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ABSTRACT8

9
The combined effects of chemical reaction, radially applied magnetic field and Hall effect on entropy
generation of a steady third grade magnetohydrodynamics fluid flowing through a uniformly circular
pipe was studied. The governing equations are presented and the resulting non-linear dimensionless
equations are solved numerically using Galerkin Weighted Residual Method. The velocity,
temperature and concentration profile were obtained and utilized in computing the entropy number. A
parametric study of germane parameters involved are presented graphically and discussed. It was
observed that irreversibility due to heat transfer dominates the flow compared to fluid friction and Hall
parameter inhibits the Bejan number while Magnetic parameter enhances the Bejan number.
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1. INTRODUCTION14
15

Magnetohydrodynamics (MHD) flows in rectangular and cylindrical system continue to stimulate16
significant interest in the field of engineering science and applied mathematics. This interest is owned17
to the numerous important applications in biological and engineering industry such as reactive18
polymer flows, extraction of crude oil, synthetic fibres, paper production and also in absorption and19
filtration processes in chemical engineering [1]. The dynamics of reactive fluids through pipe at low20
Reynolds numbers has long been an important subject in the area of environmental engineering and21
science.22
The steady flow of a reactive variable viscosity fluid in a cylindrical pipe with isothermal wall was23
studied by Makinde [2], reporting the dependence of the steady state thermal ignition criticality24
conditions on both Frank-Kamenetskii and viscous heating parameters. Makinde et al [3], numerical25
investigation for the entropy generation rates in an unsteady flow of a variable viscosity26
incompressible fluid through a porous pipe with uniform suction at the surface were examined. In27
Ajadi [4], closed-form solution using Homotopy Analysis method on the effect of variable viscosity and28
viscous dissipation on the thermal stability of a one-step exothermic reactive non-Newtonian flow in a29
cylindrical pipe assuming negligible reactant consumption were obtained.  In 2013, Aiyesimi et al [5]30
considered a mathematical model for a dusty viscoelastic fluid flow in a circular channel was31
considered, observing that an increase in the value of magnetic field and viscoelastic parameter32
reduces the horizontal velocity of the fluid and particles, thereby reducing the boundary layer33
thickness, hence inducing an increase in the absolute value of the velocity gradient at the surface.34
And [6] examined the effect of radiation on unsteady MHD flow of a chemically reacting fluid past a35
hot vertical porous plate using finite difference approach. They reported the temperature and velocity36
of the fluid increases for increasing values of hest generation parameter, temperature and velocity37
decreases for increasing values of radiation parameter and temperature of the fluid increases for38
increasing values of Eckert number.39
Hall current and chemical reaction effects on a hydromagnetic flow of a stretching vertical surface with40
internal heat generation/absorption was studied by Salem & Abd El-Aziz [7]. A finite element solution41
of heat and mass transfer flow with Hall current, heat source and viscous dissipation were presented42
in Sivaiah & Srinivasa [8]. A computational iterative approach known as Spectral Local Linearization43
Method (SLLM) blended with Chebyshev spectral method was used by Shateyi & Marewo [9], to study44
the effect of Hall current on MHD flow and heat transfer over an unsteady stretching permeable45
surface in the presence of thermal radiation and heat source/sink.46
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The thermodynamics second law analysis and its design-related concept of entropy generation47
minimization has been a cornerstone in the field transfer and thermal design. Several researchers48
were motivated to study fundamental and applied engineering problem based on second law49
analyses, due to the production of entropy resulting from combined effects of velocity and50
temperature gradient. Generating entropy is tied to thermodynamic irreversibility, which is common in51
all heat transfer process. Eegunjobi & Makinde [10] investigated the combined effects of buoyancy52
force and Navier slip on the entropy generation rate in a vertical porous channel with wall53
suction/injection. The combined effects of Navier slip, convective cooling, variable viscosity and54
suction/injection on the entropy  generation rate in an unsteady flow of an incompressible viscous fluid55
flowing through a channel with permeable wall was studied by [11].56
In this paper, the motivation comes from a desire to gain more understanding into the combined effect57
of radially applied magnetic field and Hall current on the flow of chemically reactive third grade fluid.58
The relevant governing equation have been solved numerically by Galerkin Weighted Residual59
Method [12, 13]. The effects of the various apposite parameters on the velocity, temperature and60
concentration are presented. In this work, entropy generation rate of a laminar MHD flow of a reactive61
third grade fluid is considered in a circular pipe, which is assumed electrically conducting and62
incompressible in the presence of an externally applied radially exponential magnetic field.63

64
2. MATHEMATICAL FORMULATION65

66
Considering a steady flow of electrically conducting, incompressible, third grade fluid in a non-67
conducting circular pipe in the absence of gravitational force. The z-axis is taken along the axis of68

flow. Radially exponential varying magnetic field 2
0

r
R

rB B e is applied [14] and no electric field is69
applied. The flow is induced due to constant applied pressure gradient in the z-direction and electron70
atom collision frequency is assumed to be relatively high compared to the collision frequency of ions.71
The equations which govern the MHD flow are the continuity, momentum and Maxwell equations. In72
fluid dynamics studies, it is assumed that the flows meet the Clausius-Duhem inequality and the73
specific Helmholtz free energy of fluid has a minimum at equilibrium [15]. Using the velocity field74

(0,  0, w( )),V r the incompressibility condition is satisfied identically and momentum and Maxwell75
equations after the constitutive equations76
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are fluid velocity, fluid82

temperature, applied magnetic field strength, modified pressure, electrical conductivity, Hall83
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parameter, thermal conductivity, thermal radiation, molecular diffusivity, thermal diffusivity, specific84
heat capacity, chemical reaction rate constant, reference temperature, wall temperature, reference85
concentration and wall concentration.86
Introducing the following non-dimensional quantities by Ellahi [18] into (2.2) to (2.5) and the boundary87
conditions88
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and using Rosselands approximation90
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* * * , , ,  , , ,  ,  , ,S , , ,r c H u p c RM c P E Q D R K   denotes third grade parameter, magnetic parameter,92
pressure drop, Prandtl number, Eckert number, heat source/sink parameter, material constant93
parameter, Dufour number, radiation parameter, Schmidt number, chemical reaction parameter,94
Stefan-Boltzmann constant and mean absorption coefficient. For steady flow, the time dependent95
terms are set to zero and the following are equations were obtained respectively with the boundary96
conditions97
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Equations (2.8), (2.9), (2.10) and (2.11) comprise the boundary value problem to now be solved.102
103

3. METHODS104
105

3.1 Galerkin Weighted Residual Methods106
107

Suppose an approximate solution is to be determined for the differential equation of the form108
  0L f   (3.1)109

where ( )x is an unknown dependent variable, L is a differential operator and ( )f x is a known110

function. Let
1

( ) ( )
N

i i
i

x c u x


 be an approximate solution to (2.8). On substituting ( )x into (2.8), it111

is unlikely that (2.8) is satisfied i.e.   0L f   therefore  L f R  112
(3.2)113
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where ( )R x is a measure of error called the Residual [13, 19]. Multiplying (3.2) by an arbitrary weight114
function ( )u x and integrating over the domain to obtain115

 ( ) ( ) ( ) ( ) 0
D D
u x L f dD u x R x dD     (3.3) Galerkin116

Weighted Residual method ensures equation (3.3) vanishes over the solution domain and the weight117
function is choosing from the basis functions ( ) ( )   ( 0,..., )iu x u x i N  hence118
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These are a set of n-order linear equations to be solved to obtain all the ic coefficients. The trial120
functions can be polynomials, trigonometric functions etc. The trial functions are usually chosen in121
such that the assumed function ( )x satisfies the global boundary conditions for ( )x though this is122
not strictly necessary and certainly not always possible [12].123
To apply the method to (2.8)-(2.10), we select an approximate solutions of the form124
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temperature and concentration respectively, which satisfies the boundary conditions (2.11). Applying126
the boundary conditions on the approximate solution we obtain the following:127
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The residue R for (2.7)-(2.9) respectively are given by131
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Taking into account of orthogonality of the residues above, we have135
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The symbolic calculation software MAPLE 2016 is used to compute the values of 0 1 1, ,a b c and the139
approximate solutions.140

141
3.2 Entropy Generation142

UNDER PEER REVIEW



143
Inherent irreversibility in a pipe flow occurs owing to exchange of energy and momentum within the144
fluid and the solid boundaries. The entropy generation is owed to heat transfer and the effects of fluid145
friction. The equation for rate of entropy generation per unit volume [3, 11] is given146
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where the first term in (4.1) is the irreversibility due to heat transfer, the second and third term are148
entropy generation due to viscous dissipation. Introducing the dimensionless quantities in (2.6) to149
(4.1), we have150
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(4.3)154

where 1N is irreversibility due to heat transfer and 2N gives entropy generation due to viscous155
dissipation. The Bejan number is defined as156

1
e

s

NB N (4.4)157

such that 0 1eB  denoting 1eB  is the limit at which heat transfer irreversibility dominates, 0eB 158

is the limit at which fluid friction irreversibility dominates, and 1
2eB  connotes equal contribution159

[20].160
161

3. RESULTS AND DISCUSSION162
163

In this section, results are presented and discussed. Fig. 1 depicts the influence of magnetic164
parameter, increasing the magnetic parameter decreases the flow profile of the system owning to the165
Lorentz force acting in contradiction of the flow. Fig. 2 shows the Hall parameter enhancing the flow166
profile with increasing Hall values. Increasing the Reynolds number enhances the velocity profile as167
shown in Fig. 3. In Fig. 4, the thickening effect of the fluid in regard to increasing thirdgrade parameter168
inhibits the flow field.169
Fig. 5-7 portrays the effect of Eckert, Prandtl and Reynolds number on the temperature profile.170
Considerable increase in the Eckert number slightly increases the temperature profile then increasing171
the Prandtl number and Reynolds number decreases the temperature field of the system.  The172
temperature field in Fig. 8 is enhanced with increasing the radiation parameter.173

174

175
Fig. 1. Effect of varying magnetic parameter (M=1, M=10, M=20) on velocity profile.176
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177

178
Fig. 2. Effect of varying Hall parameter (m=0.1, m=1, m=10) on velocity profile.179

180

181
Fig. 3. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on velocity profile.182

183

184
Fig. 4. Effect of varying Thirdgrade parameter ( =1, =50, =100) on velocity profile.185

186
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187
Fig. 5. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on velocity profile.188

189

190
Fig. 6. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on temperature profile.191

192

193
Fig. 7. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on temperature profile.194

195
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196
Fig. 8. Effect of varying Radiation parameter (Rp=0.1, Rp=0.2, Rp=0.4) on temperature profile.197

198
Figures 9-10 depicts the influence of Dufour and Schmidt numbers on the concentration profile.199
Increasing the Dufour number increases the concentration field while the concentration profile200
decreases with increasing values of Schmidt number. The entropy generation profile is portrayed in201
Fig. 11-14 with influences of Reynolds, Prandtl, Eckert numbers and radiation parameter. Increasing202
the Reynolds number enhances the entropy generation while increasing Eckert number inhibits203
entropy generation. Increasing the Prandtl number decreases the entropy generation firstly around204
the pipe centreline then it enhances entropy rapidly towards the pipe wall while increasing the205
radiation parameter enhances the entropy generation around the centreline firstly then it inhibits it206
rapidly towards the pipe wall.207

208

209
Fig. 9. Effect of varying Dufour number (Duf=2, Duf=3, Duf=4) on concentration profile.210

211

212
Fig. 10. Effect of varying Schmidt number (Sc=0.5, Sc=10, Sc=25) on concentration profile.213
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214

215
Fig. 11. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on entropy generation profile.216

217

218
Fig. 12. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on entropy generation profile.219

220

221
Fig. 13. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on entropy generation222
profile.223

224
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225
Fig. 14. Effect of varying Radiation parameter (Rp=0.1, Rp=0.2, Rp=0.4) on entropy generation226
profile.227

228
Figures 15-22 presents the influence of Hall parameter, magnetic parameter, Prandtl number, Eckert229
number Reynolds number, thirdgrade parameter, Dufour number and reaction parameter on Bejan230
number. Increasing the Hall parameter, Eckert number and Reynolds number inhibits the Bejan231
number and the irreversibility due to heat transfer dominates over fluid friction irreversibility from the232
pipe centreline to pipe wall except for Reynolds number where irreversibility due to fluid friction233
dominates gradually towards the pipe wall. On increasing the magnetic parameter, thirdgrade234
parameter, Dufour number and reaction parameter enhances the Bejan number and the irreversibility235
due to heat transfer dominates over fluid friction irreversibility. Increasing the Prandtl number firstly236
inhibits the Bejan number around the pipe centreline then it enhances Bejan number towards the wall237
of the pipe and the flow is dominated by heat transfer irreversibility.238

239

240
Fig. 15. Effect of varying Hall parameter (m=0.1, m=1, m=10) on Bejan number.241

242
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243
Fig. 16. Effect of varying Magnetic parameter (M=1, M=10, M=20) on Bejan number.244

245

246
Fig. 17. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on Bejan number.247

248

249
Fig. 18. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on Bejan number.250

251
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252
Fig. 19. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on Bejan number.253

254

255
Fig. 20. Effect of varying Thirdgrade parameter ( =1, =50, =12) on Bejan number.256

257
Fig. 21. Effect of varying Dufour number (Duf=2, Duf=3, Duf=4) on Bejan number.258

259

UNDER PEER REVIEW



260
Fig. 22. Effect of varying reaction parameter (Kr=1, Kr=2, Kr=4) on Bejan number.261

262
263

4. CONCLUSION264
265

In this numerical investigation, the entropy generation rate of steady reactive magnetohydrodynamic266
third grade fluid flow in a circular pipe is presented using the Galerkin method. Numerical expression267
for the velocity, temperature and concentration was obtained which were used to compute the entropy268
generation number. Special emphasis has been focused here to the variations of pertinent parameter269
of physical significance on the entropy generation rate and Bejan. The main findings of the present270
analysis are:271
 The velocity is enhanced for increasing values of , Rem and inhibited for ,M 272
 The temperature is enhanced for values of ,Ec Rp and inhibited for Pr, Re  and Du273

 The concentration is enhanced values of , RDu K and inhibited for  and ReSc274

 Re, RK and Du have enhancing effects on the entropy generation rate.275

 , , RM Du K and  enhances the entropy generation rate while it is inhibited for Re  and Ec .276
277
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Here is the Definitions section.  This is an optional section.328
Term: Definition for the term329
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