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Abstract 
We study the nonlinear parabolic Fisher’s equations for travelling wave solutions. The analyses 
focus on to describe the analytic solution in the spatial pattern of travelling wave solutions; 
especially the solutions are characterized in invariant with respect to translation in space.     
There are two phases in the work; first one is the analysis of our considered equation while the 
second phase studies the numerical investigations to turn the result in a robust vocation. For 
numerical treatment, we select the implicit-explicit finite difference method (FDM) using 
different values of time steps which are matching with exact solution. 

 
1. Introduction 
Various types of natural processes which entail mechanisms through reaction-diffusion equations 
and one of the most important examples of nonlinear partial reaction-diffusion equation is  
Fisher’s equations. This equation has been used for designating several types of physical case 
like as heat and mass transfer, flame propagation, chemical reactions etc. The necessity of 
Fisher's equation is in gene technology discussed by travelling wave solutions which has been 
studied at first in the propagation of a gene within a population. Ronald Fisher presented this 
fisher’s model in [1] and his paper consisted of population dynamics to describe the spatial 
spread of an advantageous allele and Andrey Nikolaevich Kolmogorov, the Russian 
mathematician (1903-1987) took a part on this equation also known as Kolmogorov-Petrovsky-
Piskunov or KPP or Fisher-KPP equation [2]. 
Many researchers worked on this topics or equations. An analytic method to construct explicitly 
exact and approximate solutions for nonlinear evolution equations is suggested by Feng [3, 4]. 
These solutions included solitary wave solutions, singular traveling wave solutions, and 
periodical wave solutions. After that, Demina studied the meromorphic solutions (including 
rational, periodic, elliptic) of autonomous nonlinear ordinary differential equations and gave an 
algorithm for constructing meromorphic solutions. Next Yuan [5] introduced the complex 
method for solving nonlinear Fisher’s Kolmogorov equation of degree three. Tyson and 
Brazhnik [6] discussed about travelling wave solution of this types of nonlinear equation in two 
spatial dimensions. A numerical scheme to solve this equation was developed by Tang and 
Weber [7]. George Adomian introduced us another powerful technique known as Adomian 
decomposition method (ADM) [8] which is useful for solving nonlinear problems like fisher’s 
equations. Fisher’s equation is one of the simplest semi-linear reaction diffusion equation. It can 
exhibits traveling wave solutions that switch between equilibrium states. To execute the behavior 
of neutron population in a nuclear reactor, Canosa [9, 10] used a particular case of equation 
which is given in [1]. Further, Haar wavelet was utilized by Hariharan et al. [11]. Ablowitz and 
Zepetella [12] used Laurent series expansion to solve Fisher’s equation. Since travelling wave 
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plays an important role in biology too, Murray’s [13] authoritative work ‘Mathematical Biology’ 
is dedicated to biological waves. 
In this paper, we consider Fisher’s equation to analyze both analytically and numerically using 
implicit-explicit finite difference methods. The paper is organized as follows: in Section 2, we 
consider the general Fisher’s equation via logistic type growth function and after that we 
translated the equation into a dimensionless form in Section 3. In the next Section 4, we explore 
the travelling wave solutions of a special case of Fisher’s equation analytically. The numerical 
solutions are presented graphically to validate the theoretical results  in Section 5 while 
comparing with the exact solution.   The stability analysis of the equilibrium points are studied in 
Section 6 and describe the error analysis.  Finally, Section 7 concludes the summary and 
discussion of the paper.  
 
2. Fisher’s Equation  
Let us first consider the reaction dispersal equation of the form 

𝜕𝑝
𝜕𝑡

= d
𝜕2𝑝
𝜕𝑥2

+ 𝑔(𝑝) 
(1.1) 

Where 𝑔 is a nonlinear function of 𝑝 and 𝑝  is described as a  population of organisms, particles 
of chemicals, insect population, population density, or  a colonial bacteria. By considering the 
logistic type of reaction term, the Fisher's equation now can be written in the form of 

𝜕𝑝
𝜕𝑡

= d
𝜕2𝑝
𝜕𝑥2

+ 𝑟𝑝 �1 −
𝑝
𝑘
� 

(1.2) 

Here d is the diffusion coefficient or constant, 𝑟 is the intrinsic growth rate, 𝑘 is the carrying 
capacity, 𝑡 is time, 𝑥 is the spatial location and 𝑝 = 𝑝(𝑡, 𝑥) is the state variable of the diffusion 
species at location 𝑥 and time 𝑡 while the reaction term is given by the logistic law. 
 
3. Dimensional Analysis 
For acquiring the dimensionless form of Fisher's equation, at first we have to consider the 
dimensionless variables 

𝑢 =
𝑝
𝑀

and  𝑙 =
𝑡
𝑁

 (1.3) 

Where 𝑀and 𝑁 are scaling parameters for this equation. Applying chain rule, we get 
𝜕𝑢
𝜕𝑙

=
𝜕𝑢
𝜕𝑡
𝜕𝑡
𝜕𝑙

 
(1.4) 

Taking the values of 𝑢 and 𝑙 from equation (1.3) and using them in equation (1.4), we obtain 
from (1.4)  

𝜕𝑢
𝜕𝑙

=
𝑁
𝑀
𝜕𝑝
𝜕𝑡

 
(1.5) 

Now we can re-write the equation (1.5) such that 
𝜕𝑝
𝜕𝑡

=
𝑀
𝑁
𝜕𝑢
𝜕𝑙

 
(1.6) 

Again, 
 𝜕𝑢

𝜕𝑥
=
𝜕𝑢
𝜕𝑡

𝜕𝑡
𝜕𝑥

 
 

⇒
𝜕𝑢
𝜕𝑥

=
1
𝑀
𝜕𝑝
𝜕𝑡

𝜕𝑡
𝜕𝑥
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⇒
𝜕𝑢
𝜕𝑥

=
1
𝑀
𝜕𝑝
𝜕𝑥

 
Then we can write  

𝜕𝑝
𝜕𝑥

= 𝑀
𝜕𝑢
𝜕𝑥

 
(1.7) 

And also 
𝜕2𝑢
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑥�

=
𝜕
𝜕𝑥 �

1
𝑀
𝜕𝑝
𝜕𝑥�

=
1
𝑀
𝜕2𝑝
𝜕𝑥2

 
Hence we can get, 

𝜕2𝑝
𝜕𝑥2

= 𝑀
𝜕2𝑢
𝜕𝑥2

 
(1.8) 

Using equation (1.3), (1.6) and (1.8) in equation (1.2), we obtain 
 𝑀

𝑁
𝜕𝑢
𝜕𝑙

= d𝑀
𝜕2𝑢
𝜕𝑥2

+ 𝑟𝑢𝑀 �1 −
𝑢𝑀
𝑘 � 

 
⇒
𝜕𝑢
𝜕𝑙

= d𝑁
𝜕2𝑢
𝜕𝑥2

+
𝑁
𝑀
𝑟𝑢𝑀 �1 −

𝑢𝑀
𝑘 � 

 
⇒
𝜕𝑢
𝜕𝑙

= d𝑁
𝜕2𝑢
𝜕𝑥2

+ 𝑁𝑟𝑢 �1 −
𝑢

𝑘/𝑀�
 

The relation  𝑘
𝑀

= 1, 𝑁𝑟 = 1 implies that 

𝑁 =
1
𝑟

and  𝑀 = 𝑘 
So we can say that 𝑁 is the reciprocal of the intrinsic growth rate and 𝑀 is the carrying capacity. 
After setting 𝑘

𝑀
= 1, 𝑁𝑟 = 𝑎 and d𝑁 = 𝑊 we can re-consider the Fisher's equation in a new 

form such that 
𝜕𝑢
𝜕𝑙

= 𝑊
𝜕2𝑢
𝜕𝑥2

+ 𝑎𝑢(1 − 𝑢) 
(1.9) 

where 𝑎 is the reactive factor and 𝑊 is a diffusion constant. 
Let us now suppose that  

𝑙∗ = 𝑎𝑙 and 𝑥∗ = 𝑥 �
𝑎
𝑊
�
1
2 

Now we can write these in this way such that   

𝑙 = �
1
𝑎�
𝑙∗and 𝑥 = 𝑥∗ �

𝑊
𝑎 �

1
2
 

These non-dimensionalized variables gives us 
𝜕𝑢
𝜕𝑙

= 𝑎
𝜕𝑢
𝜕𝑙∗

 

𝜕𝑢
𝜕𝑥

= �
𝑎
𝑊
�
1
2 𝜕𝑢
𝜕𝑥∗

 

𝜕2𝑢
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑥�

=
𝜕
𝜕𝑥 �

�
𝑎
𝑊
�
1
2 𝜕𝑢
𝜕𝑥∗�

= �
𝑎
𝑊
�
1
2 𝜕
𝜕𝑥∗ �

�
𝑎
𝑊
�
1
2 𝜕𝑢
𝜕𝑥∗�

=
𝑎
𝑊

𝜕2𝑢
𝜕𝑥∗2

 

This additionally yields 

𝑎
𝜕𝑢
𝜕𝑙∗

= 𝑎𝑢(1 − 𝑢) + 𝑊�
𝑎
𝑊
�
𝜕2𝑢
𝜕𝑥∗2
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⇒
𝜕𝑢
𝜕𝑙∗

= 𝑢(1 − 𝑢) +
𝜕2𝑢
𝜕𝑥∗2

 
For ignoring the superscript star “*” notation and let 𝑙∗ = 𝑡 and 𝑥∗ = 𝑥, we find the required 
dimensionless form of Fisher's equation such that  

𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

+ 𝑢(1 − 𝑢) 
which introducing us a mutation occurring in a species distributed in a linear habitat. In this 
equation,𝑢 = 𝑢(𝑡, 𝑥) is density of population, 𝑥 is spatial variable and 𝑡 is representing the time. 
 
4. Solution and Exploration of Fisher’s Equation 
For searching the solution and exploration of Fisher’s equation, we use phase portrait to describe 
the behavior of the roots and also use implicit-explicit finite difference method for solving it. At 
first we discuss travelling wave solution about this nonlinear equation. Since dimensionless form 
of the Fisher's equation is 
 𝜕𝑢

𝜕𝑡
=
𝜕2𝑢
𝜕𝑥2

+ 𝑢(1 − 𝑢) 
 

Let us consider a particular case of this equation, see, for example in [14] 
 𝜕𝑢

𝜕𝑡
=
𝜕2𝑢
𝜕𝑥2

+ 6𝑢(1 − 𝑢) 
(1.10) 

Now we have to search for wave solution of this equation. At first we let a wave transformation 
which is of the form 

𝑢(𝑡, 𝑥) = 𝐺(𝑠), 𝑠 = 𝑥 − 𝑐𝑡 (1.11) 
At 𝑠 → ±∞ the function 𝐺 approaches to the constant values. The function 𝐺 to be determined 
should be twice differentiable. Here 𝑐 is the unknown wave speed which must be determined as a 
part of the solution of the problem. We have to use ordinary differential equation for finding 
travelling wave solution [15] of Fisher’s equation [14]. We can find a second order ordinary 
differential equation for 𝐺 from (1.10) and (1.11) such that 

−𝑐
𝑑𝐺
𝑑𝑠

=
𝑑2𝐺
𝑑𝑠2

+ 6𝐺(1 − 𝐺) 
(1.12) 

 
According to the phase plane analysis, we have to analyze the equation (1.12) which cannot be 
solved in a closed form. In a standard way we write (1.12) as a simultaneous system of first order 
equations by defining 𝐻 = 𝑑𝐺

𝑑𝑠
 and hence we obtain 

�

𝑑𝐺
𝑑𝑠

= 𝐻

𝑑𝐻
𝑑𝑠

= −6𝐺(1 − 𝐺) − 𝑐𝐻
� 

 
(1.13) 

 
By solving this system for equilibrium points, 

� 0 = 𝐻
  0 = −6𝐺(1 − 𝐺) − 𝑐𝐻

� (1.14) 

 
There are two stationary equilibrium points such that (0,0) and (1,0). The system is then 
linearized near the stationary points. For obtaining the eigenvalues corresponding to the 
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equilibrium points, we have to use Jacobian matrix as well as characteristic equations. Now 
Jacobian matrix of the system (1.13) is 

𝐽(𝐺,𝐻) = � 0 1
12𝐺 − 6 −𝑐� 

 
At (0,0), we obtain 

𝐽(0,0) = � 0 1
−6 −𝑐� 

 
After that we have to use the characteristic equation for finding the eigenvalues. The 
characteristic equation is 
 |𝐽 − 𝜆. 𝐼| = 0 
 ⇒ �� 0 1

−6 −𝑐� − �𝜆 0
0 𝜆�� = 0 

 ⇒ �−𝜆 1
−6 −𝑐 − 𝜆� = 0 

 ⇒ (−𝜆)(−𝑐 − 𝜆) + 6 = 0 
 ⇒ 𝜆2 + 𝜆. 𝑐 + 6 = 0 
 
So the eigenvalues corresponding to the point (0,0) is 

𝜆1,2 =
−𝑐 ± √𝑐2 − 24

2
 

Similarly, using characteristic equation, we can obtain the eigenvalues corresponding to the 
equilibrium point (1,0) such that 

𝜆3,4 =
−𝑐 ± √𝑐2 + 24

2
 

We can mainly observe the behavior of the system from these roots.  
• If 𝑐 ≥ 2√6 then 𝜆1,2 are both real and negative. Here (0,0) is a stable node for the 

linearized system.  
• If 𝑐 ∈ (0,2√6) then 𝜆1,2 are complex with negative real part. For this situation (0,0) is a 

stable focus.  
• On the other hand, 𝜆3,4 are real and opposite sign and in this case (1,0) is a saddle point. 

There exists finite limits of 𝐺(𝑠)as 𝑠 → ±∞. At this time equilibrium points are the limit 
points of solutions.  

For 𝑠 → ±∞, we can find the travelling wave solutions of (1.12) which is equivalent to searching 
for orbits of (1.13). If they join separate equilibrium points, then such orbits are known as 
heteroclinic orbits. If the orbit returns to the same equilibrium point from which it started known 
as homoclinic. There are two orbits giving rise, together with the equilibrium point (1,0) to the 
unstable manifold defined at least in some neighborhood of the saddle point (1,0) such that each 
orbit 𝜇(𝑠) = �𝐺(𝑠),𝐻(𝑠)� satisfies 𝜇(𝑠) to (1,0) as 𝑠 → −∞. At least one of these orbits can be 
continued till 𝑠 → +∞ and reaches then (0,0) in a monotonic way and we can get an exact 
solution of equation (1.10) using initial and boundary conditions such that  
 

𝐺(𝑠) = 𝑢(𝑡, 𝑥) =
1

(1 + 𝑒(𝑥−5𝑡))2
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Figure-1: Phase portrait with 𝑐 = 1 and 𝑐 = 6. 

 
For any 𝑐 > 0, ther exists a unique right-going travelling wave with speed 𝑐 connecting the state 
𝑢 = 1, 𝑢𝑠 = 0 for 𝑥 → −∞ to the state 𝑢 = 0, 𝑢𝑠 = 0  for 𝑥 → +∞. Then we will find faster 
waves.  

• For 𝑐 ≥ 2√6, the wave monotonically decreasing function of 𝑥, while for 𝑐 < 2√6, it is 
oscillatory.  

• That is, the critical points in the 𝐺,𝐻 plane are (1,0), a saddle point and (0,0), a stable 
node for 𝑐 ≥ 2√6 and a spiral for 𝑐 < 2√6.  

• So, the orbit is globally defined for 𝑠 = 𝑥 − 𝑐𝑡 ∈ (−∞,∞) joining equilibrium points 
(1,0) and (0,0). Hence 𝐺 is monotonically decreasing and becomes flat at “±∞” giving a 
travelling wave front solution. 

  
Figure-1(a): Exact solution 𝐺(𝑠) = 𝑢(𝑡, 𝑥) for different times over the domain. 

 
 
5. Implicit-Explicit Finite Difference Method  
We use numerical methods for solving this model and comparing its approximate solution with 
travelling wave solutions of Fisher’s equations. Various types of implicit-explicit finite 
difference method are important for solving nonlinear partial differential equations.  
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The main motivation to introduce implicit-explicit finite difference method is to compare the 
approximate solution with the exact one and polynomial fit data; a new dimension. Now we 
introduce implicit-explicit method [16] for solving the governing equations as recalled here  
 𝜕𝑝

𝜕𝑡
=
𝜕2𝑝
𝜕𝑥2

+ 𝑟𝑝 �1 −
𝑝
𝑘
� 

(1.15) 

Since we have obtained equation (1.10) which is a dimensionless form of the equation (1.15) as 
defined in the earlier section and hence we can write 
 𝜕𝑢

𝜕𝑡
=
𝜕2𝑢
𝜕𝑥2

+ 6𝑢(1 − 𝑢) 
(1.16) 

Where   
 the domain,  𝜎 = (0,1)  
 the initial condition,  𝑢(0, 𝑥) = 1

(1+𝑒𝑥)2
  and   

 the boundary condition,𝑢(𝑡, 0) =
1

(1 + 𝑒−5𝑡)2
 

𝑢(𝑡, 1) =
1

(1 + 𝑒1−5𝑡)2
 

 

Obtaining the difference method of the equation (1.16), at first, we have to use the Taylor series 
in 𝑡 to form the difference quotient 

𝜕𝑢
𝜕𝑡
�𝑡𝑗 , 𝑥𝑖� =

𝑢�𝑡𝑗 + ∆𝑡, 𝑥𝑖� − 𝑢�𝑡𝑗 , 𝑥𝑖�
∆𝑡

−
∆𝑡
2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) 
(1.17) 

for some 𝜏𝑗 ∈ �𝑡𝑗 , 𝑡𝑗+1� and  ∆𝑡
2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) is the error term. 
Now using central-difference method to form the difference quotient by Taylor series in 𝑥, we 
have  
𝜕2𝑢
𝜕𝑥2

�𝑡𝑗 , 𝑥𝑖� = �
𝑢�𝑡𝑗 , 𝑥𝑖 + ∆𝑥� − 2𝑢�𝑡𝑗 , 𝑥𝑖� + 𝑢�𝑡𝑗 , 𝑥𝑖 − ∆𝑥�

(∆𝑥)2 � −
(∆𝑥)2

6
𝜕4𝑢
𝜕𝑥4

(𝑡𝑗 , 𝛾𝑖) 
(1.18) 

Where 𝛾𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖+1) and (𝑡𝑗 , 𝑥𝑖) is the interior gridpoint and (∆𝑥)2

6
𝜕4𝑢
𝜕𝑥4

�𝑡𝑗 , 𝛾𝑖� is the error. 
Suppose that, ∆𝑥 = ℎ, ∆𝑡 = 𝐾. Then (1.17) becomes  

𝜕𝑢
𝜕𝑡
�𝑡𝑗 , 𝑥𝑖� =

𝑢�𝑡𝑗 + 𝐾, 𝑥𝑖� − 𝑢�𝑡𝑗 , 𝑥𝑖�
𝐾

−
𝐾
2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) 
(1.19) 

and (1.18) becomes  
𝜕2𝑢
𝜕𝑥2

�𝑡𝑗 , 𝑥𝑖� = �
𝑢�𝑡𝑗 , 𝑥𝑖 + ℎ� − 2𝑢�𝑡𝑗 , 𝑥𝑖� + 𝑢�𝑡𝑗 , 𝑥𝑖 − ℎ�

ℎ2
� −

ℎ2

6
𝜕4𝑢
𝜕𝑥4

(𝑡𝑗 , 𝛾𝑖) 
(1.20) 

Putting (1.19) and (1.20) in (1.16) and ignoring the local truncation error of order O(𝐾 + ℎ2) 
consisting of −𝐾

2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) and − ℎ2

6
𝜕4𝑢
𝜕𝑥4

(𝑡𝑗 , 𝛾𝑖) and next discretizing the equation (1.16) by 
implicit and explicit scheme, we have 
 𝑢𝑖

𝑗+1 − 𝑢𝑖
𝑗

𝐾
= �

𝑢𝑖+1
𝑗 − 2𝑢𝑖

𝑗 + 𝑢𝑖−1
𝑗

ℎ2
� + 6𝑢𝑖

𝑗�1 − 𝑢𝑖
𝑗� 

 

which yileds 
 ⇒ 𝑢𝑖

𝑗+1 = 𝑅𝑢�𝑢𝑖+1
𝑗 − 2𝑢𝑖

𝑗 + 𝑢𝑖−1
𝑗 � + 6𝐾𝑢𝑖

𝑗�1 − 𝑢𝑖
𝑗� + 𝑢𝑖

𝑗 (1.21) 
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Where the new parameter is defined as 𝑅𝑢 = 𝐾
ℎ2

. To get the numerical solutions, we need to 
employ the boundary conditions (1.21). The algorithm is developed in FORTRAN 90/95 
languages and the version is Plato. In the rest of the section, the results are presented graphically 
for further discussion. 

  
Figure-2:  Comparison of 𝑢(𝑡, 𝑥) and exact solution with error over the domain at  time 𝑡 = 0.5. 
 
The density has been normalized at value taken over the domain at different times. From this 
graphical structure, we able to see that the solution of 𝑢(𝑡, 𝑥) is decreasing which means 𝑢(𝑡, 𝑥) 
lessens over the domain at time 𝑡 = 0.5. 
The exact solutions of equation (1.16) using travelling wave scheme which is also represented in 
Figure-2 (left) and the error term are visible in Figure-2 (right). The graph shows that travelling 
wave solution is also monotonically decreasing while the mesh time step is ∆𝑡 = 𝐾 = 0.001 at 
time 𝑡 = 0.5 over the domain. It is seen that the solution obtained by implicit-explicit FDM  is 
visually coincides with the exact solution. 
Since we have discussed about the nature of the solutions graphically, one additional numerical 
solutions are presented in Figure-3 at time 𝑡 = 10 over the domain 𝛺 ∈ (0,1).  

 
Figure-3: The solution of 𝑢(𝑡, 𝑥) and exact with error over the domain at time 𝑡 = 10.0 
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Figure-4:  Graphical representation of time vs. average solution of 𝑢(𝑡, 𝑥) (a) for implicit-

explicit FDM and (b) by polynomial-fit and compared with wave solution  over the domain at 
time 𝑡 = 3.0 

At this stage, we are interested to discuss about average solution produced by implicit-explicit 
finite-difference method. The solution depicted in Figure-4 (left) reasonably accurate since there 
is a better agreement with the exact solution. If we consider the polynomial fit approximations of 
our available data, the numerical solution is very close to the travelling wave solution over the 
space at time 𝑡 = 3.0.  

  
Figure-5:  Graphical representation of time vs. average solution of 𝑢(𝑡, 𝑥) (a) for implicit-

explicit FDM and (b) by polynomial-fit and compared with wave solution  over the domain at 
time 𝑡 = 10.0 
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If 𝑡 varying, we can illustrate the figures as decorated in Figure-5, where we illustrate average of 
𝑢(𝑡, 𝑥) and compare it with wave or exact solution for time 𝑡 = 10.0. The behavior of the 
solutions is similar to the solutions in Figure-4. The total illustration of average implicit-explicit 
solution with wave solution vs time is given below:  

 
Figure-6: Average solutions of 𝑢(𝑡, 𝑥) at time 𝑡 = 0.5, 𝑡 = 3.0 and compared  with exact 

solution for time 𝑡 = 10.0 
After using analytic and numerical solutions, we have obtained the Figure-6 at 𝑡 = 0.5, 𝑡 = 3.0 
respectively. Time increases from 0.5 to 3.0 and corresponding average of 𝑢(𝑡, 𝑥) or implicit-
explicit finite difference solutions are shown simultaneously in Figure-6. Finally, we introduce 
multiple plot, see Figure-7, using numerical data for various times in one diagram using 
polynomial-fit illustration. While the time is increasing the solutions are closer to the exact 
solutions which is more meaningful.  

 
Figure-7: Multiple plot of 𝑢(𝑡, 𝑥) at different times and the exact solution for 𝑡 = 10.0 
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6. Stability and Error 
The following sections are concerned about the stability and error test. Implicit-explicit method 
is valid for the condition 0 < 𝑅𝑢 ≤

1
2
  only. If the solution of the finite difference equations is to 

be reasonably accurate approximation to the solution of the corresponding nonlinear partial 
differential equation, then the condition must be satisfied. For this, let us denote 𝐸 as an exact 
solution of partial differential equation and the exact solution of finite difference implicit-explicit 
scheme is denoted by 𝑢. Then we consider 𝑒 = 𝐸 − 𝑢, where 𝑒 is discretization error. Since the 
simplest implicit-explicit finite difference approximation of equation (1.16) can be written as  

𝑢𝑖
𝑗+1 − 𝑢𝑖

𝑗

𝐾
= �

𝑢𝑖+1
𝑗 − 2𝑢𝑖

𝑗 + 𝑢𝑖−1
𝑗

ℎ2
� + 6𝑢𝑖

𝑗�1 − 𝑢𝑖
𝑗� 

(1.22) 

The simplification of equation (1.22) is given in equation (1.21). Let us consider now 𝑢𝑖
𝑗+1 =

𝐸𝑖
𝑗+1 − 𝑒𝑖

𝑗+1 and   𝑢𝑖
𝑗 = 𝐸𝑖

𝑗 − 𝑒𝑖
𝑗 at the mesh points. Then putting these in equation (1.22), we 

obtain  
𝑒𝑖
𝑗+1 = 𝐸𝑖

𝑗+1 − 𝑅𝑢�𝐸𝑖+1
𝑗 − 𝑒𝑖+1

𝑗 − 2(𝐸𝑖
𝑗 − 𝑒𝑖

𝑗) + 𝐸𝑖−1
𝑗 − 𝑒𝑖−1

𝑗 � 
−6𝐾(𝐸𝑖

𝑗 − 𝑒𝑖
𝑗)�1 − (𝐸𝑖

𝑗 − 𝑒𝑖
𝑗)� − (𝐸𝑖

𝑗 − 𝑒𝑖
𝑗) (1.23) 

After using Taylor’s theorem [17] in equation (1.23), we can see that �𝐸𝑖
𝑗 − 𝑢𝑖

𝑗� ≤ 𝑒𝑗 where 𝑒𝑗 
presents the maximum value of �𝑒𝑖

𝑗� which proves that 𝑢 converges to 𝐸 when 𝑅𝑢 ≤
1
2
  and t is 

finite.     
The implicit-explicit method of finite difference scheme is unstable when 𝑅𝑢 > 1

2
  and 

conditionally stable if  0 < 𝑅𝑢 ≤
1
2
 . Graph of error using approximate and exact solutions is 

given below: 

 
Figure-8: Error over the domain at time 𝑡 = 0.5, 𝑡 = 3.0 and 𝑡 = 10.0. 

 
We show that the errors consisting of difference between exact and approximate solutions using 
different patterns over the domain at increasing time. 
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7. Conclusion 
It is observed that the density of population diminishes over the domain at certain time and 
average solutions are coincided for increasing of times. In this paper, we have find that travelling 
wave solutions exists for 𝑐 ≥ 2√6 in the selected Fisher’s equation and wave develops with 
speed 𝑐 = 2√6 in the governing equation. Nonlinear problems like fisher’s equations can be 
solved by implicit-explicit schemes. We have generally used implicit-explicit method and 
compared it with travelling wave solutions to justify our solutions. For solving Fisher’s equation, 
this method is a simply powerful technique. The approximate solutions obtained by using this 
method produce better results as compared with travelling wave solution. However, in 
neurophysiology, chemical kinetics and population dynamics such types of modeling phenomena 
like Fisher’s equation can be extended for future study. 
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