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Abstract 

In this study, the effect of Vadasz number on magnetoconvection in a Darcy Porous Layer 
with concentration based internal heating is investigated using the linear stability analysis 
which is based upon the normal mode technique. The onset criterion for both stationary 
and oscillatory convection on the stability of the system is obtained. The results show that, 
the presence of Vadasz number destabilizes the system, whereas, ܽܪ, ,ݏܴ  stabilizes the ݁ܮ
system. 
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1. Introduction 

Thermal instability with the presence of magnetic field in a Darcy porous layer with concentration 
based internal heating has attracted considerable interest especially due to its intrinsic properties in 
myriads of industrial problems, particularly in the chemical and nuclear industries, petroleum-
exploration, thermal insulation technology, nuclear reactors, solidification of binary alloys, cooling 
of electronic equipment, food processing industry, centrifugal casting of metals, reservoir 
modelling and building of thermal insulation. 
Several researchers in the last decades have investigated thermal instability in porous medium by 
considering different fluids. The classical literatures [1, 2, 3, 4, 5, 6, 7, 8] investigated under 
various conditions of hydrodynamic and hydromagnetic, thermal instability of a Newtonian fluid. 
[9] have examined the stability of convective flow in a porous medium using Rayleigh’s 
procedure. The Rayleigh instability of the thermal boundary layer in a flow through porous 
medium was considered by [10]. Exhaustive account of convection in porous medium can be found 
in [11, 12, 13,14, 15]. 
In recent years, considerable interest has been given to thermal instability in a porous medium 
which is heated and salted from below under varying conditions. [16] investigated effect of vertical 
magnetic field on the onset of double-diffusive convection in a horizontal porous layer with 
concentration based internal heat source. Soret and Magnetic field effects on Thermosolutal 
convection in a porous medium with concentration based internal heat source was considered by 
[17]. Double diffusive convection in a porous medium with reaction and cross-diffusion effects and 
concentration based internal heat source has been studied by [18, 19, 20]. In this study, we present 



 

 

the effect of Vadasz number on magnetoconvection in a Darcy porous layer with concentration 
based internal heating which hitherto has not been considered by other authors or researchers  

 
2. Mathematical Formulation 

Consider an incompressible electrically conducting fluid induced by concentration based internal 
heating of the form ܳሺܿ∗ െ ܿሻ in the gap between two parallel horizontal plates located at ݖ∗ ൌ 0 
and ݖ∗ ൌ ݄. A cartesian coordinate system ሺݔ∗, ,∗ݕ  ሻ is chosen such that the origin is at the∗ݖ
bottom of the porous layer and the gravitational force ݃̅ acts vertically upwards, as shown in the 
Figure 1a.	The flow occurs in the presence of a uniform externally applied vertical magnetic field 
തܤ ൌ ܤ ത݇.	The induced magnetic is neglected on the account that the magnetic Reynold number is 
small. Adverse temperature and concentration gradients are applied across the porous layer in such 
a way that the lower plate is maintained at temperature and concentration ܶ  Δܶ	and ܿ  Δܿ; 
while the upper plate at temperature and concentration ܶ and ܿ,  are reference	here ܶ and ܿݓ
temperature and concentration respectively. 
 
 

 

 

 

 

                                              Figure 1a: Schematic diagram of the problem 

Further we assume that the fluid is Newtonian with viscosity, ߤ, thermal expansion coefficient,  ,ߚ
thermal conductivity ்ߢ, diffusion coefficient ܦ and electric conductivity ߪ. 
Following the usual Boussinesq approximation [12], the mixture density ߩ depends linearly on 
both temperature and concentration defined by 
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0where  is the reference density   

By taking into account the Lorentz force and acceleration coefficient, while in the governing 
equations viscous heating effect 
Where ሬܸԦ ൌ ሺݑ∗, ,∗ݒ  Ԧ is the currentܬ ,ሬԦ is the electric fieldܧ ,ሻ is the velocity, ܲ∗ is the pressure∗ݓ

density, ߢ is the permeability of the porous medium, ߶ is the porosity, ܳ
ொ

൫ఘ൯
 is the thermal 

conductivity, ሬ݇Ԧ is the unit vector in the ݖ െdirection. The subscripts ݉ and ݂ denotes the medium 
and fluid respectively. Following the assumptions the governing equations becomes: 
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The boundary conditions are  
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Here the last term in Equation (3) , LF  represents the Lorentz force, which induces 

electromagnetic effect on the system. The appropriate form of Ohm’s law given in Equation ሺ6ሻ 
for a moving medium employs the quasi-state approximation, whereby the electric field, ܧത∗ can be 
written in terms of the electrostatic potential ߮. That is, ܧത ൌ െ߮.  
In this work, we consider the case of electrically insulating boundaries for which ܧത ൌ 0 on the 
account that the electrostatic potential is a constant, with this the current density given in equation 
ሺ6ሻ reduces to, 
 
∗Ԧܬ     ൌ ∗ሺሬܸԦߪ ൈ            ሬԦ∗ሻ                                                                                  ሺ8ሻܤ
 
And the Lorentz force   ܨ ൌ ∗Ԧܬ ൈ  ሬԦ   becomesܤ
 
Ԧܨ ൌ  ߪሺ ሬܸԦ∗ ൈ ሬԦ∗ሻܤ ൈ               ሬԦܤ
      	ൌ െߪܤ

ଶሺݑ∗, ,∗ݒ 0ሻ                                                                        ሺ9ሻ     

Using    Equation ሺ9ሻ  and the scales ݄,
మ

ఈ
,
ఈ

,



ሺఈఓሻ
		    for length, time, velocity and pressure 

respectively; together with ܶ ൌ
ሺ்∗ି బ்ሻ

∆்
 for temperature, ܿ ൌ

ሺ∗ିబሻ

∆
  for concentration, ൌ

థ


 , 

ሬሬԦൌ  ,ሬሬԦ∗, for the dimensionless equations governing the motion of the fluid are݄



 

 

 

2

2

2

. 0 (1 0 )

1
1 ( , , 0 ) (1 1)

( . ) (1 2 )

( . ) (1 3)

i

V

V H a u v P R a T k R sc k
V a t

T
V T T R c

t

c
L e L e V c c

t


 

        


    




   



 

  

 

 

  
The boundary conditions are: 

0 , 1, 1 o n 0 (1 4 )

0 , 0 , 0 o n 1 (1 4 )

w T c z a

w T c z b

   

   
  
The dimensionless parameters are: 

ܴܽ ൌ
∅


ൌVadasz number, ܲݎ ൌ

జ

ఈ
ൌ	Prandtl number, ܽܦ ൌ



మ
ൌ	Darcy number, ܴܽ ൌ

ఘబఉ∆்

ఓఈ
ൌ	Rayleigh number, ݁ܮ ൌ

ఈ
ఈ
ൌ	Lewis number, ܽܪଶ ൌ

ఈబ
మ

ఓ
ൌ	Hartmann number, 

ܴ݅ ൌ
మொబ∆

ఈ∆்
ൌ	internal heat parameter, ܴ௦ ൌ

ఘబഁೖ∆
ఓఈ

=solutal Rayleigh number. 

   
2.1 Basic State 
The basic state of the system is assumed to be quiescent and is described by  
 

0, ( ), ( ), ( ) (15)b b b bV T T z c c z p p z   
  
Substituting Equation (15) into Equations (10) (13)  and the boundary condition (14)  yield the 

equations governing the basic state as 
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2.2   Linearization and Perturbation Solution 
 
To study the stability of the basic state, we now superimpose small perturbations in the form 
 

, ( ) , ( ) , ( ) (21)b b b bV V V p p z p T T z c c z        
  

  

where , ,  and V p  


 are the perturbed quantities over their equilibrium counterparts and are 
assumed small. On substituting Equation (21) into Equations (10)-(13) and the boundary condition 
(14) and using Equation (21)  we obtain the linearized equations as 
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 is the basic temperature gradient given by 
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The impermeable boundary conditions are  
 

0 on 0,1 (26)w z    
  

Next, the pressure term is eliminated by taking the double curl of Equation (23)  and keeping only 

the ݖ െ component. Then the system reduces to 
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where 
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2
2 2

 is the Laplacian in the horizontal planeh x y

 
  

 
  

The boundary condition for the system (27)  are 
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Further, assuming that, the conductive motion exhibit horizontal periodicity, then we seek a time 
dependent periodic disturbance of the form [21] 
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 where ( )r ii     is the growth rate and is in general complex, with ,r i   real and  

( , )f x y  is a horizontal plane tilting the ݕݔ	 െplane periodically. 

The substitution of Equation (29) into (27) yield the eigenvalue problem. 
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where  2 2 and 0,  is the wave numberhD f a f a
z


   


  

0 on 0, 1 (31)w z 
  

To study the boundary conditions (31),  we further assume that solution of Equation (30) in the 
form 
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where 0 0 0, ,  are constants.W    Substitution of Equation (32) into (30) yields  

0 (33)H X 
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The solvability of the eigenvalue problem in Eq. (33)  requires that 0.H   This requirement 

yields the thermal Rayleigh number as 
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For neutral solutions, we set in Equation (34)ii   and rearranging yields 
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Since R a is a physical quantity, it must be real. Hence from Equation (35) , it follows that either 

0  for the onset of stationary convection or 2 0, 0   for the onset oscillatory 

convection. 
 
3 Onset of Stationary Convection 
 
For the validity of principle of exchange of stabilities to hold for marginal stationary convection, 
߱ ൌ 0. Setting ߱ ൌ 0	in Equation (35) yields the Rayleigh number, ܴܽ௦௧ for the stationary 
convection as 
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 Which coincides with the earlier results of [22] and [16]  
Further, when ܴݏ ൌ 0, the stationary Rayleigh number given in Equation (37) reduces to classical 
result of [23] and [9] 
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 In addition, Equation (37)  gives the critical Rayleigh number 
24  with corresponding st

cRa  critical wave number, St
ca    

 
3.1 Oscillatory Convection 
 

For the onset of oscillatory convection 2 0 and 0.    Setting 2 0 and osRa Ra    in 

Equation (35)  gives the expression for Rayleigh number as 
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where the frequency of oscillation is given by 
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                                                                                                                                 ሺ40ሻ 
4 Discussion of Results 
 
The effect of Vadasz number on Magnetoconvection in Darcy porous layer with concentration 
based internal heating is studied analytically using the linear stability analysis technique. The 
expressions for both the stationary and oscillatory modes for different values of the governing 
parameters such as Magnetic field parameter, ܽܪ, solute Rayleigh number, ܴݏ,	internal heat 
parameter, ܴ݅ and Lewis number, ݁ܮ, are computed and the results are displayed in figures 1-8.  



 

 

Fig. 1: Variation of thermal Rayleigh number for various values of internal heat parameter,  ࡾ for 
           stationary convection. 
 
Figure 1. Influence of the internal heat parameter on the onset of instability for fixed   values of 
Ha=2, Rs=5, Le=1 in stationary convection. It is observed that increase in in the internal heat 
decreases the thermal Rayleigh number, for stationary convection. This implies that internal heat 
hastens instability, which leads to a destabilization of the system. 

 

Fig. 2: Variation of thermal Rayleigh number for various values of the magnetic parameter, ࢇࡴ     
             for stationary convection 

 
Figure 2. Shows numerically the computed values for ܴݏ ൌ 2, ܴ݅ ൌ 2 and the influence of the 
Magnetic field parameter, ܽܪ on the thermal Rayleigh umber. The result shows increase in 
Magnetic field increases the thermal Rayleigh number for the stationary mode. The result is an 
indication that Magnetic field stabilizes the system.  

 

Fig. 3: Variation of thermal Rayleigh number for various values of the Lewis number, ࢋࡸ for     
          stationary convection 
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Figure 1 3  depicts the influence of Lewis number, ݁ܮ on the thermal Rayleigh number, ܴܽ for fixed 
values of ܽܪ ൌ 2, ݏܴ ൌ 2, ܴ݅ ൌ 1 in stationary convection. It is observed that increase in Lewis 
number leads to a decrease in the thermal Rayleigh number, ܴܽ which is an indication that Lewis 
number hastens the onset of instability in the system. 

 

Fig. 4: Variation of thermal Rayleigh number for various values of solutal Rayleigh number, ࢙ࡾ in  
           stationary convection 
 
Figure 2 4 depicts the influence of solutal Rayleigh number, ܴݏ on the thermal Rayleigh number for 
fixed ܽܪ ൌ 2, ܴ݅ ൌ 1, ݁ܮ ൌ 1. The result shows increase in solutal Rayleigh number increases the 
thermal Rayleigh number. This implies that solutal Rayleigh number stabilizes the system for 
stationary convection. 

 

Fig. 5: Variation of thermal Rayleigh number with solutal Rayleigh number for various values of the  
            internal heat parameter, ࡾ in stationary convection 
 
Figure 5 shows the influence of the internal heat parameter, ܴ݅ on the thermal Rayleigh number for 
fixed ܽܪ ൌ 2, ݁ܮ ൌ 1, ܽ ൌ  It is observed that increase in internal heat decreases the thermal .ߨ
Rayleigh number. This is an indication that, the system is destabilized in the presence of internal 
heat parameter. 
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Fig. 6: Variation of thermal Rayleigh number for various values of magnetic parameters, ࢇࡴ in 
           oscillatory convection 
 
Figure 36 shows the linear relationship between the thermal Rayleigh number, ܴܽ and the solutal 
Rayleigh number, ܴݏ for variations in the Magnetic field parameter, ܽܪ. Increase in Magnetic field 
increases the thermal Rayleigh number which is an indication that the system is stabilized in the 
presence of Magnetic field for stationary convection. 

 

Fig. 7: Variation of thermal Rayleigh number for various values of the Vadasz number, ࢇࢂ in  
             oscillatory convection 
 
Figure 47 depicts the influence of Vadasz number, ܸܽ on the thermal Rayleigh number, ܴܽ for 
oscillatory convection with fixed values of ܽܪ ൌ 10, ܴ݅ ൌ 2.	The result shows increase in Vadasz 
number increases the thermal Rayleigh number which indicates that Vadasz number delays the 
onset of instability in the system. 

 

Fig. 8: Variation of thermal Rayleigh number for various values of magnetic parameter, ࢇࡴ in oscillatory  
             convection 
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Figure 8 shows the influence of Magnetic field parameter, ܽܪ on the thermal Rayleigh number, ܴܽ 
for fixed values of ܸܽ ൌ 50, ܴ݅ ൌ 2 for oscillatory convection. It is evident that increase in 
Magnetic field increase the thermal Rayleigh number, which is an indication of the stabilization of 
the system. 
 
 5 Conclusion 
 
The effect of Vadasz number on magnetoconvection in a Darcy porous layer with concentration 
based internal heating has been studied analytically using the linear stability analysis. The porous 
layer is heated and salted from below. The roles of the governing parameters on the stability of the 
system was investigated. The result show that, the presence of the internal heat parameter, ܴ݅	and 
solutal Rayleigh number, ܴݏ is to destabilize the system for both stationary and oscillatory modes.  
On the other hand, increase in the values of the magnetic parameter, ܽܪ and vadasz number, ܸܽ 
stabilizes the system. Whereas, positive increase in the Lewis number stabilizes the system only for 
the stationary state and destabilize for the oscillatory state. 
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