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Abstract 8 

     In this paper, the active control and time delay control are applied on a nonlinear dynamic 9 

mechanical system subjected to external force to reduce the resulted vibration. The system is 10 

modeled by a unique nonlinear differential equation. We applied the technique of multiple scale 11 

perturbation to obtain an approximate solution and showing the response equation. The primary 12 

resonance case is investigated to study the stability and the steady-state response of the system. 13 

Also we studied the linearity of the solution. MATLAB 14.0 and Maple 18.0 programs were 14 

used to study the numerical solution and the effect of the different parameters for the response of 15 

the nonlinear dynamic mechanical system. 16 
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1. Introduction 21 

     In recent years, several investigations have reported how to control the vibration of dynamical 22 

systems. The dynamic absorber is one of the most common methods of vibration control that it 23 

has low cost, simple operation and taking advantage of the saturation phenomenon. This 24 

phenomenon has been observed in the forced vibrations of coupled two degrees of freedom 25 

systems with quadratic nonlinearities in the presence of both internal and primary resonances. 26 

Vazquez-Gonzalez and Silva Navarro [1] discussed the dynamic response and nonlinear 27 

frequency analysis of a damped Duffing system attached to an autoparametric pendulum 28 

absorber, operating under the external and internal resonance conditions. They deduced that is 29 

possible to reduce simultaneously the amplitude responses of the primary and secondary systems 30 

for excitation frequencies close to the exact tuning.  31 

Eissa et al. [2] reported the results of studying the vibration reduction of a nonlinear 32 

spring pendulum subjected to multi external and parametric excitations. They investigated that 33 

the vibration of a ship pitch-roll motion can be reduced using a longitudinal absorber. Active 34 

absorber for non-linear vibrating system subjected to external and parametric forces is 35 

investigated by Sayed and Kamel [3]. Sado [4] described the numerical simulation of a nonlinear 36 

two-mass auto parametric system with elastic pendulum hangs down from the flexible suspended 37 

body. He showed that near the internal and external resonances depending on a selection of 38 

physical system parameters, the amplitudes of vibrations of coupled modes may be differently.  39 

Wenzhi and Zhiyong [5] studied active control of torsional vibration of a large turbo-40 

generator. They found that full state feedback control with linear quadratic regulator (LQR) has 41 

significant e�ectiveness on attenuation of torsional vibration energy and response of the turbo-42 

generator’s shaft system. 43 

 44 



 

2 

 

     Amer et al. [6] used two active control laws based on the linear negative velocity and 45 

acceleration feedback and showed that the acceleration feedback was good for the main system. 46 

Hegazy and Salem [7] presented the numerical and perturbation solutions of an inclined beam to 47 

external and parametric forces with two different controllers, positive position feedback (PPF) 48 

and nonlinear saturation controllers (NSC) and found that the (NSC) one is an effective 49 

controller.  50 

     El-Gohary and El-Ganaini [8] studied applying a time delay absorber to suppress chaotic 51 

vibrations of a beam under multi-parametric excitations. They concluded that the vibration of the 52 

main system can be reduced. They showed that time-delay effect on the frequency response 53 

curves is trivial. Maccari [9] investigated the periodic solutions for parametrically excited system 54 

under state feedback control with a time delay. He has derived two slow-flow equations, 55 

governing the amplitude and phase of approximate long time response. Elnaggar and Khalil [10] 56 

investigated the response of nonlinear system subjected to external excitation controlled by the 57 

appropriate choice of feedback gains and two distinct time delays. They found that a suitable 58 

choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce 59 

the peak amplitude of the response (or peak amplitude of the free oscillation term) for the case of 60 

primary resonance or for the case of super harmonic resonance. El-Bassiouny and El-Kholy [11] 61 

discussed the resonances of a nonlinear single-degree-of-freedom system with time delay in 62 

linear feedback control. They observed from the frequency-response curves of primary resonance 63 

that the response amplitude loses stability for increasing time delay. 64 

     A study for (NSC) is presented by Hamed and Amer [12] that used to suppress the vibration 65 

amplitude of a structural dynamic model simulating nonlinear composite beam at simultaneous 66 

sub-harmonic and internal resonance excitation. Kamel et al. [13] studied the active vibration 67 

control of a nonlinear magnetic levitation system via (NSC). Warminski et al. [14] presented an 68 

application of (NSC) algorithm for a self-excited strongly nonlinear beam structure driven by an 69 

external force. The results show that the increase in controller damping may cancel the 70 

undesirable instability. Amer [15] investigated the behavior of the coupling of two non-linear 71 

oscillators of the system and absorber representing ultrasonic cutting process subjected to 72 

parametric excitation. He showed that the steady state amplitude of the main system is a 73 

monotonic increasing function of the excitation force amplitude up to a saturation value. The 74 

multiple scales method was used by Ebrahimi et al [16] to perform a nonlinear vibrational 75 

analysis of a sliding pendulum in two cases with dry and lubricated clearance joint. They 76 

investigated that in the primary resonance analysis, increasing the dynamic lubricant viscosity 77 

decreases the amplitude in the vicinity of the linear natural frequency as expected. 78 

     Amer and Abd Elsalam [17] studied the stability of a nonlinear two-degree of freedom system 79 

subjected to multi excitation forces at simultaneous primary and internal resonance case. They 80 

deduced that the steady state amplitude is monotonic increasing function of the excitation force 81 

amplitude increased and is a monotonic decreasing of the damping coefficient. The study of 82 

forced nonlinear vibrations of a simply supported Euler-Bernoulli beam resting on a nonlinear 83 

elastic foundation with quadratic and cubic nonlinearities with the homotopy analysis method 84 

has presented by Shahlaei-Far et al. [18]. The derived closed-form solution of the amplitude 85 

yields frequency response curves for various values of the quadratic and cubic nonlinearity 86 

coefficients presenting their softening/hardening-type effect on the distributed-parameter system. 87 

     Many applications of controlling the dynamical systems which investigated in more papers. 88 

Wang et al. [19] investigated the dynamic response and bifurcation characteristics of blades with 89 

varying rotating speed. The results of the paper showed the interaction of the fluid and the 90 
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structure that the opposite varying trends for the amplitudes and phase angles with respect to the 91 

system parameters indicate the energy transfer between the vibrations of the fluid and the 92 

structure. Hamed et al. [20] were investigated the nonlinear vibrations and stability of the MEMS 93 

gyroscope subjected to different types of parametric excitations. They applied an active vibration 94 

controller to reduce the resulted vibration. A multi-modal flexible wind turbine model with 95 

variable rotor speed has been formulated by Staino and Basu [21] using a Lagrangian approach. 96 

They analyzed the e�ect of the rotational speed on the edgewise vibration of the blades. They 97 

deduced according to the numerical results which have been presented in their paper, a 98 

considerable deterioration of the structural response of the blade could occur caused by 99 

variations in the rotational speed due to an electrical fault. 100 

     Shao et al. [22] studied the effect of time-delayed feedback controller on the dynamics of 101 

electrostatic MEMS resonators. They compared the results of the perturbation method to the 102 

shooting technique and the basin-of-attraction analysis. They found that the shooting technique 103 

performs well in predicting the global stability for the resonator under negative gain control. In a 104 

MEMS system, Daqaq et al. [23] again used the method of multiple of scales to define a first-105 

order nonlinear approximate solution, which was then employed to redefine the impulse 106 

sequence of a ZV input shaper to minimize residual oscillation in a torsional micromirror. Static 107 

and Dynamic Mechanical Behaviors of Electrostatic MEMS Resonator with Surface Processing 108 

Error is studied by Feng et al [24]. They showed the resonance frequency and bifurcation 109 

behavior through dynamic analysis. 110 

     In this work, we have studied the reducing of the vibration system that is described in [24] 111 

through dynamic analysis by applying both of active control and time delay control. The effect of 112 

the varying parameters of the system and comparing between the two controllers have reported. 113 

 114 

2. Equation of Motion 115 

     Feng et al [24] have been studied a model considering the effect of surface machining error 116 

on the thickness of the microbeam. The thickness of the microbeam is not constant due to the 117 

processing errors. The schematic diagram of microbeam is shown in Fig. (1). The shape of the 118 

microbeam is controlled by adjusting the value of section parameter λ . (a) case of 0λ >     (b) 119 

case of 0λ < . 120 

 121 

 122 

Fig. (1): The schematic diagram of microbeam. 123 

 124 

     The bending vibration equation of the system is obtained through force analysis. Since the 125 

main objective of [24] was to explore the main resonance problem in the nonlinear dynamics 126 

problem, the first-order mode is considered that it was sufficient to obtain good results. So, 127 

Galerkin method is applied to derive a reduced-order model, they expressed the deflection ( , )y x t  128 
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as: ( , ) ( ) ( )y x t u t xφ= , where ( )u t is the modal coordinate amplitude and ( )xφ is the mode shapes 129 

of the normalized undamped linear orthonormal. 130 

     The resonance frequency and bifurcation behavior can be obtained through dynamic analysis. 131 

Feng et al [24] introduced the modal coordinate amplitude through dynamic analysis using the 132 

MMS to investigate the response of the microresonator with small vibration amplitude around 133 

the stable equilibrium positions as s Au u u= + , where 134 

su  is the response to DC voltage and Au  is the response to AC voltage. The terms representing 135 

the equilibrium position can be eliminated in the equation of motion that governs the transverse 136 

deflection. Since ACV  is far less than DCV  in the microresonator, the terms 137 

( ) ( )31 ,  DC ACV O V O ε= = and � is regarded as a small non-dimensional parameter. So, Feng et al 138 

[24] modified the equation of the system as follows: 139 

( )2 2 2 3 3 cos ω
A n A A q A c A

u u u a u a u f tω ε µ ε+ + + + =ɺɺɺ                                                                                (1) 140 

where: 141 

Au  is the modal coordinate amplitude which to AC voltage, nω  is the internal frequency, µ  is the 142 

damping coefficient of the system, ω  is the alternating current excitation frequency, f  is the 143 

external excitation force, ca and qa are the nonlinear parameters. 144 

3.1. Active Control 145 

     Using a negative linear velocity feedback controller connected to the nonlinear dynamical 146 

system; eqn. (1) can be represented as follows: 147 

( )2 2 2 3 3 2
ω cos Ω

q c
u u u a u a u f t Guε µ ε ε+ + + + = −ɺɺ ɺɺ                                                                             (2) 148 

We use the method of multiple scale 149 

( ) ( ) ( ) ( )2 3

1 0 1 2 2 0 1 2 3 0 1 2, , , , , , ,u t u T T T u T T T u T T Tε ε ε ε= + +                                                                    (3) 150 

where  
k

kT tε= . So, we can write that: 151 

( ) ( )
2

2 2 2 2

0 1 2 0 0 1 1 0 22
,  2 2

d d
D D D D D D D D D

dt dt
ε ε ε ε= + + +… = + + + +…                                      (4) 152 

where ( ),   0,1,2
k

k

D k
T

∂
= =

∂
. 153 

Substituting equations (3) and (4) into equations (2), then equating the like order of ε , we get 154 

the following: 155 

Order 1ε : 156 

( )2 2

0 1 0D uω+ =                                                                                                                                         (5) 157 

Order 2ε : 158 

( )2 2 2

0 2 0 1 1 12 qD u D D u a uω+ = − −                                                                                                              (6) 159 

Order 3ε : 160 

( ) ( ) ( )2 2 2 3

0 3 0 1 2 1 0 2 0 1 1 2 1 0 12 2 2 cos Ωq cD u D D u D D D D u a u u a u f t GD uω µ+ = − − + − −+ − +           (7) 161 

The general solution of equation (5) can be expressed in the form: 162 

( ) ( )0 0

1 1 2 1 2, ,
i T i T

u A T T e A T T e
ω ω−= +                                                                                                          (8) 163 

Substituting equation (8) into equation (6), we can obtain the following: 164 
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( ) 0 0 0 02 22 2 2 2

0 2

1 1

2 2
i T i T i T i T

q

A A
D u i e e a A e AA A e

T T

ω ω ω ωω ω − −
    ∂ ∂

 + = − − − + +      ∂ ∂    
                       (9)       165 

The secular term is eliminated if: 166 

1 1

2 . 0          0
A A

i cc
T T

ω
   ∂ ∂

− + = → =   
∂ ∂   

                                                                                                (10) 167 

which indicates that A  is only a function of 2T . 168 

We get one resonance case as the primary resonance case: Ω ω≅  169 

So, we can represent the detuning parameter σ  as follows: 170 

2
Ω ω ε σ= +                                                                                                                                 (11) 171 

So, the general solution of eqns. (6) and (7) can be written as: 172 

0 02 22 2

2 2 2 2

2

3 3

q q qi T i T
a a a

u A e AA A e
ω ω

ω ω ω
−= − +                                                                                          (12) 173 

0

2

33

3 2 4

1
.

8 12Α

q i Tc
aa

u A e cc
ω

ω ω

 
= + +  
 

                                                                                                       (13) 174 

By eliminating the secular term in eqn. (7), we get that: 175 

( ) 2

2

2 2

2 2

10
2 3 0

3 2

q i T

c

a f
i D A i A a A A A A i GA e

σω ωµ ω
ω

− − − + − + =                                                      (14) 176 

It is convenient to express � in the polar form: 177 

( ) ( )2

2

1

2

i T
A a T e

β
=                                                                                                                                     (15) 178 

By substituting eqn. (15) into eqn. (14); separating the imaginary and real parts yield: 179 

sin
2 2

G f
a a

µ
θ

ω

+ 
= − + 

 
ɺ                                                                                                                     (16) 180 

( )
2

3

3

53
cos

8 12 2

qc
aa f

a aσ θ θ
ω ω ω

 
− = − −  

 

ɺ                                                                                                (17) 181 

Where,  2Tθ σ β= −                                                                                                                                (18) 182 

The steady-state response can be obtained by imposing the conditions: 0a θ= =ɺɺ  183 

By applying the previous conditions, the frequency response equation can be derived as follows: 184 

2 2 22 2

2 2 4

3 3

5 53 3
0

4 6 8 12 2 2

q qc c
a aa a G f

a a
a

µ
σ σ

ω ω ω ω ω

    +   
− − + − + − =                 

                                          (19) 185 

 186 

3.1.1.  Linear Solution 187 

     To study the stability of the linear solution of the obtained fixed points, let us consider A , in 188 

the form: 189 

( ) ( ) 2

2

1

2

i T
A T p iq e

γ= −                                                                                                                            (20) 190 

By substituting from eqn. (20) into the linear parts of eqn. (14) and equating real and imaginary 191 

parts; we get: 192 
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2

G
p p q

µ
γ

+ 
= − − 

 
ɺ                                                                                                                               193 

(21) 194 

2

G
q p q

µ
γ

+ 
= −  

 
ɺ                                                                                                                                  (22) 195 

The Characteristic equation can be written as: 196 

2

2 0
2

Gµ
λ γ
 + 

+ + =  
  

                                                                                                                         (23) 197 

Easily we can deduce the solutions of the eqn. (23) as following: 198 

1,2
2

G
i

µ
λ γ

+ 
= − ± 

 
                                                                                                                               (24)    199 

So, the linear solution is stable everywhere that the real part is always negative. 200 

 201 

3.1.2 Nonlinear solution: 202 

     To study the stability of the nonlinear solution of the obtained fixed points, let: 203 

0 1 0 1,  a a a θ θ θ= + = +                                                                                                                              (25) 204 

where 0 0, a θ  are the solutions of eqns. (16) and (17) and 1 1, a θ  are perturbations which are 205 

assumed to be small compared with 0 0, a θ .  206 

Substituting equation (25) into equations (16) and (17) and keeping only the linear terms in 1 1, a θ207 

, gives: 208 

( )1 1 0 1cos
2 2

G f
a a

µ
θ θ

ω

+ 
= − + 

 
ɺ                                                                                                          (26) 209 

( )
2

1 0 1 0 13

0 0

59
sin

8 4 2

qc
aa f

a a
a a

σ
θ θ θ

ω ω ω

  
= − − −    

  

ɺ                                                                                 (27) 210 

We can express the characteristic equation as: 211 

( ) ( )
2

2

0 0 03

0 0

59
sin cos

2 2 8 4 2

qc
aaf G f

a
a a

µ σ
λ θ λ θ

ω ω ω ω

   + 
+ + − − −            

          212 

( )0

0

sin 0
2 2

G f

a

µ
θ

ω

+ 
+ = 
 

                                                                                                        (28) 213 

So, the solutions of eqn. (29) are: 214 

( ) ( )
2

1,2 0 0

0 0

1 1
sin sin 16Κ  

4 4

f f
G G

a a
λ µ θ µ θ

ω ω

   
= − + + ± + +  


−

  
                                           (29) 215 

where ( ) ( )
2

0 0 03

0 0

59
Κ sin cos

2 2 8 4 2

qc
aaG f f

a
a a

µ σ
θ θ

ω ω ω ω

  + 
= − − −          

                                       (30) 216 

If the real part of the eigenvalue is negative, then the linear solution is stable; otherwise, it is 217 

unstable. 218 

 219 
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 220 

 221 

3.1.3. Numerical Solution 222 

     The Runge-Kutta fourth-order method has been applied to determine the numerical solution 223 

of the equation (2) as shown in Figure 2 at the selected values: 224 

(Ω 3.066,  ω 3.066,  0.003,µ= = =  225 

1, 1, 1.8, 4)q ca a f G= = = = . Figure 2 shows the effect of using active control on the amplitude 226 

of the main system. Numerical solution of the response equation represented in equation (19) 227 

have been discussed. Figure 3 illustrates the effect of the varying parameters on the response 228 

curve at the primary resonance case Ω ω≅  under effect of the gain feedback controller. The 229 

solid line represents the stable region. While, the dotted line represents the unstable region. 230 

Figure (3a) shows that the parameter of the natural frequency has hardening and softening 231 

nonlinearity effect. The effect of the damping coefficient on the response curve is illustrated in 232 

Figure (3b). It shows that the amplitude is monotonic decreasing function and the amplitude is 233 

bent to right. The effect of nonlinear parameters is shown in Figures (3c) and (3d). Figure (3c) 234 

shows that the amplitude is monotonic decreasing function in the nonlinear parameter ca  and the 235 

amplitude is bent to right. Figure (3d) shows that the nonlinear parameter qa  has hardening and 236 

softening nonlinearity effect. The amplitude is monotonic increasing with varying of the 237 

excitation force f  and the amplitude is bent to right. It is shown in Figure (3e). Figure (3f) 238 

illustrates that the amplitude is monotonic decreasing function in the parameter of gain feedback 239 

controller G . 240 

 241 

Fig. (2): The time history of the main system and active control at primary resonance case 242 

Ω ω≅  243 

 244 



 

8 

 

 245 

Fig. (3a): effect ofω , the values of the parameters are: 0.003, 1, 1, 1.8, 0.1q ca a f Gµ = = = = =246 

. 247 

 248 

 249 

Fig. (3b): effect of µ , the values of the parameters are: 250 

ω 3.066, 1, 1, 1.8, 0.1q ca a f G= = = = = . 251 

 252 

Fig. (3c): effect of ca , the values of the parameters are: 253 

ω 3.066, 0.003, 1, 1.8, 0.1qa f Gµ= = = = = . 254 

 255 
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 256 

Fig. (3d): effect of qa , the values of the parameters are: 257 

ω 3.066, 0.003, 1, 1.8, 0.1ca f Gµ= = = = = . 258 

 259 

 260 

Fig. (3e): effect of f , the values of the parameters are: 261 

ω 3.066, 0.003, 1, 1, 0.1c qa a Gµ= = = = = . 262 

 263 

Fig. (3f): effect of G , the values of the parameters are: 264 

ω 3.066, 0.003, 1, 1, 1.8c qa a fµ= = = = = . 265 

 266 
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3.1.4. Comparison between the perturbation and the numerical solution      269 

     The comparison of the analytical solution - given by equations (26) and (27) - and the 270 

approximate solution of equation (2) at the case of active control have been shown in Figure (4) 271 

and Figure (5). Figure (4) described the comparison in the time history and Figure (5) described 272 

the comparison in the response curve. Figures (4) and (5) show that there is a good agreement 273 

between both analytical and numerical solutions. 274 

 275 

 276 

Fig. (4): Comparison between the analytic solution and the approximate solution at the case 277 

of active control (Time history). 278 

 279 

 280 

Fig. (5): Comparison between the analytic solution and the approximate solution at the case 281 

of active control (Response curve). 282 

 283 

3.2.Time delay Control: 284 

     The equation of system under consideration using time delay control is represented as 285 

follows: 286 

( )2 2 2 3 3 2( ) ω ( ) ( ) ( ) ( ) cos Ω ( )
q c

u t u t u t a u t a u t f t Gu tε µ ε ε τ+ + + + = − −ɺ ɺ ɺɺ                                      (31)  287 

The secular term will be: 288 

( ) 2

2

2 2

2 2

10
2 3 0

3 2

q i Ti

c

a f
i D A i A a A A A A i GAe e

σωτω ωµ ω
ω

−− − − + − + =                                               289 

(32) 290 

By substituting eqn. (15) into eqn. (32); separating the imaginary and real parts yield: 291 

0 50 100
-0.2

-0.1

0

0.1

0.2

u
(t

)

t

 

 

approximate solution

analytic solution
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( )cos sin
2 2 2

G f
a a a

µ
ωτ θ

ω
= − − +ɺ                                                                                                       (33) 292 

( ) ( )
2

3

3

53
sin cos

2 8 12 2

qc
aaG f

a a aσ θ ωτ θ
ω ω ω

 
− = + − −  

 

ɺ                                                                      (34) 293 

Finally, by applying the conditions 0a θ= =ɺɺ ; the frequency response equation can be derived as 294 

follows: 295 

( ) ( ) ( )
2

2 2 2

2 2 4 2

3 3 3

5 5 53 3 3
sin sin cos

4 6 8 12 8 12 2

q q qc c c
a a aa a a G

a G a Ga
µ

σ ωτ σ ωτ ωτ
ω ω ω ω ω ω

      
− − + + − + − +           
       

296 

22 2

0
4 2

G f

a

µ

ω

+  
+ − = 

 
                                                                                                             (35) 297 

3.2.1. Linear Solution 298 

     Put: ( ) ( ) 2

2

1

2

i T
A T p iq e

γ= −  into the linear parts of eqn. (32) to study the stability of the linear 299 

solution; we get after equating real and imaginary parts: 300 

( ) ( )cos sin
2 2 2

G G
p p q

µ
ωτ γ ωτ

   
= − + − −   

   
ɺ                                                                                  (36) 301 

( ) ( )sin cos
2 2 2

G G
q p q

µ
γ ωτ ωτ
   

= − − +   
   

ɺ                                                                                       (37)302 

The Characteristic Eqn. can be expressed as follows: 303 

( )( ) ( ) ( )( )2 2 2 24 4 cos 4 2 cos 4 sin 0G G G Gλ µ ωτ λ µ γ µ ωτ γ ωτ+ + + + + − =+                         (38) 304 

The solutions of eqn. (38) are: 305 

( )( ) ( )( ) ( ) ( )( )
2 2 2 2

1,2

1 1
cos cos 4 2 cos 4 sin

2 2
G G G G Gλ µ ωτ µ ωτ µ γ µ ωτ γ ωτ= + ± + − + + + −  (39) 306 

So; the linear solution is stable only if the real part of the eigenvalue in eqn. (39) is negative. 307 

 308 

3.2.2. Nonlinear Solution 309 

     Putting: 0 1 0 1,  a a a θ θ θ= + = +  into eqns. (33) and (34); we can deduce that: 310 

( ) ( )1 1 0 1cos cos
2 2 2

G f
a a

µ
ωτ θ θ

ω

 
= − + + 

 
ɺ                                                                                          (40) 311 

( ) ( )
2

1 0 1 0 13

0 0 0

59
sin sin

2 8 4 2

qc
aaG f

a a
a a a

σ
θ ωτ θ θ

ω ω ω

  
= − − − −    

  

ɺ                                                       (41) 312 

We can write the characteristic equation and its solutions as follows: 313 

( ) ( )2

0

0

1
cos sin Η 0

2

f
G

a
λ µ ωτ θ λ

ω

 
+ + + 


+ =


                                                                               314 

(42) 315 

where ( ) ( ) ( ) ( )
2

0 0 03

0 0 0

59
Η cos sin sin cos

2 2 2 2 8 4 2

qc
aaG f G f

a
a a a

µ σ
ωτ θ ωτ θ

ω ω ω ω

   
= + − − − −          

                        316 
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( ) ( ) ( ) ( )
2

1,2 0 0

0 0

1 1
cos sin cos sin 64Η  

4 8

f f
G G

a a
λ µ ωτ θ µ ωτ θ

ω ω

   
= + + ± + + +   

   
               (43) 317 

If the real part of the eigenvalue is negative, then the linear solution is stable; otherwise, it is 318 

unstable. 319 

 320 

3.2.3. Numerical Solution: 321 

     The Runge-Kutta fourth-order method has been applied to determine the numerical solution 322 

of the equation (31) as shown in Figure 6 at the selected values: 323 

(Ω 3.066,  ω 3.066,  0.003,µ= = =  324 

1, 1, 1.8, 4, 0.1)q ca a f G τ= = = = = . Figure 6 shows the effect of using time delay control on the 325 

amplitude of the main system. Numerical solution of the response equation represented in 326 

equation (35) have been discussed. Figure 7 illustrates the effect of the varying parameters on the 327 

response curve at the primary resonance case Ω ω≅  under effect of the time delay controller. 328 

The solid line represents the stable region. While, the dotted line represents the unstable region. 329 

Figure (7a) shows that the parameter of the natural frequency has hardening and softening 330 

nonlinearity effect. The effect of the damping coefficient on the response curve is illustrated in 331 

Figure (7b). It shows that the amplitude is monotonic decreasing function and the amplitude is 332 

bent to right. The effect of nonlinear parameters is shown in Figures (7c) and (7d). Figure (7c) 333 

shows that the amplitude is monotonic decreasing function in the nonlinear parameter ca  and the 334 

amplitude is bent to right. Figure (7d) shows that the nonlinear parameter qa  has hardening and 335 

softening nonlinearity effect. The amplitude is monotonic increasing with varying of the 336 

excitation force f  and the amplitude is bent to right. It is shown in Figure (7e). Figure (7f) 337 

illustrates that the amplitude is monotonic decreasing function in the parameter of gain feedback 338 

controller G . Fig. (7g) shows that the amplitude is monotonic increasing function in the 339 

parameter of time delay controllerτ . 340 

 341 

 342 

Fig. (6): The time history of the main system and time delay control at primary resonance 343 

case Ω ω≅  344 

3.2.4. Comparison between the perturbation and the numerical solution      345 

     The comparison of the analytical solution - given by equations (40), (41)  and the 346 

approximate solution of equation (31) at the case of time delay control have been shown in 347 

Figure (8) and Figure (9). Figure (8) described the comparison in the time history and Figure (9) 348 
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described the comparison in the response curve. Figures (8) and (9) show that there is a good 349 

agreement between both analytical and numerical solutions. 350 

 351 

Fig. (7a): effect ofω , the values of the parameters are: 352 

0.003, 1, 1, 1.8, 0.1, 0.1q ca a f Gµ τ= = = = = = . 353 

 354 

 355 

Fig. (7b): effect of µ , the values of the parameters are: 356 

ω 3.066, 1, 1, 1.8, 0.1, 0.1q ca a f G τ= = = = = = . 357 

 358 
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 360 

Fig. (7c): effect of ca , the values of the parameters are: 361 

ω 3.066, 0.003, 1, 1.8, 0.1, 0.1qa f Gµ τ= = = = = = . 362 

 363 

Fig. (7d): effect of qa , the values of the parameters are: 364 

ω 3.066, 0.003, 1, 1.8, 0.1, 0.1ca f Gµ τ= = = = = = . 365 

 366 

 367 

Fig. (7e): effect of f , the values of the parameters are: 368 

ω 3.066, 0.003, 1, 1, 0.1, 0.1c qa a Gµ τ= = = = = = . 369 
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 371 

Fig. (7f): effect of G , the values of the parameters are: 372 

ω 3.066, 0.003, 1, 1, 1.8, 0.1c qa a fµ τ= = = = = = . 373 

 374 

Fig. (7g): effect ofτ , the values of the parameters are: 375 

ω 3.066, 0.003, 1, 1, 1.8, 0.1c qa a f Gµ= = = = = = . 376 

      377 

 378 

Fig. (8): Comparison between the analytic solution and the approximate solution at the case 379 

of time delay (Time history). 380 
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 382 

Fig. (9): Comparison between the analytic solution and the approximate solution at the case 383 

of time delay (Response curve). 384 

4. Conclusion 385 

     The resulted vibration of a nonlinear dynamic mechanical system of electrostatic MEMS 386 

resonator subjected to external force has been studied to be controlled. Active control method is 387 

applied to reduce this vibration via negative linear velocity feedback. Also, time delay controller 388 

is used in reduction of the system vibration. The system is described by a unique differential 389 

equation. Multiple Scale Perturbation Technique (MSPT) is applied to determine an approximate 390 

solution for this system. The stability of the system near the primary resonance case is studied by 391 

applying the frequency response equation. A numerical integration of the system behavior 392 

without and with two controllers is studied. The results of this paper are reported: 393 

1) Using negative gain feedback controller or time delay controller is effective in reduction 394 

about 93% of the system vibration amplitude. 395 

2) The effect of the negative gain feedback controller and the time delay controller is similar 396 

in reduction of the system vibration amplitude. 397 

3) The effectiveness of the controllers is about ( ) 2000
a

E u = . 398 
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