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Abstract 

The study applied Autoregressive Integrated Moving Average intervention in modelling 
crude oil prices in Nigeria betweenJanuary 1986 to June 2017. The time plot of the series 
showed an abrupt increase in the series and this called for an intervention model. The data 
was divided into three sets (actual series, pre-intervention and post-intervention series).The 
Augmented Dickey Fuller (ADF) test was used to   test for unit root on each of the variables 
at level and the series were non-stationary. The first differences showed the present of unit 
root in all the three series (actual series, pre and post- intervention). Eighteen models were 
estimated and the best model was the pre-intervention model that minimised the Akaike 
information criterion (AIC) (ARIMA (111) with AIC of (4.4.578). The plot of the residual 
correlogram show adequacy of the model. The model was adequate since there was no spike 
that cut the level of the correlogram and the histogram of the residual was normally 
distributed. 
 
KEY WORDS: Comparative Analysis, ARIMA, PRE- Intervention, Post-intervention, 
Crude oil Prices, Nigeria. 
 

1.0 INTRODUCTION 

The major source of income to Nigeria government is crude oil production and sales. The 
production and sales of the commodity has been on the decrease for some period and then a 
sundered increase,this calls for intervention modelling. The intervention model is used to 
study the increase and decrease that occur in an event of interestAmadi and Etuk (2017).The 
purpose of applying autoregressive integrated moving average (ARIMA) intervention model 
to any series is to find out the dynamic effect on the means level of the variable and other 
event that affect the series.Jeffrey and Eric (2011)The aim of the study is to apply Box-Tiao 
(1987) ARIMA intervention model on the crude oil price in Nigeria from January, 1986 to 
June, 2017. 

2.0 LITERATURE REVIEW 

Intervention modelling was introduced by Box and Tiao (1975) to examined the impact of air 
pollution control on smog-producing oxidant level in the Los Angeles area and of economic 
controls on the consumer price index in the United States. Jeffrey and Eric (2011) used 
ARIMA intervention model to analyse the Chinese stock price. Etuk et al. (2012) fitted a 
SARIMA (011)*(011)12 model for  Nigeria inflation rate. Etuk, et al (2015) studied monthly 
Nigeria Treasury Bill Rates using Box-Jankins techniques. The acceptable model for 
Treasury bill rates was SARIMA (011)*(011)12 model. Abdul-Aziz, et al (2013) studied 
rainfall pattern in Ghana as a seasonal ARIMA process using the Box- Jenkins method. Four 
model were estimated for the series but the best model was choose base on the least BIC, 
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which was estimated as SARIMA (0,0,0)*(2,1,0)12.Mrinmoy et al (2014) examined time 
series intervention model and forecasting cotton yield in Gujarat and Maharashtra in India. 
Intervention was found to besuperior to the conventional ARIMA model.  Etuk and Vincent 
(2018) fitted intervention model of daily Moroccan Dirhan to Nigeria Naira exchange rate. 
The best model account on ARIMA intervention modelling can be found in Box et al. (1994).  
 

3.0 METHODOLOGY 

The conditional means and the error terms of a series is modelled using autoregressive 
integrated moving average (ARIMA) model. The movement of the crude oil price in Nigeria 
has the component of the ARIMA model and an intervention term. 

3.1 ARIMA Model 

Many series are non-stationary, Box-Jenkins (1976) proposed that differencing up to an 
appropriate order make it stationary. Suppose (d) is the minimum order of differencing 
necessary for stationarity to be attained, then the series ሺܿ௧ሻis said to follow an autoregressive  
integrated moving average of order p, d and q denoted as (ARIMA(p d q)). If the series is 
seasonal in nature, the ARIMA model will incorporate both the non-seasonal and the seasonal 
component in a multiplicative model. The notation for the model is  

SARIMA(p d q)ൈ(P D Q)S.        (3.1) 

Where p = non-seasonal AR, d = non-seasonal differencing, q = non-seasonal MA, P = 
seasonal AR, D = seasonal differencing, Q = seasonal MA, and S = time span of repeating 
seasonal pattern. Without differencing operations, the model could be written more formally 
as Abdul-Aziz et al (2013) 
߶ሺܤ௦ሻ߰ሺܤሻ(ܥ௧)-ߠ =ߤሺܤ௦ሻΘሺܤሻߝ௧       (3.2) 
The non-seasonal components are:  
AR: ߰ሺܤሻ = 1 – ߮ଵܤଵ - ... – ߮ܤ       (3.3) 

MA: Θሺܤሻ = 1 + Θଵܤଵ + ... +Θܤ       (3.4) 

The seasonal components are: Seasonal  
AR:߶ሺܤ௦ሻ= 1 – ߶ଵܤ௦ - ... -߶ܤ௦       (3.5) 
Seasonal MA: ߠሺܤ௦ሻ= 1 + ߠଵܤ௦ + ... +ߠொܤ௦ொ     (3.6) 

 
Seasonal differencing is defined as a difference between a value and a value with lag that is a 
multiple of S. Where S = 12, which may occur with monthly data, a seasonal difference is       
 
 ଵଶܿ௧= ܿ௧- ܿ௧ିଵଶ         (3.7)ܤ
 
The differences (from the previous year) may be about the same for each month of the year 
giving us a stationary series.Seasonal differencing removes seasonal trend and can also get 
rid of a seasonal random walk type of non-stationary.Non-seasonal differencing: If trend is 
present in the series after seasonal differencing, we may also need non-seasonal differencing. 
Often a first non-seasonal difference will “de-trend” the data.Wiri and Essi (2018) 
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4.0 INTERVENTION 

The simple ways to study intervention analysis (event study) is to consider some simple 
dynamic models which involved two stages, pulse function and step function.  

4.1 Pulse Function 

A pulse function is a function which shows that intervention only occur in a single time index 
 ;Mathematically the pulse function is given as .(ଵݐ)

௧ܲ ൌ ൜
0				݂݅		ܶ ് ଵݐ
1		݂݅			ܶ ൌ ଵݐ

        (4.1) 

4.2 Step Function 

A step function is function which define the intervention process as a continual stage starting 
with time index (ݐଵ). Mathematically the step function is  

ܵ௧ ൌ ൜
ݐ		݂݅				0 ൏ ଵݐ
ݐ			݂݅		1  ଵݐ

        (4.2) 

4.3 ARIMA Intervention Model 

The intervention model discussed by [3]is of the form 

௧ܻ ൌ ΓሺΒሻܫ௧   ௧        (4.3)ܭ

Where, ௧ܻ = dependent variable, ܫ௧= is the time of intervention (indicator variable),ܫ௧= ௧ܲ=ܵ௧ 

ΓሺΒሻ=  
కሺሻ

ఎሺሻ
Br, ܭ௧ ൌ

ఏሺሻ

ఝሺሻ
௧ߝ

, Br = backshift operator  

௧ܻ=
కሺሻ

ఎሺሻ
 Brܫ௧+ 

ఏሺሻ

ఝሺሻ
 ௧        (4.4)ߝ

4.2.0 Step Involve in ARIMA Intervention Model 

The general step for estimation of ARIMA intervention model consists of the following three 
stages: 

I Time plot of the original series. 

2 Tet for stationality of the data using Augmented Dickey-Fuller (ADF) test where the 

null hypothesis of unit root exists. 

3 Model Estimation and selection. 
4 Diagnosis check of the parameters of the model 
5 Residual diagnostic check using correlogram of Q-statistics, ACF and PACF of the 

residual is used for residual diagnostic check. 
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5.0 RESULTS AND DISCUSSION 

The series is a monthly crude oil prices in US dollars per barrel from January1986 to 

June 2017 from Central Bank of Nigeria website. www.cenbank.org. The researcher used 
eviews 10 in the statistical analysis. 

 

Figure 1.0. Time Plot of Crude Oil Price 

 

Examining Figure 1.0, we noticed an irregular movement, with sudden jump in the year 
250the effect beginning at time ݐଵ= 251 Suggesting a new set of governmental intervene in 
crude oil production and sale. Therefore, there is one intervention point, meaning production 
of crude oil and the sale was on increase. Thus, we identify the intervention point; it can be 
defined as follows; pre-intervention period (0 to 235) and post-intervention period (235 to 
366). The data was divided into two part, see Figure 1.1 and figure 1.2 for pre-intervention 
and post-intervention time plot. 

 

 

 

Figure 1.1. Pre-Intervention   Figure 1.2 Post-Intervention 
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 The pre-intervention series shows irregular and linear trend, with gradual increase to 235 

(meaning irregular increase in the price of crude oil). From figure 1.2 the post-intervention 

graph show irregular movernment upward and downward  trend (meaning  increase and 

decrese in the  sales of crude oil price )  

5.1  Stationarity Test  

Table (1.0) Unit Roots Test  

Variable Levels 1st difference Test critical value 

Crude oil price -1.9555 
(0.3067) 

-13.036 (0.000) 1% level -3.4816 

Pre-intervention 1.266(0.9976) -13.225 (0.000) 5% level -2.8829 

Post-
intervention 

-2.153(0.332) -7.2933 (0.000) 10% level -2.5787 

 

The series are required to be stationary in order to carry out joint significant test on the lags 
of the variable and the method used to test for stationary is the Augmented Dickey Fuller 
(ADF) test. The test is used to test for unit root on each of  the variables(Brooks 2008).Table 
(1.0) represent result of The Augmented Dickey Fuller (ADF) test at level and first 
differences and probability values in brackets. The probability values (p-values) at level is 
greater than 0.05 (p-values >0.05), the result showed the presence of unit root. The p-value of 
all the variables at first difference were tested for stationarity and the series was stationary. 
The probability values is (0.000) for all the variables hence the null hypothesis was rejected 
and the series concluded stationary. Etuk et al (2017) 

5.2 Model Estimation and AIC and SIC Values 

Eighteen models were estimated in all, six each for estimated for ARIMA, PRE-
INTERVENTION AND POST-INERVENTIONrespectively with Akaike information 
criterion (AIC) and schwarz information criterion (SIC) shown in appendix(1). The best 
model for Nigeria crude oil price was ARIMA-intervention (pre-intervention series in 
appendix (4)) model (ARIMA (111)) with minimise information criterion AIC (4.579) and 
SIC (4.638).Akaike (1975) 
The pre-intervention (ARIMA (111)) model for crude oil price in Nigeria is given below 
 

=	௧ܥ
కሺሻ

ఎሺሻ
 Brܫ௧+ 

ఏሺሻ

ఝሺሻ
 ௧         (5.1)ߝ

 
Where 
 ሻ= AR(1)ܤሻ= slop parameter, ߮ሺܤሺߟ ,ሻ= Impact parameterܤሺߦ ,= crude oil price at time t	௧ܥ
parameter, ߠሺܤሻ= MA(1) parameter 
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 ௧= indicator variable coded according to the type of intervention involved in the study. Theܫ
type of intervention in this study is call a pulse function (intervention only occur in a single 
time index t1 =235). Chung et al (2009) 

The pre-intervention model obtained is given as follow 

=	௧ܥ
ି.଼଼

ଵି.ସଷଽ
 Bܫ௧+ 

ଵି.ସ

ଵା.ଵ
 ௧        (5.2)ߝ

The model can also be represented lineally as  

 ௧ (5.3)ߝ +		௧ିଶߝ+ 0.374	௧ିଵߝ- 1.2		௧ିଶܫ– 4.81	௧ିଵܫ– 7.88	௧ିଶܥ+ 0.268	௧ିଵܥ= 1.045	௧ܥ

5.3 Diagnostic Test  

The plot of the residual correlogram showed adequacy of the model since there is no spike 
that cut off level in appendix (2). The histogram of the residual is normally distributed with 
probability values (0.000) in appendix (3). The test statistics of the residual showed that the 
data is normally distributed with constant mean and variance (White noise Process). Box and 
Jenkins (1976) 
 

5.4 Conclusion 

The ARIMA-Intervention model was used to measure the impact of unusual increase in the 
crude of price in Nigeria. The study investigated the time series intervention modelling of 
(actual series, pre and post intervention analysis). It was found that in all the three models, 
pre-intervention analysis was found to be superior to the conventional ARIMA models and 
post intervention.The results indicate that pre- intervention analysis is much appropriate in 
modelling trend of Nigeria crude oil price.  
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Appendix (1) 

Parameter Estimation Of Arima And Arima+Interventions Models 

MODELS PARAMETER CO-EFFICIENT AIC SIC 

AR(p) MA(q) 
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ARIMA MODEL OF CRUDE OIL PRICES 
ARIMA(111) 0.3823 -0.0260 5.785 5.800 

ARIMA(011)  0.3386 5.766 5.798 
ARIMA(110) 0.3598  5.7528 5.784 
ARIMA(210) 0.356 

0.00923 
 5.758 5.80 

ARIMA(012)  0.344 
0.0972 

5.764 5.80 

ARIMA(212) -0.2806 
0.334 

0.6552 
-0.1337 

5.75 5.823 

ARIMA-INTERVENTION (PRE-INTERVENTION) 
ARIMA (111) -0.6095 0.7638 4.578 4.637 
ARIMA (110) 0.1383  4.587 4.892 
ARIMA (011)  0.16456 4.584 4.627 
ARIMA (210) 0.1526 

-0.1014 
 4.586 4.644 

ARIMA (012)  0.1492 
-0..1111 

4.58 4.644 

ARIMA (212) 0.158 
0.372 

-0.0274 
-0.542 

4.59 4.67 

ARIMA-INTERVENTION (POST-INTERVENTION) 
ARIMA(111) 0.477 -0.0834 6.55 6.66 
ARIMA(110) 0.40766  6.5366 6.58 
ARIMA(011)  0.37067 6.564 6.617 
ARIMA(210) 0.922 

0.0373 
 6.55 6.617 

ARIMA(012)  0.366 
0.136 

6.564 6.63 

ARIMA(212) -0.2056 
0.3811 

0.6249 
-0.1583 

6.58 6.717 

 

 

Appendix (2). Corrrlogram of Nigeria Crude Oil Price. 
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Appendix (3) Histogram of residuals of Nigeria crude oil price 
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Appendix (4) ARIMA(1,1,1) 
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Series: Residuals
Sample 2 235
Observations 234

Mean       0.000813
Median  -0.230061
Maximum  9.909967
Minimum -8.702704
Std. Dev.   2.351997
Skewness   0.308722
Kurtosis   5.618035

Jarque-Bera  70.54461
Probability   0.000000

Dependent Variable: DE
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 10/30/18   Time: 15:57
Sample: 2 235
Included observations: 234
Convergence achieved after 27 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.239790 0.177461 1.351225 0.1780
AR(1) -0.609500 0.119080 -5.118389 0.0000
MA(1) 0.763892 0.099669 7.664325 0.0000

SIGMASQ 5.508249 0.340418 16.18086 0.0000

R-squared 0.036335     Mean dependent var 0.242521
Adjusted R-squared 0.023765     S.D. dependent var 2.395928
S.E. of regression 2.367286     Akaike info criterion 4.578684
Sum squared resid 1288.930     Schwarz criterion 4.637750
Log likelihood -531.7061     Hannan-Quinn criter. 4.602500
F-statistic 2.890700     Durbin-Watson stat 1.977482
Prob(F-statistic) 0.036222

Inverted AR Roots      -.61
Inverted MA Roots      -.76
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Appendix (5) 

 

Dependent Variable: Z
Method: Least Squares (Gauss-Newton / Marquardt steps)
Date: 10/30/18   Time: 16:58
Sample (adjusted): 2 131
Included observations: 130 after adjustments
Convergence achieved after 33 iterations
Coefficient covariance computed using outer product of gradients
Z = C(1)*(1 - C(2)) (̂T - 235)/(1 - C(2))

Coefficient Std. Error t-Statistic Prob.  

C(1) -7.875241 351.5401 -0.022402 0.9822
C(2) -0.043943 0.398930 -0.110152 0.9125

R-squared 0.000277     Mean dependent var -0.008154
Adjusted R-squared -0.007533     S.D. dependent var 1.747367
S.E. of regression 1.753936     Akaike info criterion 3.976867
Sum squared resid 393.7653     Schwarz criterion 4.020983
Log likelihood -256.4963     Hannan-Quinn criter. 3.994793
Durbin-Watson stat 1.063710


