
Analytical study of the Difference Equation

xn+1 =
xnxn−6

xn−5 (±1− xnxn−6)

ABSTRACT

This paper is devoted to find the form of the solutions of the following rational difference equations:

xn+1 =
xnxn−6

xn−5 (±1− xnxn−6)
, n = 0,1, ...,

where the initial conditions x−6,x−5,x−4,x−3,x−2,x−1,x0 are arbitrary positive real numbers. Also, we give specific form

of the solutions of two special cases of this equation.
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1. INTRODUCTION

Our aim in this paper is to investigate the behavior of the solution of the following nonlinear difference equation

xn+1 =
xnxn−6

xn−5 (±1− xnxn−6)
, n = 0,1, ..., (1)

where the initial conditions x−6,x−5,x−4,x−3,x−2,x−1,x0 are arbitrary positive real numbers.

The study and solution of nonlinear rational recursive sequence of high order is quite challenging and rewarding. Re-

cently, there has been a lot of interest in studying the qualitative properties of rational recursive sequences, Furthermore

diverse nonlinear trend occurring in science and engineering can be modeled by such equations and the solution about

such equations offer prototypes towards the development of the theory. However, there have not been any suitable general

method to deal with the global behavior of rational difference equations of high order so far. Therefore, the study of rational

difference equations of order greater than one is worth further consideration.

Many researchers have investigated the behavior of the solution of difference equations, for example,

Elsayed et al. [23] has obtained results concerning the dynamics and solution of the rational difference equation

xn+1 =
xn−1xn−5

xn−3 (±1± xn−1xn−5)
.
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Elsayed et al. [27] has obtained results concerning The dynamics and the solutions of the rational difference equation

xn+1 =
xnxn−4

xn−3 (±1± xnxn−4)
.

Aloqeili [3] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1

.

Simsek et al. [37] obtained the solution of the difference equation

xn+1 =
xn−3

1+ xn−1

Çinar [7,8,9] got the solutions of the following difference equation

xn+1 =
xn−1

1+ axnxn−1

,xn+1 =
xn−1

−1+ axnxn−1

,xn+1 =
axn−1

1+ bxnxn−1

In [28], Ibrahim got the form of the solution of the rational difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)

Karatas et al. [30] got the solution of the difference equation

xn+1 =
xn−5

1+ xn−2xn−5

Here, we recall some notations and results which will be useful in our investigation. Let I be some interval of real

numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions x−k,x−k+1,x−k+2, ...,x0 ∈ I, the difference

equation

xn+1 = f (xn,xn−1, ...,xn−k), n = 0,1, ..., (2)

has a unique solution {xn}
∞
n=−k.

Definition 1. (Equilibrium Point) A point x̄ ∈ I is called an equilibrium point of Eq. (2) if x̄ = f (x̄, x̄, ..., x̄). That is, xn = x̄

for n ≥ 0, is a solution of Eq. (2), or equivalently, x̄ is a fixed point of f .

Definition 2. (Stability)

• The equilibrium point x̄ of Eq. (2) is locally stable if for every ε > 0, there exists δ > 0 such that for all x−k,x−k+1,x−k+2, ...,x0 ∈
I, with

|x−k − x̄|+ |x−k+1− x̄|+ |x−k+2− x̄|+ ...+ |x0− x̄|< δ ,

we have |xn − x̄|< ε , for all n ≥−k.

• The equilibrium point x̄ of Eq. (2) is locally asymptotically stable if x̄ is locally stable solution of Eq. (2) and there

exists γ > 0, such that for all x−k,x−k+1,x−k+2, ...,x0 ∈ I, with

|x−k − x̄|+ |x−k+1− x̄|+ |x−k+2− x̄|+ ...+ |x0− x̄|< δ ,

we have lim
n→∞

xn = x̄.
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• The equilibrium point x̄ of Eq. (2) is global attractor if for all x−k,x−k+1, ...,x0 ∈ I we have

lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq. (2) is globally asymptotically stable if x̄ is locally stable, and x̄ is also a global

attractor of Eq. (2).

• The equilibrium point x̄ of Eq. (2) is unstable if x̄ is not locally stable.

The linearized equation of Eq. (2) about the equilibrium x̄ is the linear difference equation

yn+1 =
k

∑
i=0

∂ f (x̄, x̄, ..., x̄)

∂xn−i

yn−i

Theorem 1. Assume that p,q ∈ R and k ∈ {0,1,2, ...}. Then |p|+ |q| < 1 is a sufficient condition for the asymptotic

stability of the difference equation

xn+1 + pxn + qxn−k = 0,n = 0,1, ....

Remark 1. The theorem can be easily extended to a general linear equations of the form

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0,1, ..., (3)

where p1, p2, ..., pk ∈ R and k ∈ {0,1,2, ...}. Then Eq. (3) is asymptotically stable provided that
k

∑
i=0

|pi|< 1.

Our goal in this section is to find a specific form of the solutions of some special cases of Eq. (1) when , a,b,c and d

are integers and give numerical examples of each case.

2. FIRST CASE : ON THE DIFFERENCE EQUATION XN+1 =
XNXN−6

XN−5 (1−XNXN−6)

In this subsection we study the following special case of Eq. (1):

xn+1 =
xnxn−6

xn−5 (1− xnxn−6)
, n = 0,1, ..., (4)

where the initial conditions x−6,x−5,x−4,x−3,x−2,x−1,x0 are arbitrary nonzeros real numbers.

Theorem 2. Let {xn}
∞
n=−4 be a solution of Eq. (4). Then for n = 0,1, ...,

x12n−6 = x−6

n−1

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 6)x−6x0

), x12n−5 = x−5

n−1

∏
i=0

(
1− (12i+ 1)x−6x0

1− (12i+ 7)x−6x0

),

x12n−4 = x−4

n−1

∏
i=0

(
1− (12i+ 2)x−6x0

1− (12i+ 8)x−6x0

), x12n−3 = x−3

n−1

∏
i=0

(
1− (12i+ 3)x−6x0

1− (12i+ 9)x−6x0

),

x12n−2 = x−2

n−1

∏
i=0

(
1− (12i+ 4)x−6x0

1− (12i+ 10)x−6x0

), x12n−1 = x−1

n−1

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 11)x−6x0

),

x12n = x0

n−1

∏
i=0

(
1− (12i+ 6)x−6x0

1− (12i+ 12)x−6x0

), x12n+1 =
x−6x0

x−5(1− x−6x0)

n−1

∏
i=0

(
1− (12i+ 7)x−6x0

1− (12i+ 13)x−6x0

),

x12n+2 =
x−6x0

x−4(1− 2x−6x0)

n−1

∏
i=0

(
1− (12i+ 8)x−6x0

1− (12i+ 14)x−6x0

), x12n+3 =
x−6x0

x−3(1− 3x−6x0)

n−1

∏
i=0

(
1− (12i+ 9)x−6x0

1− (12i+ 15)x−6x0

),

x12n+4 =
x−6x0

x−2(1− 4x−6x0)

n−1

∏
i=0

(
1− (12i+ 10)x−6x0

1− (12i+ 16)x−6x0

), x12n+5 =
x−6x0

x−1(1− 5x−6x0)

n−1

∏
i=0

(
1− (12i+ 11)x−6x0

1− (12i+ 17)x−6x0

).
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Proof: We use an inductive proof for this rational recursive sequences. It is easy to see that for n = 0, the result holds.

Suppose that n > 0 and that the assumption is satisfied for n− 1. That is;

x12n−18 = x−6

n−2

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 6)x−6x0

), x12n−17 = x−5

n−2

∏
i=0

(
1− (12i+ 1)x−6x0

1− (12i+ 7)x−6x0

),

x12n−16 = x−4

n−2

∏
i=0

(
1− (12i+ 2)x−6x0

1− (12i+ 8)x−6x0

), x12n−15 = x−3

n−2

∏
i=0

(
1− (12i+ 3)x−6x0

1− (12i+ 9)x−6x0

),

x12n−14 = x−2

n−2

∏
i=0

(
1− (12i+ 4)x−6x0

1− (12i+ 10)x−6x0

), x12n−13 = x−1

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 11)x−6x0

),

x12n−12 = x0

n−2

∏
i=0

(
1− (12i+ 6)x−6x0

1− (12i+ 12)x−6x0

), x12n−11 =
x−6x0

x−5(1− x−6x0)

n−2

∏
i=0

(
1− (12i+ 7)x−6x0

1− (12i+ 13)x−6x0

),

x12−10 =
x−6x0

x−4(1− 2x−6x0)

n−2

∏
i=0

(
1− (12i+ 8)x−6x0

1− (12i+ 14)x−6x0

), x12n−9 =
x−6x0

x−3(1− 3x−6x0)

n−2

∏
i=0

(
1− (12i+ 9)x−6x0

1− (12i+ 15)x−6x0

),

x12n−8 =
x−6x0

x−2(1− 4x−6x0)

n−2

∏
i=0

(
1− (12i+ 10)x−6x0

1− (12i+ 16)x−6x0

), x12n−7 =
x−6x0

x−1(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 11)x−6x0

1− (12i+ 17)x−6x0

).

Now, using the main Eq. (4), one has

x12n−6 =
x12n−7x12n−13

x12n−12 (1− x12n−7x12n−13)

=

x−6x0

x−1(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 11)x−6x0

1− (12i+ 17)x−6x0

)x−1

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 11)x−6x0

)

x0

n−2

∏
i=0

(
1− (12i+ 6)x−6x0

1− (12i+ 12)x−6x0

)

(

1−
x−6x0

x−1(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 11)x−6x0

1− (12i+ 17)x−6x0

)x−1

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 11)x−6x0

)

)

=

x−6

(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 17)x−6x0

)

n−2

∏
i=0

(
1− (12i+ 6)x−6x0

1− (12i+ 12)x−6x0

)

(

1−
x−6x0

(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 17)x−6x0

)

)

=
n−2

∏
i=0

(
1− (12i+ 12)x−6x0

1− (12i+ 6)x−6x0

)

x−6

(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 17)x−6x0

)

(

1−
x−6x0

(1− 5x−6x0)

n−2

∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 17)x−6x0

)

)

=
n−2

∏
i=0

(
1− (12i+ 12)x−6x0

1− (12i+ 6)x−6x0

)

x−6
1

1− (12n− 7)x−6x0
(

1−
x−6x0

(1− (12n− 7)x−6x0

)

)

=
n−2

∏
i=0

(
1− (12i+ 12)x−6x0

1− (12i+ 6)x−6x0

)
x−6

1− (12n− 6)x−6x0

.

Hence, we have
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x12n−6 = x−6

n−1

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 6)x−6x0

).

Similarly, using the main Eq. (4), one has

x12n−5 =
x12n−6x12n−12

x12n−11 (1− x12n−6x12n−12)

=

x−6

n−1

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 6)x−6x0

)x0

n−2

∏
i=0

(
1− (12i+ 6)x−6x0

1− (12i+ 12)x−6x0

)

x−6x0

x−5(1− x−6x0)

n−2

∏
i=0

(
1− (12i+ 7)x−6x0

1− (12i+ 13)x−6x0

)

(

1− x−6

n−1

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 6)x−6x0

)x0

n−2

∏
i=0

(
1− (12i+ 6)x−6x0

1− (12i+ 12)x−6x0

)

)

= x−5(1+ x−6x0)
n−2

∏
i=0

(
1− (12i+ 13)x−6x0

1− (12i+ 7)x−6x0

)

(
1− (12n− 12)x−6x0

1− (12n− 6)x−6x0

)
n−2

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 12)x−6x0

)

(

1− x−6x0(
1− (12n− 12)x−6x0

1− (12n− 6)x−6x0

)
n−2

∏
i=0

(
1− (12i)x−6x0

1− (12i+ 12)x−6x0

)

)

= x−5

n−2

∏
i=0

(
1− (12i+ 1)x−6x0

1− (12i+ 7)x−6x0

)
1− x−6x0

1− (12n− 5)x−6x0

.

Hence, we have

x12n−5 = x−5

n−1

∏
i=0

(
1− (12i+ 1)x−6x0

1− (12i+ 7)x−6x0

).

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 3. Eq. (4) has one equilibrium point x̄ = 0 and this equilibrium point is not locally asymptotically stable.

Proof. In this section we investigate the local stability character of the solutions of Eq. (4). Equation (4) has a unique

positive equilibrium point and is given by

x̄ =
x̄2

x̄(1− x̄2)
=

x̄

1− x̄2
,

or also

1 = 1− x̄2
,

then the unique equilibrium point is given by x̄ = 0.

Define the following function

f : (0,∞)3 → (0,∞)

f (u,v,w) =
uw

v(1− uw)
.

Therefore it follows that
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fu(u,v,w) =
w

v(1− uw)2
, fv(u,v,w) =−

uw

v2 (1− uw)
, fw(u,v,w) =

u

v(1− uw)2
.

Then

fu(x̄, x̄, x̄) =
1

(1− x̄2)2
= 1, fv(x̄, x̄, x̄) =−

1

(1− x̄2)
=−1, fw(x̄, x̄, x̄) =

1

(1− x̄2)2
= 1.

The linearized equation of Eq. (4) about x̄ is

yn+1 − yn−6 + yn−5 − yn = 0. (5)

n
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1−x(n)x(n−6)
)

Figure 1. Left x−6 = 1,x−5 = 2,x−4 = 3,x−3 = 4,x−2 = 5,x−1 = 6,x0 = 7 and right x−6 = 11,x−5 = 12,x−4 = 13,x−3 = 4,x−2 =
15,x−1 = 6,x0 = 17

3. SECOND CASE : ON THE DIFFERENCE EQUATION XN+1 =
XNXN−6

XN−5 (−1−XNXN−6)

In this subsection we study the following special case of Eq. (1):

xn+1 =
xnxn−6

xn−5 (−1− xnxn−6)
, n = 0,1, ..., (6)

where the initial conditions x−6,x−5,x−4,x−3,x−2,x−1,x0 are arbitrary nonzeros real numbers.

Theorem 4. Let {xn}
∞
n=−4 be a solution of Eq. (6). Then the solution of Eq. (6) is bounded and periodic of period 12 given

by:

x12n−6 = x−6, x12n−5 = x−5, x12n−4 = x−4, x12n−3 = x−3,

x12n−2 = x−2, x12n−1 = x−1, x12n = x0, x12n+1 =
x0x−6

x−5(−1− x0x−6)
,

x12n+2 =
x0x−6

x−4

, x12n+3 =
x0x−6

x−3(−1− x0x−6)
, x12n+4 =

x0x−6

x−2

, x12n+5 =
x0x−6

x−1(−1− x0x−6)
.

It follows from Theorem 1 that Eq. (5) is not asymptotically stable. The proof is complete.

For confirming the results of this section, we consider numerical example for ,(See Figure 1).
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Proof. For n = 0, the result holds. Now suppose that our assumption holds for n− 1. That is;

x12n−18 = x−6, x12n−17 = x−5, x12n−16 = x−4, x12n−15 = x−3,

x12n−14 = x−2, x12n−13 = x−1, x12n−12 = x0, x12n−11 =
x0x−6

x−5(−1− x0x−6)
,

x12n−10 =
x0x−6

x−4

, x12n−9 =
x0x−6

x−3(−1− x0x−6)
, x12n−8 =

x0x−6

x−2

, x12n−7 =
x0x−6

x−1(−1− x0x−6)
.

Now it follows from Eq. (6) that

x12n−6 =
x12n−7x12n−13

x12n−12 (−1− x12n−7x12n−13)
=

x0x−6

x−1(−1− x0x−6)
x−1

x0

(

−1−
x0x−6

x−1(−1− x0x−6)
x−1

)

=

x−6

(−1− x0x−6)
(

−1−
x0x−6

(−1− x0x−6)

) =

x−6

(−1− x0x−6)
(

1

(−1− x0x−6)

) = x−6

Similarly

x12n−5 =
x12n−6x12n−12

x12n−11 (−1− x12n−6x12n−12)
=

x−6x0

x0x−6

x−5(−1− x0x−6)
(−1− x−6x0)

= x−5

x12n−4 =
x12n−5x12n−11

x12n−10 (−1− x12n−5x12n−11)
=

x−5

x0x−6

x−5(−1− x0x−6)

x0x−6

x−4

(

−1− x−5
x0x−6

x−5(−1− x0x−6)

)

=

1

(−1− x0x−6)

1

x−4

(

−1−
x0x−6

(−1− x0x−6)

) =

x−4

(−1− x0x−6)
(

1

(−1− x0x−6)

) = x−4

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 5. Eq. (6) has a unique equilibrium point which is 0 and this equilibrium point is not locally asymptotically stable.

4. CONCLUSION

This paper discussed local stability, the solutions of some special cases of Eq. (1) and gave numerical examples of each

case.

Proof. As the proof of Theorem 3 and will be omitted.

For confirming the results of this section, we consider the following numerical examples,(See Figure 2).
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Figure 2. Left x−6 = 1,x−5 = 2,x−4 = 3,x−3 = 4,x−2 = 5,x−1 = 6,x0 = 7 and right x−6 = 5,x−5 = 3,x−4 = 4,x−3 = 1,x−2 = 1,x−1 =
3,x0 = 4
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