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Abstract: In this paper, we prove the existence of random attractors for a stochastic
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1 Introduction

In this paper, we investigate the asymptotic behavior of solution to the following s-
tochastic reaction-diffusion equation with distribution derivatives and multiplicative noise
defined in the entire space Rn :

du+ (αu−∆u)dt = (g(x, u) + f(x) +Djf
j)dt+ bu ◦ dW (t), (1.1)

with the initial value condition

u(x, 0) = u0(x) , x ∈ Rn, (1.2)

where −∆ is the Laplacian operator with respect to the variable x ∈ Rn, u = u(x, t)
is a real function of x ∈ Rn and t ≥ 0; α, b are proper positive constants; Dj = ∂

∂xj
is
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distribution derivatives; f j, f ∈ L2(Rn) (j=1,2,....,n); g is a nonlinear function satisfying
certain conditions; W (t) is a two-sided real-valued Wiener process on a probability space
(Ω,F ,P), where Ω = {ω ∈ C(R,R) : ω(0) = 0}, F is the Borel σ -algebra induced by the
compact-open topology of Ω, and P is the corresponding Wiener measure on F ; ◦ denotes
the Stratonovich sense in the stochastic term. We identify ω(t) with W (t), i.e.,

W (t) = W (t, ω) = ω(t), t ∈ R.

It is well known that the asymptotic behavior of a random dynamical system is pre-
sented by a random attractor. The existence of random attractors without distribution
derivatives have been studied by many authors, see [2, 4, 5, 8, 9, 12, 17, 18] and the
reference therein. Notice that the partial differential equations (PDEs) studied in these
literatures are all defined on the bounded domains.

In the case of unbounded domains, the existence of random attractors without dis-
tribution derivatives was established for the stochastic reaction-diffusion equation with
additive noise in [3], and with multiplicative noise in [16].

Recently, in our case of distribution derivatives on unbounded domains, the existence
of global attractors was established for the deterministic reaction-diffusion equation with
distribution derivatives in [14, 15], and for the stochastic reaction-diffusion equation with
distribution derivatives and additive noise in [1].

However, there is no results on random attractors for stochastic reaction-diffusion
equation with distribution derivatives and multiplicative noise on unbounded domain.

In this article, we will use the idea of uniform estimates on the tail of solutions to in-
vestigate the existence of a random attractor of the stochastic reaction-diffusion equation
with distribution derivatives and multiplicative noise on unbounded domain. Since the
equation (1.1) include the distribution derivatives, we can,t use −∆v as the test function
to obtain a priori estimates of solution in a higher regular space. That is the essential
different from [16]. Besides, we decrease the condition of the nonlinear function g(x, u)
comparing the condition of [16].

This paper is organized as follows. In section 2, we recall some basic concepts and
properties for general random dynamics system. In section 3, we provide some basic set-
tings about Eq. (1.1) and show that it generates a random dynamical system on L2(Rn).
In section 4, we prove the uniform estimates of solutions, which include the uniform es-
timates on the tails of solutions. In the last section, we first establish the asymptotic
compactness of the solution operator by given uniform estimates on the tails of solutions,
and then prove the existence of a random attractor.

In the sequel, we use ‖ · ‖ and (·, ·) to denote the norm and inner product of L2(Rn) ,
respectively.

2 Preliminaries

As mentioned in the introduction, our main purpose is to prove the existence of the
random attractor. For that matter, first, we will recapitulate basic concepts related to
random attractors for stochastic dynamical systems. The reader is referred to [2, 7] for
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more details.
Let (X, ‖ ·‖X) be separable Hilbert space with the Borel σ-algebra B(X). Let (Ω,F ,P)

be a probability space.

Definition 2.1 (Ω,F ,P, (ϑt)t∈R) is called a metric dynamical system if ϑ : R× Ω→ Ω
is (B(R) × F ,F)-measurable, ϑ0 is the identity on Ω, ϑs+t = ϑt ◦ ϑs for all s, t ∈ R and
ϑtP = P for all t ∈ R.

Definition 2.2 A continuous random dynamical system (RDS) on X over a metric
dynamical system (Ω,F ,P, (ϑt)t∈R) is a mapping

φ : R+ × Ω×X −→ X, (t, ω, x) 7→ φ(t, ω, x),

which is (B(R+)×F × B(X),B(X))- measurable and satisfies, for P-a.e. ω ∈ Ω,

(i) φ(0, ω, ·) is the identity on X,
(ii) φ(t+ s, ω, ·) = φ(t, ϑsω, ·) ◦ φ(s, ω, ·) for all t, s ∈ R+,
(iii) φ(t, ω, ·) : X → X is continuous for all t ∈ R+.

Hereafter, we always assume that φ is continuous RDS on X over (Ω,F ,P, (ϑt)t∈R).

Definition 2.3 Let D be a collection of random subset of X and {K(ω)} ∈ D. Then
{K(ω)} is called a random absorbing set for φ in D for every D ∈ D and P-a.e, ω ∈ Ω,
there exist t0(ω) such that

φ(t, ϑ−tω,D(ϑ−tω)) ⊆ K(ω) for all t ≥ t0(ω).

Definition 2.4 Let D be the set of all random tempered sets in X. Then φ is said
to be asymptotically compact in X if for P-a.e. ω ∈ Ω, {φ(tn, ϑ−tnω,Xn)}∞n=1 has a con-
vergent subsequence in X whenever tn →∞, and Xn ∈ B(ϑ−tnω) with {B(ω)} ∈ D.

Definition 2.5 A random compact set {A(ω)} is said to be a random attractor if
it is a random attracting set and φ(t, ω,A(ω)) = A(ϑ−tω) for P-a.e. ω ∈ Ω and all t ≥ 0.

Theorem 2.6 Let φ be a continuous random dynamical system onX over (Ω,F ,P, (ϑt)t∈R).
If there is a closed random tempered absorbing set {K(ω)} of φ and φ is asymptotically
compact in X, then {A(ω)} is a random attractor of φ, where

A(ω) =
⋂
t>0

⋃
τ≥t

φ(τ, ϑ−τω,K(ϑ−τω)), ω ∈ Ω.

Moreover, {A(ω)} is the unique attracor of φ.

3

UNDER PEER REVIEW



3 The random reaction-diffusion equation on Rn with
distribution derivatives and multiplicative noise

In this section, we show that there is a continuous random dynamical system
generated by the stochastic reaction-diffusion equation defined on Rn with distribution
derivatives and multiplicative noise:

du+ (αu−∆u)dt = (g(x, u) + f(x) +Djf
j)dt+ bu ◦ dW (t), (3.1)

with the initial value condition

u(x, 0) = u0(x) , x ∈ Rn, (3.2)

where α, b are proper positive constants, f j, f ∈ L2(Rn), Dj = ∂
∂xj

is distribution deriva-

tives, and g(x, u) is a nonlinear function satisfying the same condition as [16], but except
the condition | ∂g

∂x
(x, u)| ≤ g̃(x) for all x ∈ Rn and u ∈ R.

g ∈ C1(Rn × R,R), (3.3)

g(x, 0) = 0, g(x, u)u ≤ 0, for all x ∈ Rn, and u ∈ R, (3.4)

∂g

∂u
(x, u) ≤ ε, for all x ∈ Rn, and u ∈ R, (3.5)

sup
x∈Rn

sup
|u|≤r
|∂g
∂u

(x, u)| ≤ L(r), for all x ∈ Rn, u ∈ R and r ∈ R+, (3.6)

where ε is a non-negative constant, L(·) ∈ C(R+,R+).
To model the random noise in Eq. (3.1), we need to define a shift operator {ϑt}t∈R on

Ω (where Ω is defined in the introduction) by

ϑtω(·) = ω(·+ t)− ω(t), t ∈ R,

then (Ω,F ,P, {ϑt}t∈R) is an ergodic metric dynamical system, see [2, 7].
For our purpose, it is convenient to convert the Eq.(3.1) into a deterministic system

with a random parameter, and then show that it generates a random dynamical system.
We now introduce an Ornstein-Uhlenbeck process given by the Brownian motion. Put

z(ϑtω) := −
∫ 0

−∞
es(ϑtω)(s)ds, t ∈ R, (3.7)

which is called the Ornstein-Uhlenbeck process and solves the Itô equation

dz + zdt = dW (t). (3.8)

From [2, 3, 10, 11], it is known that the random variable z(ω) is tempered, and there
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is a ϑt-invariant set Ω̃ ⊂ Ω of full P measure such that for every ω ∈ Ω̃, t 7→ z(ϑtω) is

continuous in t; limt→±∞
|z(ϑtω)|
|t| = 0; and limt→±∞

1
t

∫ t
0
z(ϑsω)ds = 0.

To show that Eq. (3.1) generates a random dynamical system, like in [16], we let

v(t) = e−bz(ϑtω)u(t), (3.9)

where u is a solution of Eq. (3.1). Then we can consider the following evolution equation
with random coefficients but without white noise:

dv

dt
+ αv −∆v = e−bz(ϑtω)(g(x, ebz(ϑtω)v) + f(x) +Djf

j) + bz(ϑtω)v, (3.10)

with the initial value condition

v(x, 0) = v0(x) = e−bz(ϑtω)u0(x), x ∈ Rn. (3.11)

We will consider (3.10)-(3.11) for ω ∈ Ω̃ and write Ω̃ as Ω from now on.
By using the standard Galerkin method following, see [6, 13], one may show that

(3.10) has a unique solution v(t, ω, v0) which is continuous with respect to v0 in L2(Rn)
for all t > 0. Then (3.10) generates a continuous random dynamical system {φ(t)}t≥0 over
(Ω,F ,P, {ϑt}t∈R), where

φ(t, ω, v0) = v(t, ω, v0), for v0 ∈ L2(Rn), t ≥ 0 and for all ω ∈ Ω.

We define mapping ϕ : R+ × Ω× L2(Rn)→ L2(Rn) by

ϕ(t, ω, u0) = u(t, ω, u0) = ebz(ϑtω)φ(t, ω, v0), for v0 ∈ L2(Rn), t ≥ 0 and for all ω ∈ Ω.

Then ϕ is a continuous random dynamical system associated with the Eq. (3.1) on
L2(Rn).

Note that the two random dynamical system are equivalent. It is easy to check that ϕ
has a random attractor provided φ possesses a random attractor. Then, we only need to
consider the random dynamical system φ.

4 Uniform estimates of solutions

In this section, we derive uniform estimates on the solutions of (3.1)-(3.2) defined
on Rn when t → ∞ with the purpose of proving the existence of a bounded random ab-
sorbing set and the asymptotic compactness of the random dynamical system associated
with the equation. In particular, we will show that the tails of the solutions for large
space variable are uniformly small when time is sufficiently large.

From now on, we always assume that D is the collection of all tempered random
subsets of L2(Rn) with respect to (Ω,F ,P, {ϑt}t∈R). The next lemma shows that φ has a
random absorbing set in D.

Lemma 4.1 Assume that f j, f ∈ L2(Rn), and (3.3)-(3.6) hold. Then there exists a
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random ball {K(ω)} ∈ D centered at 0 with random radius ρ(ω) > 0 such that {K(ω)} is
a random absorbing set for φ in D, that is, for any {B(ω)} ∈ D and P-a.e. ω ∈ Ω, there
is TB(ω) > 0 such that

φ(t, ϑ−tω,B(ϑ−tω, )) ⊆ K(ω) for all t > TB(ω). (4.1)

Proof Taking the inner product of Eq.(3.10) with v in L2(Rn), we have

1

2

d

dt
‖v‖2 + α‖v‖2 + ‖∇v‖2 = e−bz(ϑtω)

∫
Rn
g(x, ebz(ϑtω)v)vdx

+ e−bz(ϑtω)((f, v) + (Djf
j, v)) + bz(ϑtω)‖v‖2. (4.2)

In line with condition (3.4) and (3.6), we get

−∞ < −L(ebz(ϑtω)‖v‖)‖v‖2 ≤ e−2bz(ϑtω)
∫
Rn
g(x, u)udx ≤ 0. (4.3)

By the Hölder, inequality and the Young inequality, we conclude

e−bz(ϑtω)(f, v) ≤ 1

2α
e−2bz(ϑtω)‖f‖2 +

α

2
‖v‖2, (4.4)

e−bz(ϑtω)(Djf
j, v) = e−bz(ϑtω)(f̃ ,∇v) ≤ e−bz(ϑtω)‖f̃‖ · ‖∇v‖ ≤ 1

2
e−2bz(ϑtω)‖f̃‖2 +

1

2
‖∇v‖2,

(4.5)

where f̃ = (f 1, ..., fn) and ‖f̃‖2 =
∑n

j=1 |f j|2.

Then inserting (4.3)-(4.5) into (4.2), it yields

d

dt
‖v‖2− (2bz(ϑtω)−α)‖v‖2 +‖∇v‖2 ≤ 1

α
e−2bz(ϑtω)(‖f‖2 +α‖f̃‖2). (4.6)

Hence, we can rewrite (4.6)as

d

dt
‖v‖2 − (2bz(ϑtω)− α)‖v‖2 ≤ 1

α
e−2bz(ϑtω)(‖f‖2 + α‖f̃‖2). (4.7)

By applying the Gronwall,s lemma to (4.7), we find that

‖v(t, ω, v0(ω))‖2 ≤ e2
∫ t
0 bz(ϑsω)ds−αt‖v0(ω)‖2

+
‖f‖2 + α‖f̃‖2

α
e2b

∫ t
0 z(ϑsω)ds−αt

∫ t

0

e−2bz(ϑsω)−2b
∫ s
0 z(ϑτω)dτ+αsds. (4.8)

By replacing ω by ϑ−tω in (4.8), we get

‖v(t, ϑ−tω, v0(ϑ−tω))‖2 ≤ e2b
∫ 0
−t z(ϑsω)ds−αt‖v0(ϑ−tω)‖2
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+
‖f‖2 + α‖f̃‖2

α

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds. (4.9)

By the properties of Ornstein-Uhlenbeck process,∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds < +∞. (4.10)

Notice that {B(ω)} ∈ D is tempered, then for any v0(ϑ−tω) ∈ B(ϑ−tω),

lim
t→+∞

e2b
∫ 0
−t z(ϑsω)ds−αt‖v0(ϑ−tω)‖2 = 0. (4.11)

We can choose

ρ(ω) = 1 +
‖f‖2 + λ‖f̃‖2

λ

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds. (4.12)

And let
K(ω) = {u ∈ L2(Rn) : ‖u‖2 ≤ ρ(ω)}.

Then {K(ω)} ∈ D, and {K(ω)} is a random absorbing set for φ in D, which completes
the proof. 2

Lemma 4.2 Assume that f j, f ∈ L2(Rn), and (3.3)-(3.6) hold. Then there exists a
tempered random variable R̃1(ω) > 0 such that for any {B(ω)} ∈ D and v0(ω) ∈ B(ω),
there exists a TB(ω) > 0 such that the solution φ of (3.10) satisfies for P-a.e. ω ∈ Ω, for
all t ≥ TB(ω),∫ t+1

t

‖∇φ(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds ≤ R̃1(ω). (4.13)

Proof By substituting t by T̂ and ω by ϑ−tω in (4.8) for any T̂ ≥ 0, we find that

‖v(T̂ , ϑ−tω, v0(ϑ−tω))‖2 ≤ e2b
∫ T̂
0 z(ϑs−tω)ds−αT̂‖v0(ϑ−tω)‖2

+
‖f‖2 + α‖f̃‖2

α
e2b

∫ T̂
0 z(ϑs−tω)ds−αT̂

∫ T̂

0

e−2bz(ϑs−tω)−2b
∫ s
0 z(ϑτ−tω)dτ+αsds. (4.14)

Multiplying two sides of the Eq. (4.14) by e2b
∫ t
T̂
z(ϑτ−tω)dτ−α(t−T̂ ), then simplifying it, we

find that for all t ≥ T̂

e2b
∫ t
T̂
z(ϑτ−tω)dτ−α(t−T̂ )‖v(T̂ , ϑ−tω, v0(ϑ−tω))‖2 ≤ e2b

∫ t
0 z(ϑs−tω)ds−αt‖v0(ϑ−tω)‖2

+
‖f‖2 + α‖f̃‖2

α

∫ T̂

0

e−2bz(ϑs−tω)+2b
∫ t
s z(ϑs−tω)ds−α(t−s)ds. (4.15)
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By the Gronwall,s lemma to (4.6), we get that for all t ≥ T̂ ,

‖v(t, ω, v0(ω))‖2 ≤ e2b
∫ t
T̂
z(ϑsω)ds−α(t−T̂ )‖v(T̂ , ω, v0(ω))‖2

+
‖f‖2 + α‖f̃‖2

α

∫ t

T̂

e−2bz(ϑsω)+2b
∫ t
s z(ϑτω)dτ+α(s−t)ds

−
∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ+α(s−t)‖∇v(s, ω, v0(ω))‖2ds, (4.16)

which obviously gives∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ+α(s−t)‖∇v(s, ω, v0(ω))‖2ds ≤ e2b

∫ t
T̂
z(ϑsω)ds−α(t−T̂ )‖v(T̂ , ω, v0(ω))‖2

+
‖f‖2 + α‖f̃‖2

α

∫ t

T̂

e−2bz(ϑsω)+2b
∫ t
s z(ϑτω)dτ+α(s−t)ds. (4.17)

By replacing ω by ϑ−tω into (4.17), we get∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ+α(s−t)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds

≤ e2b
∫ t
T̂
z(ϑs−tω)ds−α(t−T̂ )‖v(T̂ , ϑ−tω, v0(ϑ−tω))‖2

+
‖f‖2 + α‖f̃‖2

α

∫ t

T̂

e−2bz(ϑs−tω)+2b
∫ t
s z(ϑτ−tω)dτ+α(s−t)ds. (4.18)

Together with (4.15) and (4.18), we have∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ+α(s−t)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds

≤ e2b
∫ 0
−t z(ϑsω)ds−αt‖v0(ϑ−tω)‖2 +

‖f‖2 + α‖f̃‖2

α

∫ 0

−t
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds. (4.19)

Replacing T̂ by t and t by t+ 1 in (4.19), we have∫ t+1

t

e2b
∫ t+1
s z(ϑτ−t−1ω)dτ+α(s−t−1)‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds

≤ e2b
∫ 0
−t−1 z(ϑsω)ds−α(t+1)‖v0(ϑ−t−1ω)‖2 +

‖f‖2 + α‖f̃‖2

α

∫ 0

−t−1
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds.

(4.20)
For s ∈ [t, t+ 1], to yield that∫ t+1

t

e2b
∫ t+1
s z(ϑτ−t−1ω)dτ+α(s−t−1)‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds
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≥
∫ t+1

t

e−2bmax0≤τ≤1 |z(ϑτω)|−α‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds. (4.21)

By the property of z(ω) and temperedness of ‖v0(ω)‖, there exists TB(ω) > 0 such that
for all t ≥ TB(ω), from (4.20) and (4.21) we find that∫ t+1

t

‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds

≤ 1 +
‖f‖2 + α‖f̃‖2

α

∫ 0

−∞
e−2bz(ϑsω)+2bemax0≤τ≤1 |z(ϑτω)|+2b

∫ 0
s z(ϑτω)dτ+α(s+1)ds

= R̃1(ω). (4.22)

It is easy to check that R̃1(ω) is tempered.This completes the proof. 2

Lemma 4.3 Assume that f j, f ∈ L2(Rn),(3.3)-(3.6) hold. The random dynamical sys-
tem {φ(t)}t≥0 has a (L2(Rn), L2(Rn)) and (L2(Rn), H1(Rn))-bounded absorbing set, that
is, there exists a random radius ρ̃(ω) such that for any {B(ω)} ∈ D and v0(ω) ∈ B(ω),
there exists a TB(ω) > 0 such that the solution φ of (3.10) satisfies for P-a.e. ω ∈ Ω, for
all t ≥ TB(ω),

‖φ(t, ϑ−tω, v0(ϑ−tω))‖2+‖∇φ(t, ϑ−tω, v0(ϑ−tω))‖2 ≤ ρ̃(ω). (4.23)

Proof Taking the inner product of Eq.(3.10) with v in L2(Rn), we have

1

2

d

dt
‖v‖2 + α‖v‖2 + ‖∇v‖2 = e−bz(ϑtω)

∫
Rn
g(x, ebz(ϑtω)v)vdx

+ e−bz(ϑtω)((f, v) + (Djf
j, v)) + bz(ϑtω)‖v‖2. (4.24)

By (4.3) - (4.5) and Lemma 4.1, we conclude from (4.24) that

d

dt
‖v‖2 + α‖v‖2 + ‖∇v‖2 ≤ 1

α
e−2bz(ϑtω)‖f‖2 + 2b(z(ϑtω))ρ(ω) + e−2bz(ϑtω)‖f̃‖2 (4.25)

Noticing that

‖∇v + f̃‖2 ≤ 2‖∇v‖2 + 2‖f̃‖2, (4.26)

by (4.26), we conclude from (4.25) that

d

dt
‖v‖2+C(‖∇v+f̃‖2+‖v‖2) ≤ 1

α
e−2bz(ϑtω)‖f‖2+2b(z(ϑtω))ρ(ω)+(1+e−2bz(ϑtω))‖f̃‖2 ≤ ρ̃(ω),

(4.27)
where C = min{α, 1

2
}. Integrating the Eq. (4.27) from t to t + 1, and using Lemma 4.1,

we can find a TB(ω) > 0, such that for all t ≥ TB(ω),∫ t+1

t

(‖∇v+ f̃‖2+‖v‖2) ≤ ρ̃(ω) . (4.28)
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On the other hand , multiplying Eq. (3.10) with vt, and integrating over Rn we find that

‖vt‖2 +
1

2

d

dt
(‖∇v‖2 +α‖v‖2)

= (e−bz(ϑtω)g(x, ebz(ϑtω)v), vt)+e
−bz(ϑtω)((f, vt)−

d

dt
(f̃ ,∇v))+

1

2
b2|z(ϑtω)|2‖v‖2+1

2
‖vt‖2.

(4.29)
By the Hölder inequality and the Young inequality, we conclude

e−bz(ϑtω)(f, vt) ≤ e−2bz(ϑtω)‖f‖2 +
1

4
‖vt‖2, (4.30)

and

(e−bz(ϑtω)g(x, ebz(ϑtω)v), vt) ≤ e−2bz(ϑtω)‖g(x, u)‖2 +
1

4
‖vt‖2. (4.31)

Then inserting (4.30)-(4.31) into (4.29), it yields

d

dt
(‖∇v‖2+2(f̃ ,∇v)+‖f̃‖2+α‖v‖2) ‘

≤ 2e−2bz(ϑtω)‖f‖2+2e−2bz(ϑtω)‖g(x, u)‖2+b2|z(ϑtω)|2‖v‖2. (4.32)

By using condition 3.5, we conclude that

‖g(x, u)‖2 ≤
∫
Rn
|∂g
∂u

(x, θu)|2|u|2dx ≤ ε2‖u‖2, (4.33)

where 0 < θ < 1.
By (4.33) and Lemma 4.1, we can rewrite (4.32) as

d

dt
(‖∇v+ f̃‖2+α‖v‖2) ≤ 2e−2bz(ϑtω)‖f‖2+(2ε2+b2|z(ϑtω)|2)ρ(ω) ≤ ρ̃(ω). (4.34)

Combining with (4.28) and (4.34), by the uniform Gronwall lemma, we deduce that

‖∇v + f̃‖2 + α‖v‖2 ≤ ρ̃(ω). (4.35)

Thus, thanks to ‖∇v‖2 ≤ 2‖∇v + f̃‖2 + 2‖f̃‖2 and Eq. (4.35), we achieve that for
t ≥ TB(ω) + 1,

‖∇v‖2 + ‖v‖2 ≤ ρ̃(ω). (4.36)
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This proof is completed. 2

Now we will prove the solution is enough small in a large space using the method and
skill of [22− 24].

Lemma 4.4 Assume that f j, f ∈ L2(Rn), and (3.3)-(3.6) hold. Let {B(ω)} ∈ D and
v0(ω) ∈ B(ω). Then, for any ζ > 0, there exist T̃ = T̃ (ζ, ω,B) > 0 and K̃ = K̃(ζ, ω) > 0,
such that the solution φ of Eq. (3.10) satisfies for P-a.e. ω ∈ Ω, ∀t ≥ T̃ ,∫

|x|≥R̃
|φ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ ζ. (4.37)

Proof We first need to define a smooth function σ(·) from R+ into [0, 1] such that
σ(·) = 0 on [0, 1] and σ(·) = 1 on [2,+∞), which evidently implies that there is a positive

constant c such that the |σ′(s)| ≤ c for all s ≥ 0. For convenience, we write σκ = σ( |x|
2

κ2
).

Multiplying Eq. (3.10) with σκv and integrating over Rn, we have

1

2

d

dt

∫
Rn
σκ|v|2dx+ α

∫
Rn
σκ|v|2dx =

∫
Rn

(∆v)σκvdx+ bz(ϑtω)

∫
Rn
σκ|v|2dx

+e−bz(ϑtω)(

∫
Rn
σκg(x, u)vdx+

∫
Rn
σκfvdx+

∫
Rn
Djf

jσκvdx), (4.38)

where∫
Rn

(∆v)σκvdx = −
∫
Rn
|∇v|2σκdx−

∫
Rn
vσ′κ

2x

κ2
(∇v)dx

≤ −
∫
Rn
|∇v|2σκdx+

C0

κ
(‖v‖2 + ‖∇v‖2), (4.39)

where C0 is a non-negative constant.
By condition (3.4) and (3.6), we get

−∞ < e−bz(ϑtω)
∫
Rn
σκg(x, u)vdx = e−2bz(ϑtω)

∫
Rn
σκg(x, u)udx ≤ 0. (4.40)

For the fourth term on the right-hand side of (4.38), we have that

e−bz(ϑtω)
∫
Rn
σκfvdx ≤

α

2

∫
Rn
σκ|v|2dx+

1

2α
e−2bz(ϑtω)

∫
Rn
σκ|f |2dx. (4.41)

Next, we estimate the last term on the right-hand side of (4.38), we get that

e−bz(ϑtω)
∫
Rn
Djf

jσκvdx = −e−bz(ϑtω)
∫
Rn
f̃

2x

κ2
σ′κ v dx−e−bz(ϑtω)

∫
Rn
σκ f̃ (∇v)dx

≤ C1
κ

(‖f̃‖2 + ‖v‖2) +
1

2
e−2bz(ϑtω)

∫
Rn
σκ|f̃ |2dx+

1

2

∫
Rn
σκ|∇v|2dx, (4.42)
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where C1 is a non-negative constant. Then inserting (4.39) - (4.42) into (4.38) to see that

d

dt

∫
Rn
σκ|v|2dx− (2bz(ϑtω)− α)

∫
Rn
σκ|v|2dx+

∫
Rn
|∇v|2σκdx

≤ 1

α
e−2bz(ϑtω)

∫
Rn
σκ(|f |2 + α|f̃ |2)dx+

C2
κ
‖f̃‖2 +

C3
κ
‖v‖2 +

C4
κ
‖∇v‖2, (4.43)

where C2, C3 and C4 are non-negative constants. Hence, we can rewrite (4.43) as

d

dt

∫
Rn
σκ|v|2dx− (2bz(ϑtω)− α)

∫
Rn
σκ|v|2dx

≤ 1

α
e−2bz(ϑtω)

∫
Rn
σκ(|f |2 + α|f̃ |2)dx+

C2
κ
‖f̃‖2 +

C3
κ
‖v‖2 +

C4
κ
‖∇v‖2. (4.44)

By applying the Gronwall,s lemma to (4.44), for every t ≥ T̂ , we find that∫
Rn
σκ|v(t, ω, v0(ω))|2dx ≤ e2b

∫ t
T̂
z(ϑτω)dτ−α(t−T̂ )

∫
Rn
σκ|v(T̂ , ω, v0(ω))|2dx

+
1

α

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)−2bz(ϑsω)

∫
Rn
σκ(|f |2 + α|f̃ |2)dx

+
C3
κ

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)‖v(s, ω, v0(ω))‖2ds

+
C4
κ

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)‖∇v(s, ω, v0(ω))‖2ds

+
C2
κ

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)‖f̃‖2ds. (4.45)

Then, substitutingω by ϑ−tω into (4.45), we have that∫
Rn
σκ|v(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ e2b

∫ t
T̂
z(ϑτ−tω)dτ−α(t−T̂ )

∫
Rn
σκ|v(T̂ , ϑ−tω, v0(ϑ−tω))|2dx

+
1

α

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
Rn
σκ(|f |2 + α|f̃ |2)dxds

+
C3
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖v(s, ϑ−tω, v0(ϑ−tω))‖2ds

+
C4
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds

+
C2
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖f̃‖2ds. (4.46)
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Then,we estimate every term on the right-hand side of (4.46). Firstly by Eq. (4.8)

replacing t by T̂ and ω by ϑ−tω, then we get

e2b
∫ t
T̂
z(ϑτ−tω)dτ−α(t−T̂ )

∫
Rn
σκ|v(T̂ , ϑ−tω, v0(ϑ−tω))|2dx

≤ e2b
∫ t
0 z(ϑτ−tω)dτ−αt‖v0(ϑ−tω)‖2 +

‖f‖2 + α‖f̃‖2

α

∫ T̂

0

e−2bz(ϑs−tω)+2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)ds.

(4.47)

It easy to see that there exists T̃1 = T̃1(B, ζ, ω) > T̂ , such that for all t > T̃1, then

e2b
∫ t
T̂
z(ϑτ−tω)dτ−α(t−T̂ )

∫
Rn
σκ|v(T̂ , ϑ−tω, v0(ϑ−tω))|2dx ≤ ζ. (4.48)

For the second term on the right-hand side of (4.46), Since f, f̃ ∈ L2(Rn), there are

T̃2 = T̃2(ζ, ω) > T̂ and K̃1 = K̃1(ζ, ω) > 0, such that for all t > T̃2 and κ > K̃1, then

1

α

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
Rn
σκ(|f |2 + α|f̃ |2)dxds

≤ 1

α

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
|x|≥κ
|f |2dxds

+

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
|x|≥κ
|f̃ |2dxds

≤ ζ. (4.49)

For the third term on the right-hand side of (4.46). By replacing t by s and ω by ϑ−tω in
(4.8),we get

C3
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖v(s, ϑ−tω, v0(ϑ−tω))‖2ds

≤ C3
κ

(t− T̂ )e2b
∫ t
0 z(ϑτ−tω)dτ−αt‖v0(ϑ−tω)‖2

+
C3(‖f‖2 + α‖f̃‖2)

κα

∫ t

T̂

∫ s

0

e2b
∫ t
s̃ z(ϑτ−tω)dτ−α(t−s̃)−2bz(ϑs̃−tω)ds̃ds. (4.50)

Then, by f, f̃ ∈ L2(Rn), there exist T̃3 = T̃3(B, ζ, ω) > T̂ and K̃2 = K̃2(ζ, ω) > 0, such
that for all t > T̃3 and κ > K̃2, we find that

C3
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖v(s, ϑ−tω, v0(ϑ−tω))‖2ds ≤ ζ. (4.51)
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Next, we estimate the fourth term on the right-hand side of (4.46). Since f, f̃ ∈ L2(Rn),

by using(4.19), there exist T̃4 = T̃4(B, ζ, ω) > T̂ and K̃3 = K̃3(ζ.ω) > 0, such that for all
t > T̃4 and κ > K̃3, we get that

C4
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds ≤ ζ. (4.52)

Finally, we estimate the last term on the right-hand side of (4.46). Since f̃ ∈ L2(Rn),

there exist T̃5 = T̃5(ζ, ω) > T̂ and K̃4 = K̃4(ζ.ω) > 0, such that for all t > T̃5 and κ > K̃4,
we have that

C2
κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)‖f̃‖2ds ≤ ζ. (4.53)

By letting

T̃ = max{T̃1, T̃2, T̃3, T̃4, T̃5}, and K̃ = max{K̃1, K̃2, K̃3, K̃4}.

Then, inserting (4.48) − (4.49), (4.51) − (4.53) into (4.46), for all t > T̃ and κ > K̃,
we obtain that∫

Rn
σκ|v(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 5ζ, (4.54)

which shows that∫
|x|≥K̃

|φ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 5ζ. (4.55)

This proof is completed. 2

5 Random attractors

In this section, we prove the existence of a global random attractor for the random
dynamical system φ associated with the stochastic reaction-diffusion equation (3.1)-(3.2)
on Rn. The main result of this section can now be stated as follows.

Lemma 5.1 Assume that f j, f ∈ L2(Rn), and (3.3)-(3.6) hold. Then the random
dynamical system φ generated by (3.10) is asymptotically compact in L2(Rn), that is, for
P-a.e. ω ∈ Ω, the sequence {φ(tn, ϑ−tnω, v0,n(ϑ−tnω))} has a convergent subsequence in
L2(Rn) provided tn → +∞, {B(ω)} ∈ D and v0,n(ϑ−tnω) ∈ B(ϑ−tnω).

Proof Let tn → +∞, {B(ω)} ∈ D and v0,n(ϑ−tnω) ∈ B(ϑ−tnω). Then by Lemma
4.1, for P-a.e. ω ∈ Ω, we have that
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{φ(tn, ϑ−tnω, v0,n(ϑ−tnω))}∞n=1 is bounded in L2(Rn).

Hence, there exist ξ ∈ L2(Rn) such that, up to a subsequence,

φ(tn, ϑ−tnω, v0,n(ϑ−tnω))→ ξ weakly in L2(Rn). (5.1)

Next, we prove the weak convergence of (5.1) is actually strong convergence. Given ζ > 0,

by Lemma 4.4, there exist T̂1 = T̂1(B, ζ, ω) > 0, κ̂1 = κ̂1(ζ, ω) > 0 and N̂1 = N̂1(B, ζ, ω) >

0, such that tn ≥ T̂1 for every n ≥ N̂1∫
|x|≥κ̂1

|φ(tn, ϑ−tnω, v0,n(ϑ−tnω))|2dx ≤ ζ. (5.2)

On the other hand, by Lemma 4.1 and 4.3, there exist T̂2 = T̂2(B,ω) > 0, such that for

all t ≥ T̂2,

‖φ(t, ϑ−tω, v0(ϑ−tω))− ξ‖2H1(Rn) ≤ R1(ω). (5.3)

Let N̂2 = N̂2(B,ω) be large enough such that tn ≥ T̂2 for n ≥ N̂2. Then by (5.3) we find

that, for all n ≥ N̂2,

‖φ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ‖2H1(Rn) ≤ R1(ω). (5.4)

Denote Qκ̂1 = {x ∈ Rn : |x| ≤ κ̂1} be a ball. By the asymptotic a priori estimates of
the random dynamical system φ with respect to L2-norm, which play a crucial role in the
proof of the L2(Rn)-asymptotic compactness H1(Qκ̂1) ↪→ L2(Qκ̂1). It follows from (5.4)
that, up to a subsequence depending on κ̂1

φ(tn, ϑ−tnω, v0,n(ϑ−tnω))→ ξ strongly in L2(Qκ̂1), (5.5)

which shows that for the given ζ > 0, there exist N̂3 = N̂3(B,ω)(B, ζ, ω) > 0, such that

for all n ≥ N̂3,

‖φ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ‖2L2(Qκ̂1 )
≤ ζ. (5.6)

Note that ξ ∈ L2(Rn). Therefore, there exist κ̂2 = κ̂2(ζ) > 0, such that∫
|x|≥κ̂2

|ξ(x)|2dx ≤ ζ. (5.7)

By letting N̂ = max{N̂1, N̂2, N̂3}, and κ̂ = max{κ̂1, κ̂2}.

Then, by (5.2),(5.6) and (5.7), we find that for all n ≥ N̂ ,

‖φ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ‖2L2(Rn) ≤
∫
|x|≤κ̂
|φ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ|2dx
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+

∫
|x|≥κ̂
|φ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ|2dx

≤ 6ζ. (5.8)

which shows that

φ(tn, ϑ−tnω, v0,n(ϑ−tnω))→ ξ strongly in L2(Rn). (5.9)

This as desired. 2

We are now in a position to present our main result, the existence of a global random
attractor for φ in L2(Rn).

Lemma 5.2 Assume that f j, f ∈ L2(Rn), and (3.3)-(3.6) hold. Then the random
dynamical system φ generated by (3.10) has a unique global random attractor in L2(Rn).

Proof Notice that the random dynamical system φ has a random absorbing set {K(ω)}
in D by Lemma 4.1. On the other hand, by Lemma 5.1, the random dynamical system
φ is asymptotically compact in L2(Rn). Then by Theorem 2.6, the random dynamical
system φ generated by (3.10) has a unique global random attractor in L2(Rn). 2
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