural network is given by 388 

                  Yt = 6677.04 + 1.036 Yt-15 + 0.005 Yt-23 389 

Accuracy of model shows different accuracy metrics for the model selected in the model browser. 390 

Model contains accuracy measures calculated for observations used to create the model. Error measure is 391 

used to choose a metric for calculation of the mean and the root mean errors. Available metrics are the 392 

absolute (MAE and RMSE), which outputs mean error values “as is” and the target percentage (MAPE), 393 

where for each model value we calculate percentage deviation from the actual value and then the 394 

percentage deviations are averaged [20]. The model statistics of GMDH - neural network are presented in 395 

Table 5. 396 

Table 5: RMSE, MAPE, MAE values of fitted GMDH neural network models 397 
Sl. No Variable Model RMSE MAPE MAE R2 

1 Production GMDH 1833.72 5.275 1473.56 0.99 

 398 

Calculation of magnitude of predicted variable involves only the observations that are used for 399 

training and testing. The forecasting values are presented in Table 6. In our study, GMDH neural networks 400 

model forecasting oilseeds production will be 28176 thousand tonnes, 22145 thousand tonnes, 32864 401 
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thousand tonnes, 32008 thousand tonnes and 35751 thousand tonnes in 2016-17, 2017-18, 2018-19, 402 

2019-20, 2020-21, respectively. 403 

Model Variable Value Years 

GMDH Production 
(000 tonnes) 

 2016-17 2017-18 2018-19 2019-20 2020-21 
Forecast 28176 22145 32864 32008 35751 

Lower 24508 18477 29196 28340 32083 
Upper 31844 25813 36532 35676 39419 

Table 6: Forecast values with GMDH neural network model 404 

 405 

5.   COMPARISON BETWEEN ARIMA and GMDH-Neural Network Model: 406 

Now the question that arises is which model is better and appropriate for forecasting the oilseeds 407 

production. To find the solution, we compare the model statistics of ARIMA and GMDH-neural network in 408 

terms of RMSE, MAE and MAPE. Model with lower values of RMSE, MAE and RMPE as compare to the 409 

other model, is better. The model statistics of GMDH-neural network and ARIMA both are presented in 410 

Table 7. The table indicates that GMDH-neural network is better model than ARIMA in all respect. 411 

Variable Model RMSE MAE MAPE R2

Production ARIMA (0,1,1) 2811.85 2008.66 11.71 0.88 

GMDH 1833.72 1473.89 5.275 0.99 

Table 7: RMSE, MAPE, MAE statistics of fitted ARIMA models and GMDH 412 

 413 

To verify our results, we considered similar research works such as Srinivasan, 2008, [22] and Xu 414 

et.al. 2012, [24]. Srinivasan (2008) used a GMDH-type neural network and traditional time series models to 415 

forecast predicted energy demand. It was shown that a GMDH-type neural network was superior in 416 

forecasting energy demand compared to traditional time series models with respect to MAPE. In another 417 

study, Xu et.al. (2012) applied a GMDH algorithm and ARIMA models to forecast the daily power load. 418 

According to their results, GMDH-based results were superior to the results of ARIMA models in terms of 419 

MAPE for forecasting performance. 420 

Since the above analysis lends support to the choice of GMDH-neural network over ARIMA type 421 

modeling we would propose the values obtained from GMDH-neural network as the forecast outcome. 422 

6.  FINAL FORECASTING: 423 

The outcome of GMDH model are presented precisely in Table8, 424 



 

    17   
 

Table 8: Forecast values with GMDH- neural network model 425 

Variable Model Predicted 

Production 
(000 tonnes) 

GMDH  2016-17 2017-18 2018-19 2019-20 2020-21 

28176 22145 32864 32008 35751 
 426 

The graphical presentation of forecasted value of oilseeds production under GMDH- neural network 427 

is depicted in Figure 7. In the diagram below, time is measured along the horizontal axis and the vertical 428 

axis measures level of production. Actual value is presented by black line and fitted value is shown in blue. 429 

The red line indicates the forecast value of oilseeds production whereas confidence band has been 430 

represented by shaded area. 431 

               432 

                        Fig.7:Actual value, fitted value and forecast value and confidence band in GMDH model 433 

 434 

From both from Table 8 and Fig 7, it is clear that the expected oilseeds production will increase in India in 435 

near future which will reduce the gap between demand and supply of oilseeds. Alternatively, it can be said 436 

that this rise in supply will be helpful in meet in the growing domestic demand for edible oil due to increase 437 

in population. As a result, the dependence on imported edible oil will reduce substantially, preventing the 438 

huge expenditure of already scarce foreign exchange. 439 

7. CONCLUSION  440 

ARIMA models are not always adequate for the time series that contains non-linear structures. In this 441 

context, a nonlinear GMDH can be an effective way to improve forecasting performance. Based on the 442 

results obtained in our study, one can infer that application of GMDH techniques in modeling and 443 

forecasting of time series can increase the forecasting accuracy. More specifically, the GMDH-neural 444 
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network model performed better for forecasting oilseed production of India as compared to ARIMA models. 445 

The results of forecasting in GMDH-neural network methods reveals that India’s oilseeds production will be 446 

28176 thousand tonnes in 2016-17. It will decline to 22145 thousand tonnes in 2017-18 and thereafter it will 447 

increase to 32864 thousand tonnes in 2018-19, 32008 thousand tonnes in 2019-20 and 35751 thousand 448 

tonnes in 2020-21.This production of oilseeds may not be adequate to make our country self-sufficient. This 449 

is because the demand for oilseeds grows faster along with rising population. Still the gap between demand 450 

and supply of oilseeds will reduce, resulting in reduced dependence on imported of edible oil and drain of 451 

foreign exchange from India will be under control. 452 
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 538 
End note 539 
                                                            
iExtrapolation techniques make forecasts using only the past data. 
iiThe Ljung-Box Q statistic to test whether a series of observations over time are random and independent. If observations are not 
independent, one observation can be correlated with a different observation k time units later, a relationship called autocorrelation. 
Autocorrelation can decrease the accuracy of a time-based predictive model, such as time series plot, and lead to misinterpretation 
of the data. 
 
iiiANN: The basic objective of ANNs was to construct a model for mimicking the intelligence of human brain into machine. 
Similar to the work of a human brain, ANNs try to recognize regularities and patterns in the input data, learn from experience and 
then provide generalized results based on their known previous knowledge. Although the development of ANNs was mainly 
biologically motivated, but afterwards they have been applied in many different areas, especially for forecasting and classification 
purposes [1]. 
ivGMDH-type neural network algorithms are modeling techniques which learn the relations among the variables. In the 
perspective of time series, the algorithm learns the relationship among the lags. After learning the relations, it automatically 
selects the way to follow in algorithm. 
vCore algorithms perform generation and selection of model structures. Then model coefficients are fitted using the least squares 
method. 
viVariables ranking turns on preliminary ranking and reduction of variables. Ranking of variables according to their individual 
ability to predict testing data. 
viiInitial layer width means how many neurons are added to the set of inputs at each new layer. 
viiiSolver [21] module produces predictive models for target variables. 

 

 

  

 


