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ABSTRACT  
It is important to fit count data with suitable model(s), models such as Poisson Regression, 

Quassi Poisson, Negative Binomial, to mention but a few have been adopted by authors to 

fit zero truncated count data in the past, which were considered unsuitable. In recent times, 

dedicated models for fitting zero truncated count data have been developed by some 

authors which are improvements on the previous ones. Aside dedicated models for fitting 

count data; Bayesian multi-level was also recently developed to handle any type of count 

data. This study implemented Bayesian multi-level Poisson and Bayesian multi-level 

Geometric model, Bayesian Monte Carlo Markov Chain Generalized linear Mixed Models 

(MCMCglmms) of zero truncated Poisson and MCMCglmms Poisson regression model to fit 

health count data that is truncated at zero. Diagnostics tests were carried out and model 

selection criteria were used to determine preferred models for fitting the zero truncated data. 

The results showed that Bayesian multi-level Poisson outperformed Bayesian multi-level 

Poisson Geometric; also MCMCglmms of zero truncated Poisson outperformed 

MCMCglmms Poisson.  
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1. INTRODUCTION 

Count data sets are type of data obtained by counting, and observations are taken within a 

fixed period of time; count data include zero and positive integers only. Example of studies 

where count data were modeled include the field of insurance [1], telecommunications [2], 

academics [3-4], medicine [5-9]. Other areas of studies include but not limited to agriculture, 

sports, biology and transportation. 

 

Count data can be equi-dispersed, over-dispersed or under-dispersed. Over-dispersion is a 

problem when conditional variance is larger than the conditional mean, while under-

dispersion is when the conditional variance is less than the conditional mean. Poisson model 



 

 

is assumed to have equal mean and variance, therefore, it is not suitable to fit under-or over-

dispersed count data [5]. Therefore, a more robust model is sought to achieve a more 

reliable estimates for data that exhibit over-or under-dispersion. Apart from observing the 

conditional mean and variance, another way to check for over-dispersion or under-dispersion 

is to carryout out a dispersion test, and this can be done by fitting quassi-Poisson regression 

model, [6] identified the robustness of quassi-poisson regression model in fitting count data. 

The feature of a given count data determines the type of model suitable for it; count data 

with many zeros can be modeled with zero-inflated or hurdle models, while count data with 

no zero count can be effectively modeled with zero truncated models. Studies such as [11-

13] give details of such analysis.    

 

Regression model for fitting count data have their background Generalized Linear Model 

(GLM), since in Linear model is considered inadequate in modelling count data because 

Linear model cannot account for heteroscedasticity in count data. GLM work in such a way 

that there is a link function that links the response variable to the predictors, and the count 

data need not to be normally distributed. The modes that belong to GLM belong to 

exponential class of family given in equation (1). A random variable Y  has a distribution in 

the exponential family if its probability density function (pdf) has the form: 
 

                            ݂ሺߠ|ݕሻ ൌ ܿሺݕ, ߶ሻ exp ሼሺߠݕ െ ܽሺߠሻሻ ߶ሽ⁄ , ݃ሺߤ௜ሻ ൌ                 (1)                                        ߚ΄ݔ
 

Where ' 'y  is the value of an observation Y ,   is a location parameter called the canonical 

parameter,   is a dispersion parameter sometimes called the scale parameter and it 

determines the shape of the distribution, ܿሺݕ, ߶ሻ is a normalizing factor producing unit total 

mass for the distribution. Equation (1) was defined by [14], and the equation for ݂ሺߠ|ݕሻ 

indicates that the distribution of the response is in the exponential family. ݃ሺߤ௜ሻ ൌ  ߚ΄ݔ

indicates that a transformation of the mean, ݃ሺߤ௜ሻ, is linearly related to the explanatory 

variables contained in X . The data used for in this study was truncated at zero, so zero 

truncated Poisson and Geometric models are itemized in equations (2) to (4).  

 

Let ଴ܲሺݔ;  ሻ be the original Poisson distribution. Then the pdf of zero-truncated form ofߠ 

଴ܲሺݔ;  ሻ is given as followsߠ 

 

                               ଴ܲሺݔ; ሻߠ  ൌ
଴ܲሺݔ;  ሻߠ 

1 െ ଴ܲሺ0;  ሻߠ 
; ݔ ൌ 1, 2, , … ݊                                                                         ሺ2ሻ 

 



 

 

And for zero-truncated binomial we have  

                                                ேܲ൫ݔ; ൯ߠ ൌ
ଵ

ଵିሺଵି௣ሻ೙
ቀ
݊
݇
ቁ ௞ሺ1݌ െ    ሻ௡                                     (3)݌

                     

Where ߠ=ሺ݊; ݊ ሻ, and݌ ∈ Գ, 0 ൏ ݌ ൏ 1,  

 

While that of Zero truncated geometric distribution is given as  

                            
1( ; ) (1 )xp x      ݔ , ൌ 1, 2, 3…  0 1                  (4)    

 

The link functions for in fitting regression resulting from equation (2) and (4) is the log link, 

while that (3) is logit link.  

This study proposed Bayesian multi-level model and MCMCglmms models to fit zero 

truncated count data, and identify the suitability of the models in fitting the data. The 

remaining part of this paper is sectioned as follows; section 2 contains Materials and 

Methods, section 3 is the Results and Discussion.  

 

2. MATERIALS AND METHODS 

2.1 Multi-Level Modelling 

Multi-Level Modelling has to do with predicting the response variable ( )y  using the linear 

combination   of predictors transformed by the inverse link function ( )lf  . For a given 

distribution ' 'd , it can be written as 

                                         ,i l iy d f                                          (5) 

where d  is called family of the distribution as usually represented in statistical software, 

then the parameter   represents additional family parameters which naturally do not change 

as data points increases. We consider a general the linear predictor can be written as 

 

                                          Α Β                             (6) 

Where   and   (fixed and random effect) are the coefficients at population-level and 

group-level respectively, Α , Β  are the corresponding design matrices. The response y as 

well as andΑ  and Β   makes up the data, while  ,   and   are the model parameters to 

be estimated. Bayesian MCMC methods treat   as a parameter unlike maximum likelihood 

which treats   as error term [15]. Prior selection for Bayesian Multi-level modelling 



 

 

corresponds to the use of No-U-Turn Sampler (NUTS) instead of Inverse-Wishart prior 

distribution as discussed by [15].  

 

2.2 Generalized linear mixed models (GLMMs) 

Generalized linear mixed models extension of Generalized Linear Models because as it 

incorporates fixed and random effects. The model can be simply put as follows: 

                                               i iy X Z e  β γ                            (7) 

Where ݕ is a ܰ ൈ 1column vector, ࢄ and ࢆ are design matrices for the fixed and random 

predictors of the data respectively. These predictors have connected parameter vectors ߚ 

and ߛ, and e is a vector of residuals. For random effects, 1( ,....... )i iq  iγ  explained the 

inclusion of covariates ܼ௜, the link can be written in extended form as                                             

                                  
 i i i ig X Z e    β γ , 1, 2, ,i n                                   (8)

                             
 

According to [1] MCMCglmms can be modelled using the R -and G –structure; R structure 

adopted in this study is random; and the latent variables are assumed to have the 

multivariate normal distribution and the conjugate prior of the variance structure is inverse-

Wishart prior distribution which can be Gibbs sampled.  

 

2.3 Parameter Estimation and Model Selection  

It is important to carry out dispersion test in order to identify the type of dispersion a count 

data exhibits. Dispersion test is used to test the null hypothesis of equi-dispersion in Poisson 

GLMs against the alternative of true dispersion parameter of greater than 1. In standard 

Poisson GLM models, the (conditional) mean  E Y   is assumed to be equal to the 

variance  Var Y  . Dispersion test is used to assess the hypothesis that the assumption 

of equi-dispersion holds against the alternative that the variance is of the form: 

                                             Var Y trans                                                   (9)  

If trans=1 or trans=2, it follows linear and quadratic formulation. Over-dispersion 

corresponds to ߙ ൐ 1 and under-dispersion to ߙ ൏ 1. The transformation trans can either be 

specified as a function or an integer as defined by [16]. If trans is NULL, no formulation is 

used in the dispersion test and expressed as: 

                    1Var Y dispersion                                          (10)                                      

which translates to dispersion parameter for quasi-Poisson family.  

 



 

 

After using quassi-Poisson regression analysis, further analysis was carried on the data with 

Bayesian multi-level analysis and MCMCglmms. As a default with Bayesian multi-level 

analysis, normal prior was adopted, using No-U-Turn Sampler (NUTS) to sample from the 

posterior distribution. ‘brms’ package by [17] the ‘brms’ package does no work in isolation 

but with stan processor. In order to determine the model with a better fit between Poisson 

and Geometric models in the context of Bayesian multi-level modeling, the Watanabe-Akaike 

Information Criteria (WAIC), [18] and Leave-one-out cross validation LOO-CV proposed by 

[19-20] were used, model with lower WAIC and LOO indicates a better fit for the data. On 

the hand, model selection criteria MCMCglmm are the Aikaike Information Criteria (AIC), 

Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). The MCMC 

follows the Monte Carlo Part which relies on generation of pseudo-random numbers, and 

then the Markov chain part; a Markov chain is a sequence of number where each number is 

dependent on the previous number on the sequence, that is,  

 

,௧ିଶߠ௧ିଵ~ܰሺߠ                                                     ,ሻߪ ,௧ିଵߠ௧~ܰሺߠ  ሻ                                             ሺ11ሻߪ

 

For example, considering a Gaussian proposal ߠ௧ ൌ ܰሺߤ,  ሻ, the proposal shifts to the rightߪ

each time a sample is drawn from the distribution and plot generated from  ߠ௧ is called trace 

plot, the density plot represents the sample generated. The trace and density plots of the 

predictors can be found under results and discussion.  

 

For Bayesian Multi-level models, Pareto k analysis was carried out to determine if any 

observation was left out in the process of the analysis. Any observation with 0.7k   

indicates a bad observation; consequently, the observation would be left out during analysis.  

Software package by [21] “package AER” by [16] was used to carry out the dispersion test. 

“trans”=NULL was adopted in this study.  

 

2.4 Data Description 

The dataset used in this article consist of National Health Insurance Scheme (NHIS) data 

with no zero count. The data was obtained from health facility in Ota, Ogun State, Nigeria. A 

sample consisting of 1647 users of NHIS was obtained from July 2016 to July 2017. The 

response variable is “Number of Encounter (Nencounter)”, while predictor variables are Sex, 

Age of patients, Number of diagnosis (Ndiagnosis) for the period of visits, individual on 

follow-up (Follow-up) and Eclass (In-patient or out-patient). The data is under-dispersed with 

dispersion parameter of 0.7806 (the dispersion parameter is less than 1). The data is further 

described as follows:  



 

 

 

Response variable (Nencounter) that is, number of times claims were made. The class 

(Eclass) indicated whether a patient was ever or not on admission for the period, that is, (in-

patient=1, out-patient= 0). Another predictor is (follow-up), indicating whether a patient is on 

regular check-up or not, (follow-up=1, no follow-up=0). Gender (sex) of patients; (male=1, 

female=0). Another predictor is Ndiagnosis, which represents the number of diagnosis a 

patient had for the period of encounter. The last predictor included is biological age of 

patient. 

The classification of gender according to the number of times patients had Encounter(s) at 

the health facility is presented in Table 1. 

 
Table 1: Classification of gender according to Number of Encounter 

Number of Encounter                   Sex Total 
 Female Male  
1-5 745 630 1375 
6-10 105 91 196 
11-15 31 21 52 
16-21 6 9 15 
21-27 7 2 9 
Total 894 753 1647 

Source: Authors’ Computation 
 
From Table 1, there is an indication that females had more encounter as compared to their 

male counterpart. The information on patients that are either on follow up or not is 

represented in Table 2. 

 
Table 2: Information on follow-up status 

NEncounter                       Follow-up Total 
 Female                     Male  
1-5 1148 227 1375 
6-10 163 33 196 
11-15 41 11 52 
16-21 12 3 15 
21-27 6 3 9 
 894 753 1647 

                       Source: Authors’ Computation 
 
 



 

 

 
                          Figure 1: Scatter plot of Nencounter 
 

 

 
Figure 2: Box and Whisker plot of Encounter 
 
 

 
 

 
Figure 3: Quantile plot of encounter 
 

 
Figure 4: Density trace plot of Nencounter 

 

 
3. RESULTS AND DISCUSSION 
 
The result for the Quassi-Poisson regression analysis is presented in Table 3. 
 
             Table 3: Quassi-Poisson Regression Analysis  

 Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.2941138 0.0295171 9.964 <2e-16 *** 
Sex 0.0111539 0.0239250 0.466 0.64113     
Age 0.0018506 0.0006451 2.869 0.00417 **  
followup -0.1534049 0.0324182 -4.732 2.41e-06 *** 
Eclass 0.1700727 0.0955086 1.781 0.07515 .   
Ndiagnosis 0.2677050 0.0037693 71.023 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Source: Authors’ Computation 
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From the dispersion test carried out using quasi Poisson regression, dispersion parameter is 

0.7806, indicating that the data is under-dispersed as shown in Table 3, z = -3.0491, (P= 

0.9989), the dataset is under-dispersed since 1  .  

 

Table 4 shows that only follow-up have significantly negative effect on Encounter, so 

whether a patient is on follow-up or not does not necessarily mean that encounter will 

increase. With quasi-Poisson, [6] identified that the inadequacy inherent in Poisson model is 

taken care of. Model selection for Bayesian multi-level is performed in Table 4, and * is 

indicates model with lower value between Bayesian multi-level Geometric and Bayesian 

multi-level Poisson. 

 
Table 4: Bayesian Multi-level Model Selection  

Model elpd_waic   p_waic      waic elpd_loo   p_loo       looic Waic=LOO 
Geometric 
Est. 
SE 

 
-3534 
30 

 
0.9   
0.1 

 
7069.1 
60.1 

 
-3534 
30 

 
0.9   
0.1 

 
7069.1 
60.1 

 
     Yes 

Poisson 
Est. 
SE 

 
-2862.0  
56.3 

 
18.2   
7.2 

 
5724.4* 
112.5 

 
-2862.0  
56.4 

 
18.6   
7.4 

 
5724.8* 
112.8 

 
     No 

Source: Authors’ Computation 
 
All Pareto k estimates are good (k < 0.5) in the case of Geometric, but for Poisson model, 

two observations are bad with estimate of k>0.7. 

 

Table 4 shows that Bayesian Multi-level model with Poisson outperformed geometric based 

on the WAIC and LOO estimates, contrary to maximum likelihood estimates for Poisson. The 

results for population-level effects model for Geometric and Poisson models are presented in 

Tables 5 and 6. 

 
 
Table 5: Population-Level Effects model for Bayesian Multi-level Geometric: 

 Est. Error l-95% CI u-95% CI Eff.Sample Rhat 
Int. -.03 .08 -.18 .12 4244 1.00 
Eclass .05 .25 -.41 .54 3908 1.00 
Followup .01 .08 -.14 .16 4260 1.00 
Sex .00 .06 -.11 .11 3868 1.00 
Age .00 .00 -.00 .00 5059 1.00 
Ndiagnosis .37 .02  .34 .40 4109 1.00 

Source: Authors’ Computation 
 
 
 
 
 



 

 

Table 6: Population-Level Effects model for Bayesian Multi-level Poisson 
 Est. Error l-95% CI u-95% CI Eff.Samp Rhat 
Intercept .29 .03 .22 .36 3624 1.00 
Eclass .16 .11 -.05 .37 2606 1.00 
followup -.15 .04 -.23 -.08 3283 1.00 
Sex .01 .03 -.04 .07 3159 1.00 
Age .00 .00 .00 .00 4203 1.00 
Ndiagnosis .27 .00 .26 .28 3586 1.00 
 
Source: Authors’ Computation 
 
 
Table 7: Bayesian MCMCglmm Zero truncated Poisson and Ordinary Poisson regression 
Model 
Model selection     Bayesian ZT Poisson Bayesian Poisson 
AIC     4709.586 5463.467 
BIC     4747.433 5501.314 
DIC     5027.495 5630.394 
Source: Authors’ Computation 
 
Samples were drawn using sampling (NUTS). Scale reduction factor on split chains (at 

convergence, Rhat = 1). Log link was used for both Bayesian Geometric and Poisson 

models, the ‘Est.’ in column 2 of Table 5 and Table 6 represents the posterior mean, while 

‘Error’ stands for standard deviation of the posterior mean, ‘CI’ stands for Confidence 

Interval, and ‘Eff.Samp’ stands for Efficient Sampling. All the parameters have positive 

relationship with “NEncounter” showing that number of Encounter can be determined by 

each of the predictor. By implication, patients on admission (inpatients) have more encounter 

than outpatients, since it was coded (0, 1), patients on follow-up made more encounter than 

patients that are not on follow-up, since it was coded (0, 1). Also, male patients made more 

encounter than female, coded as (male=0, Female=1), increase in age leads to increase in 

number of encounter. From Table 5, Ndiagnosis (0.37) account for number of Encounter 

than Eclass, Follow-up, Sex, and Age. 

 

From Table 6 for Bayesian multi-level Poisson model, All the parameters have positive 

relationship with Encounter, except ‘follow-up’, showing that number of Encounter can be 

determined by each of the predictor but not in the case of follow-up; “follow-up” has 

significantly negative effect on “Encounter” as identified in Table 3 in the case of classical 

Quassi Poisson regression analysis, therefore, whether a patient is on follow-up or not does 

not necessarily mean that Encounter will increase. The plots for the results are presented in 

Figure 5. 

 



 

 

 

 
Figure 5: Trace and Density plots of all relevant parameters for Bayesian Multi-level with 

Geometric model 

 
 
Table 8: Posterior Mean for Bayesian MCMC glmm for Zero Truncated Poisson Model 
 post.mean l-95% CI u-95% CI eff.samp pMCMC     

(Intercept) 
Sex 
Age 
Ndiagnosis 
followup 
Eclass 

-0.2365188 
0.0042738 
0.0014956 
0.3638062 
-0.0947547 
0.1145752 

-0.3428029 
-0.0675917 
-0.0004543 
0.3455116 
-0.1988362 
-0.1929133 

-0.1292316 
0.0813161 
0.0037423 
0.3798459 
0.0025938 
0.4219337 

678.7 
1020.5 
1281.2 
638.7 
1159.1 
1283.6 

<3e-04 *** 
0.9137     
0.1545     
<3e-04 *** 
0.0669 .   
0.4341     

Source: Authors’ Computation 
 
 



 

 

In this study Bayesian multi-level and Bayesian MCMCglmms have been employed to fit 

zero truncated count datasets from health and insurance domain, basic descriptive analysis 

was carried out on the data and quassi-Poisson regression analysis was equally performed, 

first to determine the dispersion type and second, to determine the relationship of the 

predictors with the response count variable. The quassi-Poisson analysis shows that it is 

only follow-up that did not necessarily have relationship with Encounter among all the 

variables. Bayesian Multi-level regression analysis was implemented and the result shows 

that Bayesian Multi-level Poisson regression outperformed Geometric model using “waic” 

and “looic” as presented in Table 4, and in the class of Bayesian MCMCglmms, Bayesian 

Zero truncated Poisson model outperformed Ordinary Poisson regression Model using AIC, 

BIC and DIC as presented in Table 7.  

 

For the Bayesian multi-level model based Geometric distribution, all the predictors have 

positive relationships with “Encounter”, while Bayesian multi-level model based Poisson 

distribution showed the same relationship with that of quassi-Poisson model, indicating that 

of follow-up is negative. That further shows how reliable quassi-Poisson is in fitting count 

datasets. The posterior mean (estimate) for MCMCglmm Zero truncated Poisson model (-

0.0947547) and that of ordinary Poisson regression Model (-0.0903413) using R-structure, 

as detailed in [3], also have all estimates to be positive except that of follow-up, as shown in 

Table 8. The result containing that of MCMCglmms Poisson was not tabulated but reported. 

The result agreed with that of the Multi-level Poisson model. These results also agreed with 

[3] and [22] where authors demonstrated that Bayesian models based on Generalized Linear 

Mixed Models (MCMCglmms) are suitable to fitting count data effectively, although [2] 

demonstrated the superiority of Diritchlet Prior Mixture Model over MCMCglmms.  

 

Other deductions from the study shows that more females are on hospital admission than 

their male counterpart, also patients on follow-up are far more than patients not on follow-up, 

and this might indicate that more people are aware of the need to follow-up on their 

treatments and health status.  

 

From the results obtained, it can be deduced that when comparing Bayesian Multi-level 

Poisson with Geometric model, Poisson outperformed the Geometric.  On the other hand, 

when comparing Bayesian zero truncated family of MCMCglmms with MCMCglmms 

Poisson, the zero truncated family outperformed the Poisson family. The four models cannot 

be compared at the same time because the model selection criteria for Bayesian Multi-level 

models are WAIC and LOO ([18-20]), which is considered an improvement on DIC. 



 

 

Therefore, when a researcher is considering a suitable multi-level model to fit under-

dispersed count data that is truncated at zero, Poisson model should be considered, the 

problem associated with classical Poisson model has been taken care of when using 

Bayesian multi-level models because Bayesian multi-level models have unique sampler and 

unique prior selection technique ([23-24]), which is considered robust for any type of count 

data.  
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