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Abstract

Aims/ This paper discusses initial value problems for second order neutral impulsive integro-
differential equations with advanced argument. By using the fixed point theorem of either Leray-
Schaude or Banach, some existence results are obtained.
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1 Introduction

Impulsive differential equations are now recognized as an excellent source of models to simulate
processes and phenomena observed in control theory, physics, chemistry, population dynamics,
biotechnology, industrial robotic, optimal control, etc. About initial value problems for impulsive
differential equations, many authors have obtained very good existence results (for example, see
[1-7]). Now consider the following equation

{ (u(8(t)))” = f(t,u(t),u ( ) Ku(t), Hu(t)), t € J =[0,a], t # &,
Au(tk) = IOk(u(tk)) k) Ik (u (tk))7 k=1,---,p, (1.1)
u(0) = uo, u'(0) = uy,

where 0 = to < t1 < - < tp, < tpy1 = a, ¢ € C*(J,R), ¢ is monotone increasing with
t < o) <a(t € J)e0) =0 ¢ = a, ¢ > 0with ¢~' € C*(J,R), and let ¢(&) =
k(k = 1,---,p), J° = J\{t1, -~ ,tp},j = J\{&, - ,&}, f : J x R* — R is continuous
everywhere except at {£.} ><]R4 f(gk 7:c x ,yhyz) and f(Ek_,x x' y1 y2) exist, f(&,,x, @', y1,y2) =
férym, 2’ y1,y2), and Ku(t fo s)ds, Hu(t fo s)ds, k(t,s) € C(D,R"),
h(t,s) € C(J x J,R"), D = {(t s) c R2 0 <s< t < a}, ko = max{k(t s) : (t,s) € D}, ho =
max{h(t,s) : (t,s) € J x J}, further and Iox, [1x € C(R,R), Au(ty) = u(t)) — u(ts), Au'(ty) =
u'(t}) —u'(t). Denote by PC(X,Y), where X C R,Y C R, the set of all functions v : X — Y which
are piecewise continuous in X with points of discontinuity of the first kind at the points ¢, € X, i.e.,
there exist the limits u(t}") < co and u(t; ) = u(tx) < .
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2 Preliminaries

According to the properties of ¢, there exist positive constants m and ms such that m; < ¢'(t) <
mo forall t € J.

Let By = {ulu,w’ € PC(J,R)}C?*(J*,R). Evidently, F, is a real Banach space with norm
lu(®)|l e, = max{[lut)|rc, W' (t)lpc}, where [lu(t)| e = sup,c; [u(t)], [u' ()]l pc = sup, ¢, [u'(t)]-
Further, let E = {u(é(¢))|u(t) € Eo}. We can check that E is also a real Banach space with
norm |lu(o(t))|| = maX{HU((b(t))HP(ii,”((;((q)b)(t))),HPZ;}, where [u(¢(t))|lpo = sup,e; [u(o(t))| =

, u(p(t
lu®)llpe, [[(u(é(®)) [lpcx = S 1 Taewm | S a

Define operator B : u(t) — u(¢(t)), where u(t) € Ey and u(¢(t)) € E. ltis evident that B is

topological linear isomorphic, which implies that E is a real Banach space.

AD=0O) _ 7y (0 < T< a), e, (1) = 1, we getma > 1, next | (u(6(1))) e =

ma|u'(t)|pc = 1w/ (#)]| e, sO

= sup [u'(t)] - ma = ma||u(t)|| pc.
teJ

Since

u@®llzo < [lu(e@)]- (2.1)

Lemma 2.1. u(t) € Ey is a solution of (1.1) if and only if u(t) € Ey is a solution of the following
integral equation

t

w(P(t)) = uo + upt + /0 (t — 5) f(s,u(s),u (s), Ku(s), Hu(s))ds+ 2.2)
Po<ey <ok (u(te)) + (¢ = &) Tk (' (t))], t € J.

Proof. (i) Necessity
Foré&, <t <&ey1 (k=0,1,---,p), by (1.1), we get

u(@(®) = w0+ [ (w(o(s))ds+ 3 Ion(ulti)),t € ) (2.3)
0 0<&p<t
Similarly, we obtain
(o)) = v+ [ (o(s))/ds+ 3 Il (), t € . (2.4)
0 0<gp<t

Substituting (2.4) into (2.3), it is easy to get (2.2)
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(i) Sufficiency
According to (2.2), it is clear that

u(O) = Uuo, Au(tk) = [ok(u(tk)). (25)

Differentiating both sides of (2.2), we have

(u(e( —uo+/fsu (s), Ku(s), Hu(s))ds + Y Tie(u'(tx)), t € J.  (26)

0<g <t

Similarly, we also have

(w(d(®))” = f(t,u®t),u' (t), Ku(t), Hu(t)), t € J. (2.7)
By(2.6), it is evident that
u'(O) = ub, Au'(tk) = Ilk(u'(tk)). (28)
From (2.5),(2.7) and (2.8), we get that u(t) is a solution of (1.1).
O

Lemma 2.2. (Leray-Schauder [6]) Let the operator A : X — X be completely continuous, where X
is a real Banach space. If the set G = {||z|||z € X,z = MAz,0 < X < 1} is bounded, then the
operator A has at least one fixed point in the closed ball T = {z|z € X, ||z|| < R}, where R = supG.

Lemma 2.3. (Compactness criterion [7]) H C PC(J,R) is a relatively compact set if and only if
H C PC(J,R) is uniformly bounded and equicontinuous on every J, (k = 0,---,p), where Jo =
[t07t1]7 Jk = (tk7 tk+1} (k" =1,-- 7]7)-

3 Main Result

Let us introduce the following conditions for later use:
(H1) There exist nonnegative constants b,c,d; (i = 1,2), by, cx (k=1,---,p),
and g € L(J,R") such that | f(t, mg,y2,212,222) f(tz1,y1, 211, 221)]

< g(t)(bllzz — 2z1llpe + clly2 — w1 llpo + Z di||zi2 — za||lpc), t € J,

\fozc za(tk)) — Lok (w1 (tk))| < bilza(ts) — ivl(tk)\ Iox(0) =0, k=1,--- ,p,
1k (y2(tr)) — Tie(ya(te))] < crlyz2(te) — ya(te)l, Lie(0) =0, k=1,---,p,
where r1,x2 € Fo, yi(t) = g{(t), ﬂl(t) (’L = 1,2) € FEo, 211 = KZ14, 2z2; = HZ2i, Z14, Z2:

(i=1,2) € Ep, ao :/ g(t)dt.
(H2) There exist positive conostant M such that | f(t,u(t), v (t), Ku(t), Hu(t))| < M1+ ||u(t)||5)-
(H3) I = max{l1,l>} < 1, where I; = a®M + é(bk +ack), lp = Z—j(aM T ick).
(H4) r = max{r1,r2} < 1, where r1 = aag (b +c+adiko + adzho) + gp;l(bk + ack),

ro = Z [ao(b+c+ad1ko+ad2ho +ch
k=1

Theorem 3.1. If conditions (H1),(H2) and (H3) are satisfied, then (1.1) has at least one solution in the
closed ball B = {u(¢(t))|u((t)) € E, ||u(é(t))|| < R}, where R = sup G, G = {{lu(é(t))l | u(4(t)) €
E, u((t)) = Mu(¢(t)), 0 < A < 1}.
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Proof. (i) For any u(¢(t)) € E define the operator A by

Au(é(t)) = uo + upt + /0 (t — s)f(s,u(s),u (s), Ku(s), Hu(s))ds+
> Hok(u(te)) + (t — &) Lie(u' ()], t € J.

0<Ep <t

(3.1)

It is easy to see that Au(¢>( )) € Eo. According to the properties of ¢, for any v(t) € Eo, we have
v(t) = v(d"H(p(t))) = vo~t(@(t)). Let u = vp~'. Next, it is clear that v(t) = u(¢(t)) € E. It follows
that A maps E into E. Thus Au(¢(t)) € E with

(Au( —u0+/ f(s,u( Ku(s), Hu(s))ds + Z Lip (W' (ty)), t € J. (3.2)

0<E <t

A is a completely continuous operator will be verified by the following tree steps.

Step1. A is continuous.

Let any un(4(t)) (n=1,2,--+), u(p(t)) € E with |Jun(¢(t)) — u(e(t))|| — 0 as n — oo.
By (3.1) and (H1), we have

|[Aun (6(t)) — Au(é(t))] < (t = 5)g(s) [bllun(s) — u(s)| po+

cllun(s) —u'(s)|lp +d1\|Kun(S) — Ku(s)||pc + d2||Hun(s) — Hu(s)||pc]ds+
> bklun(tr) — ulti)| 4 (t = &k )er|un (te) — o' (tx)]]

0<E,<t
< (b+ c+ adiko + adaho) ||lun(t) — u(t)| &, /0 (t—s)g(s)ds+
l[un(t) —w(®)llzy > [br + (¢ = &x)exl,

0<ép <t

\,

| Aun (6(£)) — Au(b(t))] < [aao (b+c+adiko+adsho) + > (bk +ack)] [un(t) —u(t) || sy, t € J. (3.3)

k=1
Then from (3.3) and (2.1), we have
P

[ Aun(6(t)) — Au(d(t))|pe < [aao(b+ ¢ + adiko + adaho) + > (b + ack)] l|un(t) — u(t)|| s,

k=1

[ Aun ($(t) = Au(d() || pe < [aao (b+c+adiko+adzho) + Y (bx+ack)] |un(é(t)) —u(d(t)]. (3.4

k=1
Thus
[[Aun (¢(t)) — Au(o(t))]|lpc — 0 @s n — oo. (3.5)

Similarly, from (3.2) and (2.1), we get

‘d[Aun( ¢(t) — ]‘
d¢(

|(Aun(6(t)) — Au(¢(1)))'| = |(Aun(6(1)))" — (Au(e(1)))']

< fao(b+ -+ adsko -+ adaho) + 3 ex] un (6(6) = u(@ (D).

‘ d[Aun(6(t)) — Au(4(t)) ‘

1 P
o) < —[ao(b+ c+ adiko + adaho) + Y _ ex]lun(6(t) — w(g®))|, t € J,

m
1 k=1

[(Aun(6(t) — Au(g(t))) | pe= < Z [a0(b+c+adiko +adsho) +ch Hlun(8(8)) —u(s(t))] (3.6)

k=1
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Thus

[(Aun(e(t)) — Au(6(t)))'|[pc+ — 0 as n — co. (3.7)
By (3.5) and (3.7), it is easy to see that ||Au.(¢(t)) — Au(é(t))]] — 0 as n — oo, that is to say, A is
continuous.

Step 2. A maps any bounded subset of E into one bounded subset of E.
Let T be any bounded subset of E. Then there exist h > 0 such that ||u(¢(t))|| < h for all

u(p(t)) € J.
By (3.1),(H1),(H2) and (2.1), we have

[Au(o(t))] < \UO|+|u6|t+/ (t— )M+ u(s)llm)ds + > [brlulte)| + (¢ — &)erlu ()]
0 0<&p <t
< |UO|Jra|UB|+Z\4(1+HU(t)HEo)/0 ads + |u(t)|[z, Y (b +ack)

0<Ep <t

< |uo| + aluo| + M1+ [lu(0(t))]) /a ads + [lu(¢(t) | D> (b + ack)
0 k=1

< |uo| + alup| +a*M (1 + h) +h Y (bk + ack), t € J,

yd
k=1

SO
P
[Au(é(t)|| pe < |uol + alug| + a®M(1+h) + 1Y (bk + ack). (3.8)

k=1

Similarly, from(3.2),(H1),(H2) and (2.1), we get

‘dAuw(t))‘ Jdo

do(t) dt
dAu(@®) | 1 e
‘ 0] ‘gmlﬂ ol + M(l—&—h)—&—hkzzl K], t € J,

[(Au(@(t))'| < lup| +aM(1+h) +hY cx, t€J,

k=1

SO
P

l(Au(6(@) llpes < 72 [fup] +aM(1+ k) +h Y], (3.9)

According to (3.8) and (3.9), we obtain

14
[|Au(a(t))]| < max {|u0| + alug| +a® M1 +h) + hZ(bk + acy), % [luo| +aM(1+h)+ hz cx) }
k=1 1 k=1
Therefore A(T') is uniformly bounded.
Step 3. A(T) is equicontinuous on every J, (k=0,---,p),where Jo = [0,&1], Jx = (&k, Eu+1] (B =
]"7 toe 7p)'

p
For any Au(¢(t)) € A(T) and any € > 0, take 6 = [Jug| + aM (1 +h) +h > ck]_ls. Then if
k=1
t1, t2 € Ji and |t1 — t2] < 0 with t1 < tg, from (3.1),(H1),(H2) and (2.1), we have

k

[Au(g(t2)) — Au(e(t1))] < |ug|(t2 — t1) +/t (= )M (L + llu(s) |, )ds + Z(tz — tu)elu (t:))]

< [l + aM (L + Ju(®)l1z) + Nu(t) 1 3 ] (ta — )

< [Jub) + aM (1 + (@] + (@@ 3 exllts — t1] < [Jubl + aM(1+h) +h 3 ex]ltz — ta] < e.

=1 k=1

N

Thus, A(T) is equicontinuous on every Ji, (k=0,---,p).
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As a consequence of Step 1-3, A is completely continuous.
(i) For any ||u(é(¢))]] € G, similar with getting (3.8) and (3.9), we have respectively

[Au(¢(®)llpc < |uo| + alug| + a®M + [a* M + kZp: (bi + aci)] lu(e(t)]]

=1

= |uo| + alut| + a*M + Li[[u(g(t))],
g
(@) e < T2 (upl +add) + 72 (@M + 37 e lu(@(®) | = 2 (ol +aM) + Lallu(é(0)]]

k=1
Then [Ju(o(t))]] = MAu(o(t))|| < [|Au(e@®)]| < L + Uu(o(t))|l, where L = max {|uo| + alug| +
@M, ™2 (uf] +ab) ). It follows that u(s(1)) | < % i.e., G is bounded.
N _
From (i) and (ii), now all conditions of Lemma 2.2 are satisfied and therefore the proof is complete.
O

Theorem 3.2. If conditions (H1) (Iox(0) = 0, I1x(0) = 0 are not needed) and (H4) are satisfied, then
(1.1) has a unique solution.

The proof of Theorem 2 is similar to that of Theorem 1, and is omitted here.

4 An Example

Example 4.1. Consider the equation

(ut+ st(1—1))" = % [11 sin(u(t) 4 e') — 2u'(t) + 6/0 (ts)u(s)ds+
3/0 (tsQ)u(S)ds], tGJ:[O,l],t#flzé, (4.1)
1 ) 1, 5
Au(t1) = Eu(tl), Au (t1) = ﬁu (tl), t1 = g,
u(0) = uo, u'(0) = uo,
1

Firstly, it is easy to verify that ¢(t) = t + 5t(l —t), k(t,s) = ts, ko = 1, h(t,s) = ts*, ho = 1
all satisfy the requisitions of (1.1). From ¢'(t) = g —t, we getmi = 1/2, ma = 3/2. Next, since

ft,x,y,21,22) = 67256 [11sin(z + €') — 2y + 621 + 322], and |sin(z2(t) + €') — sin(z1(t) + €)| =
[(z2(t) +et) — (z1(t) +eb)|-| cos(Z(t) +e')| < |z2(t) —z1(t)| (z(t) is located between x1 () and z2(t)),
we have

\f(t,;rz, Y2, Z12, 222) - f(t7$1,y1, 211, 2'21)\

t . .
< % [11‘ Sln(l’g —+ et) — SlIl(l‘1 + et)| —+ 2|y2 — y1| =+ 6|Z12 — 2111| —+ 3|222 — 221”

2 — yal + ol — 2l + ol — 2]
33y2 Y1 11 12 11 29 22 21

1
<t|= — — — — — — — ,teJ,
< [6||$2 zi||lpc + 33||:L/2 yillpc + 11 llz12 — z11]|Pc + 2 ||z22 ZZlHPC] S

1
< t[*lwg —1‘1‘ —+

1 1 1 1 ! 1 1

where b = g, c = £7 di = 1 da = 59 a=1 a0 = / tdt = 5 From 101(56) = ECC, I11(y) =
0

1

—vy, we have

12

o1 (z2(t1)) — Toa(z1(t1))] < %|$2(t1) —z1(t1)], Lo1(0) =0,

[T11(y2(t1)) — L (y1(81))] < E\yz(tl) —yi(t1)], 111(0) =0,
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where by = c1 = %.Further, we have

£t u®), 0/ (0), Ku(t), Hu(®) t 1
<L [11| sin(u(t) + e')] + 2Ju’ ()] + 6/0 k(t, s)|u(s)|ds + 3/0 h(t, s)|u(s)\ds]

66
1 1
< gl + 2lu®llz + 6llu)lzo + 3llu®)lz,] = ¢ (1 +llu®)lz0),
1 . . 2 1 mao 3
where M = 6 Finally, since I, = a*M + (b1 + ac1) = 3 lo = m—(aM +a) = e get
1

Il =max{ly,l2} = % < 1.

Thus (4.1) satisfies all conditions of Theorem 3.1. It follows that (4.1) has at least one solution in
the closed ball B.
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