
The Gasca-Maeztu conjecture for n = 4

Abstract

We consider planar GCn node sets, i.e., n-poised sets whose all n-
fundamental polynomials are products of n linear factors. Gasca and
Maeztu conjectured in 1982 that every such set possesses a maximal
line, i.e., a line passing through n + 1 nodes of the set. Till now
the conjecture is confirmed to be true for n ≤ 5. The case n = 5
was proved recently by H. Hakopian, K. Jetter, and G. Zimmermann
(Numer. Math. 127 (2014) 685–713). In this paper we bring a short
and simple proof of the conjecture for n = 4.
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1 Introduction

Denote by Πn the space of bivariate polynomials of total degree at most n :

Πn =

{∑
i+j≤n

aijx
iyj : aij ∈ R

}
.

We have that

N := Nn := dim Πn =

(
n+ 2

2

)
.

Consider a set of distinct nodes

Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}.

The problem of finding a polynomial p ∈ Πn which satisfies the conditions

p(xi, yi) = ci, i = 1, 2, . . . s, (1.1)

is called interpolation problem.
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Definition 1.1. The interpolation problem with the set of nodes Xs is called
n-poised if for any data {c1, . . . , cs} there exists a unique polynomial p ∈ Πn,
satisfying the conditions (1.1).

A polynomial p ∈ Πn is called an n-fundamental polynomial for a node
A = (xk, yk) ∈ Xs if

p(xi, yi) = δik, i = 1, . . . , s,

where δ is the Kronecker symbol. We denote the n-fundamental polynomial
of A ∈ Xs by p?A = p?A,Xs

.
A necessary condition of n-poisedness is: s = N. In this latter case the

following holds:

Proposition 1.2. The set of nodes XN is n-poised if and only if for any
polynomial p ∈ Πn we have

p(xi, yi) = 0 i = 1, . . . , N ⇒ p = 0.

Definition 1.3. A set of nodes X is called n-independent if all its nodes
have n-fundamental polynomials. Otherwise, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a neces-
sary condition of n-independence is #X ≤ N. Suppose a node set Xs is
n-independent. Then we have following Lagrange formula for a polynomial
p ∈ Πn satisfying the interpolation conditions (1.1):

p(x, y) =
∑
A∈Xs

cAp
?
A,Xs

. (1.2)

In view of this formula we readily get that the node set Xs is n-independent
if and only if the interpolating problem (1.1) is solvable, i.e., for any data
{c1, . . . , cs} there exists a (not necessarily unique) polynomial p ∈ Πn satis-
fying the conditions (1.1).

We shall use the same letter, most often ` to denote the linear polynomial
` ∈ Π1 and the line defined by the equation `(x, y) = 0.

Definition 1.4. Given an n-poised set X , we say, that a node A ∈ X uses
a line `, if ` is a factor of the fundamental polynomial p?A,X .

The following proposition is well-known (see e.g. [8] Proposition 1.3):

Proposition 1.5. Suppose that ` is a line. Then for any polynomial p ∈ Πn

vanishing at n+ 1 points of ` we have

p = `r, where r ∈ Πn−1.
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From here we readily get that at most n+ 1 nodes of an n-poised set XN

can be collinear and the line `, containing n + 1 nodes, is used by all the
nodes in XN \ `. In view of this a line ` containing n+1 nodes of an n-poised
set X is called a maximal line [3].

In the sequel we will use the particular case n = 3 of the following

Proposition 1.6. Any set of at most 2n+1 points in the plain is n-dependent
if and only if n+ 2 of points are collinear.

Now let us define the following set of nodes:

Definition 1.7. For the given line ` we define N` to be the set of all nodes
in X , which do not lie in ` and do not use `:

N` = {A ∈ X : A /∈ ` and A is not using `}.

Theorem 1.8 ([5]). Suppose, that we have a line ` and an n-poised set X .
Then the following hold:

(i) If the set N` is nonempty, then it is (n− 1)-dependent and for no node
A ∈ N`, there exists a fundamental polynomial p?A,N`

in Πn−1.

(ii) N` = ∅ if and only if ` passes through n+ 1 nodes in X .

2 The Gasca-Maeztu conjecture and GCn-sets

Now we are going to consider a special type of n-poised sets whose n-
fundamental polynomials are products of n linear factors as it always takes
place in the univariate case.

Definition 2.1 (Chung, Yao [6]). An n-poised set X is called GCn-set, if
each node A ∈ X has an n-fundamental polynomial which is a product of n
linear factors.

Since the fundamental polynomial of an n-poised set is unique we get (see
e.g. [9], Lemma 2.5)

Lemma 2.2 ([9]). Suppose X is a poised set and a node A ∈ X uses a line
` : p?A = `q, q ∈ Πn−1. Then ` passes through at least two nodes from X , at
which q does not vanish.

Now we are in a position to present the Gasca-Maeztu conjecture.
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Conjecture 2.3 (Gasca, Maeztu [7]). Any GCn-set X possesses a maximal
line, i.e., a line passing through its n+ 1 nodes.

The Gasca-Maeztu conjecture is proved to be true for n ≤ 5. The case
n = 4 was proved for the first time by J.R. Busch [4]. The case n = 5 was
proved recently by H. Hakopian, K. Jetter, and G. Zimmermann in [?]. In
this paper we bring a short and simple proof of the conjecture for n = 4.

2.1 The Gasca-Maeztu conjecture for n = 4

We start with the formulation of the Gasca-Maeztu conjecture for n = 4 as:

Theorem 2.4. Any GC4-set X of 15 nodes possesses a maximal line, i.e., a
line passing through 5 nodes.

To prove the theorem assume by way of contradiction the following.

Assumption 2.5. The set X is a GC4-set without any maximal line.

We call a line k-node line if it passes through exactly k nodes of the set
X . In the next subsection we discuss the problem: Given a 2, 3 or 4-node
line. By how many nodes in X it can be used at most.

The following lemma is in ([9], Lemma 4.1). We bring it here for the sake
of completeness.

Lemma 2.6. Any 2 or 3-node line can be used by at most one node of X .

Proof. Assume by contradiction that ` is a 2 or 3-node line used by two
points A,B ∈ X . Consider the fundamental polynomial p?A. The node A
uses the line ` and three more lines, which contain the remaining ≥ 11 nodes
of X \ (` ∪ {A}), including B. Since there is no 5-node line, we get

p?A = ``=4`
′

=4`≥3.

Here the subscript = 4 means that the corresponding line is a 4-node line,
while the subscript ≥ 3 means that except the 3 nodes the corresponding
line may also pass through some nodes belonging to the other lines. First
suppose that B belongs to one of the 4-node lines, say to `

′
=4. We have also

p?B = `q, where q ∈ Π3.

Notice that q vanishes at 4 nodes of `=4 and 3 nodes of `
′
=4 (i.e., except B).

Therefore by using Proposition 1.5 twice we get that q = `=4r, r ∈ Π2 and
r = `

′
=4s, s ∈ Π1. Thus p?B = ``=4`

′
=4s. Hence p?B vanishes at B (B ∈ `′=4),

which is a contradiction.
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Now assume that B belongs to the line `≥3. Then q vanishes at 4 nodes
of `=4, 4 (≥ 3) nodes of `

′
=4 and at least 2 nodes of `≥3. Therefore again, as

above, by consecutive usage of Proposition 1.5 we get that p?B = ``=4`
′
=4`≥3.

Hence again p?B vanishes at B (B ∈ `≥3), which is a contradiction.

The following lemma is in ([1], Lemma 2.6). Here we bring a very short
proof of it.

Lemma 2.7. Any 4-node line can be used by at most three nodes of X .

Proof. Assume by contradiction that ` is a 4-node line used by four points
from X . Therefore we have #N` ≤ 15 − 4 − 4 = 7. In view of Theorem
1.8 N` 6= ∅ is (essentially) 3-dependent. According to Theorem 1.6 a set of
≤ 2 × 3 + 1 = 7 nodes is 3-dependent if and only if there is a 5-node line,
which contradicts Assumption 2.5.

Now we are in a position to prove the Gasca-Maeztu conjecture for n = 4.

2.2 Proof of the Gasca-Maeztu conjecture for n = 4

Let us start with an observation from ([10], Section 3.2). Fix any nodeA ∈ X ,
and consider all the lines through the node A and some other node(s) of X .
Denote this set of lines by LA. Let nm(A) be the number of m-node lines
from LA. In view of Assumption 2.5 we have

1n2(A) + 2n3(A) + 3n4(A) = #
(
X \ {A}

)
= 14. (2.1)

Denote by M(A) the total number of uses of the lines passing through A.
By Lemma 2.2 each of 14 nodes of X \ {A} uses at least one line from LA.
On the other hand, we get from Lemmas 2.6 and 2.7 that

14 ≤M(A) ≤ 1n2(A) + 1n3(A) + 3n4(A).

Comparing this with (2.1), we conclude that necessarily M(A) = 14 and
n3(A) = 0, i.e., there is no 3-node line in LA.

Thus we have
n2(A) + 3n4(A) = 14. (2.2)

Therefore each 4-node line in LA is used exactly three times and each 2-
node line is used exactly once. From here we conclude easily that n2(A) ≥ 2.
Next we show that actually n2(A) = 2.

Consider two 2-node lines passing through A. Suppose except A they
pass through B and C, respectively. Denote these two lines by `B and `C ,
respectively (see Fig 2.1).
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Figure 2.1: The lines of LA

Next, we will prove that B uses `C . Let us verify that in this case the node
C uses `B. Indeed, ifB uses `C we have p?B = `Cq, where q is a product of three
lines. Notice that the polynomial `Bq is the fundamental polynomial of the
node C, which means that C uses `B. Now, suppose by way of contradiction
that B does not use `C . Therefore C does not use `B.

Thus, there are two nodes D and E in the 12 nodes of X \ {A,B,C}
using the lines `B and `C respectively. In this case, we have p?D = `Bq1 and
p?E = `Cq2, where q1 and q2 are polynomials of degree 3.

Since q1 and q2 have 10 common nodes we get from the Bezout theorem
that they have common linear factor α, passing through at most 4 nodes.
So we can write q1 = αβ1 and q2 = αβ2, where β1 and β2 have at least 6
common nodes. Therefore, β1 and β2 have common linear factor α1, passing
through at most 4 nodes.

Now, we have for the following presentations of the fundamental poly-
nomials: p?D = `Bαα1α2 and p?E = `Cαα1α2

′
. Therefore α2 and α2

′
have at

least two common nodes, which means that they coincide. We have that
E ∈ α∪α1 ∪α2 and thus come to a contradiction, which proves that B uses
`C .

Note that `C was an arbitrary 2-node line, which means that B uses all
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2-node lines different from `B. It is easy to see that any node from X can use
at most one 2-node line, since otherwise if some node uses two 2-node lines
the remaining ≥ 10 nodes have to lie on two. Therefore, we conclude that
there are no 2-node lines other than `B and `C , i.e., n2(A) = 2. From here
and the equality (2.2) we get n4(A) = 4.

Thus, the 12 nodes of X \ {A,B,C} lie on four 4-node lines passing
through A. We denote these lines by `1, ..., `4.

Finally, by taking p(x, y) = `1`2`3`4, in the Lagrange formula (1.2), we
obtain

`1`2`3`4 = λ1p
?
B + λ2p

?
C , (2.3)

since `1`2`3`4 vanishes in X \{B,C}. Now recall that p?B = `Cq and p?C = `Bq,
where q is a product of three 4-node lines passing through the 12 nodes of
X \ {A,B,C}. Thus we get

`1`2`3`4 = q(λ1`C + λ2`B).

Clearly none of the lines `i here is a factor of q. Hence this leads to a contra-
diction, which proves Theorem 2.4.
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