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Random attractor for non-autonomous stochastic extensible

plate equation on unbounded domains

Abstract: We study the asymptotic behavior of solutions to the non-autonomous
stochastic extensible plate equation driven by additive noise defined on unbounded domains.
We first prove the uniform estimates of solutions, and then establish the existence of a
random attractor.
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1 Introduction

Consider the following non-autonomous stochastic extensible plate equations with additive noise
and nonlinear damping defined in the entire space R™:

dw
i+ h(w) + A%u+ (p = ol|Vul*) Au + du + f(z,u) = g(2,1) + $(z) (1.1)
with the initial value conditions
u(z,7) = ugp(x), w(z,7)=mu1(x), (1.2)

where x € R™, ¢t > 7 with 7 € R, A\, p is positive constant, p is a negative constant, f is a
nonlinearity satisfying certain growth and dissipative conditions, g(z,-) and ¢ are given functions
in L} (R, H'(R")) and H?(R™) N H3(R™), respectively, W(t) is a two-sided real-valued Wiener
process on a probability space.

Plate equations have been investigated for many years due to their importance in some physical
areas such as vibration and elasticity theories of solid mechanics. The study of the long-time
dynamics of plate equations has become an outstanding area in the field of the infinite-dimensional

dynamical system. While the attractors is regarded as a proper notation to describe the long-time
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dynamics of solutions. Equations of type (1.1)-(1.2) model transversal vibrations of thin extensible

elastic plates, which was established based on the theory of elastic vibration in [3,18].

When h = 0, and p = p = 0, (1.1)-(1.2) reduces to a standard deterministic plate equa-
tion, which has been extended studied by some authors. For instance, Yang and Zhong [34, 35]
investigated the existence of the global attractors for the autonomous plate equation with nonlinear
damping on the bounded domain as well as the non-autonomous plate equation with a localized
damping. In [14,15], Khanmamedov scrutinized the existence of global attractors for the plate
equation with critical exponent under the case of the different damping on an unbounded domain;
similar problems were surveyed by Xiao in [32,33]. Yue and Zhong considered the global attractors
for the plate equation with critical exponent in a locally uniform space [38]. A global attractor of
the plate equation with displacement-dependent damping was achieved by Khanmamedov in [16].
Carbone et.al. investigated the pullback attractors of a singularly non-autonomous plate equation,
see [5].

As h = 0, p and p are not zero, the equation is so called a deterministic Kirchhoff type
problem. In [17], Kirchhoff first paid attention to the oscillations of stretched strings and plates.
Later, the analogous problems were considered by several authors such as Giorgi and Pata et.al.
[11,12], Bochicchio and Vuk [4]. Barbosa and Ma [1] investigated the long-time behavior of an
extensible plate equation with thermal memory. Yao and Ma [36] proved the existence of a global
attractor for the plate equations of Kirchhoff type with nonlinear damping and memory using the

contraction function method.

In the case when h # 0, (1.1)-(1.2) is just the stochastic plate equation that we are con-
cerned with in this paper. As p = ¢ = 0, in [20, 23], the authors proved the existence of random
attractors on a bounded domain and unbounded domain; Yao and Ma et.al. [37] obtained the
asymptotic behavior of a class of stochastic plate equations with rotational inertia and Kelvin-
Voigt dissipative term. Ma and Xu [19] studied the random attractors of the extensible suspension
bridge equation with white noise. In recent years, the existence of random attractors for stochas-
tic dynamical system on unbounded domains have been investigated by several authors, such as
Reaction-diffusion equations with additive noise [2], Reaction-diffusion equations with multiplica-
tive noise [31], FitzHugh- Nagumo equations with additive noise [27], Navier-Stokes equations with
additive noise [13], wave equations with additive noise [26,27,30], wave equations with multiplica-
tive noise [29].

Motivated by above literatures, the goal of the present paper is to study random attractors
of non-autonomous stochastic extensible equation (1.1)-(1.2) on unbounded domain. By applying
the abstract results in [25], we will prove the stochastic strongly damped plate equation (1.1)-(1.2)
has tempered random attractors in H2(R™) x L?(R").

In general, the existence of global random attractor depends on some kind compactness (see,
e.g., [6-8,10]). Involving to our problem (1.1)-(1.2), two main difficulties needed to be overcome.
One difficulty is to prove the existence of random attractors for (1.1)-(1.2) in H?(R") x L?(R"), we
must establish the pullback asymptotic compactness of solutions. Since Sobolev embeddings are
not compact on unbounded domain, we cannot get the desired asymptotic compactness directly

from the regularity of solutions. We here overcome the difficulty by using the uniform estimates
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on the tails of solutions outside a bounded ball in R™ and the splitting technique, see [26,29] for
details; another difficulty is brought by the term —||Vul|?, (rmyAu, they make the estimates more
complex than those in [7,8]. Besides, in fact, four-order derivative term A%u can also lead to some
obstacles in deducing the regularity of the solution.

The framework of this paper is as follows. In the next Section, we recall some definitions and
already known results concerning random attractors. In Section 3, we define a continuous cocycle
for Eq.(1.1) in H?(R") x L?(R™). Then we derive all necessary uniform estimates of solutions
in Section 4. Finally, in Section 5, we prove the existence and uniqueness of tempered random
attractor for the non-autonomous stochastic extensible plate equation.

Throughout the paper, the letters ¢ and ¢; (¢ = 1,2,...) are generic positive constants which

may change their values from line to line or even in the same line.

2 Preliminaries

In this section, we recall some basic concepts related to random attractors for stochastic dy-
namical systems.
Let X be a separable Banach space and (2, F,P) be the standard probability space, where
Q ={we C(R,R) : w(0) =0}, F is the Borel o-algebra induced by the compact open topology of
2, and P is the Wiener measure on (£, F). There is a classical group {0, }:cr acting on (92, F,P)
which is defined by
bw() =w(-+1t) —w(t), foralwe, teR. (2.1)

We often say that (Q, F, P, {6;}+cr) is a parametric dynamical system.

The following four definitions and one proposition are from [25].

Definition 2.1. A mapping ® : RT x R x Q x X — X is called a continuous cocycle on X over
R and (Q, F, P, {0 }tcr) if for all 7 € R, w € Q and ¢, s € R, the following conditions (1)-(4) are
satisfied:

(1) (.7, ) :RT x Qx X = X is (B(RT) x F x B(X), B(X))-measurable;

(2) (0, 7,w,-) is the identity on X;

3) P(t+ s, 7w, ) =P(t, 7+ 8,05w,-) o P(s, T,w, *);

(4) ®(t,7,w,) : X — X is continuous.

Hereafter, we assume @ is a continuous cocycle on X over R and (Q, F, P, {0;}ter), and D is
the collection of all tempered families of nonempty bounded subsets of X parameterized by 7 € R
and w € (U

D={D={D(r,w) CX:D(r,w) # 0,7 € R,w € Q}}.

D is said to be tempered if there exists zo € X such that for every ¢ > 0, 7 € R and w € €, the
following holds:
lim e“d(D(r +t,0,w),x0) = 0. (2.2)

t——o0

Given D € D, the family Q(D) = {QU(D, 7,w) : 7 € R,w € Q} is called the Q-limit set of D where

D, 7,w) = () |J 2t 7= t,0_w, D(r —1,0_4w)). (2.3)

s>0t>s
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The cocycle @ is said to be D-pullback asymptotically compact in X if for all 7 € R and w € ,
the sequence

{®(tn, T —tn, 0+, w,Tn) oo, has a convergent subsequence in X (2.4)

whenever ¢, — o0, and z,, € D(1 — t,,,0_;, w) with {D(7,w) : 7 € R,w € Q} € D.
Definition 2.2. A family K = {K(1,w) : 7 € R,w € Q} € D is called a D-pullback absorbing set
for @ if for all 7 € R and w € Q and for every D € D, there exists T'= T(D, 7,w) > 0 such that

O(t, 7 —t,0_w,D(T —t,0_4w)) C K(1,w) forallt>T. (2.5)

If, in addition, K(7,w) is closed in X and is measurable in w with respect to F, then K is called
a closed measurable D-pullback absorbing set for ®.
Definition 2.3. A family A = {A(7,w) : 7 € R,w € Q} € D is called a D-pullback attractor for @
if the following conditions (1)-(3) are fulfilled: for all t € RT, 7 € R and w € Q,

(1) A(7,w) is compact in X and is measurable in w with respect to F.

(2) A is invariant, that is,

O(t, 7, w, A(T,w)) = A(T + t, Ow). (2.6)
(3) For every D = {D(1,w): T € R,w € Q} € D,
tllm dyg(®(t, 7 —t,0_w,D(T —t,0_w)), A(T,w)) = 0, (2.7)

where dp is the Hausdorff semi-distance given by dg (F, G) = sup ing [lu—v||x, for any F, G C X.
weF VE

As in the deterministic case, random complete solutions can be used to characterized the
structure of a D-pullback attractor. The definition of such solutions are given below.
Definition 2.4. A mapping ¥ : R x R x Q — X is called a random complete solution of & if for
every T € RY,s,7 € R and w € ,

O(t, 7+ 5,0w,V(s, T, w)) =Vt +s,7,w). (2.8)

If, in addition, there exists a tempered family D = {D(7,w) : 7 € R,w € Q} such that (¢, 7,w)
belongs to D(7 + t,0,w) for every t € R,7 € R and w € Q, then ¥ is called a tempered random
complete solution of ®.

Proposition 2.1. Suppose ® is D-pullback asymptotically compact in X and has a closed mea-
surable D-pullback absorbing set K in D. Then ® has a unique D-pullback attractor A in D which
is given by, for each T € R and w € (Q,

Alr,w) = QK 7w) = | 2D, 7,w) (2.9)
DeD

={P(0,7,w) : ¥ is a tempered random complete solution of ®}. (2.10)
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3 Cocycles for stochastic plate equation

In this section, we outline some basic settings about (1.1)-(1.2) and show that it generates a
continuous cocycle in H2(R™) x L?(R").
Let —A denote the Laplace operator in R, D(A) = H*. We can define the powers A” of A
for v € R. The space V,, = D(A%) is a Hilbert space with the following inner product and norm

(u,v), = (ATu, ATv), -1l =A% - ||.

For brevity, the notation (-,-) for L?-inner product will also be used for the notation of duality
pairing between dual spaces.
Let E = H? x L?, with the Sobolev norm

1
lyllzz 2z = (oll® + [lull® + [ Au|®)2, for y = (u,0)" € E. 3.1)

For simplicity, let ¢ = 1 and & = uy + du, where J is a small positive constant whose value will be

determined later, then (1.1)-(1.2) can be rewritten as the equivalent system

% + du = ¢,
9 56+ (A + 62+ A)yu+ h(E — 6u) + (p — || Vul[*>)Au (3:2)
+f(x,u) = g(a,t) + o(a) G,

with the initial value conditions
u(z,7) = ug(x), §(z, 1) = &o(), (3.3)

where &o(z) = u1(z) 4+ duo(x), © € R™

Assumption I. Assume that the functions h € C1(R) and f € C*(R) satisfy the following
conditions:

(1) Let F(z,u) = [, f(z,s)ds for € R" and u € R, there exist positive constants ¢;(i =
1,2,3,4), such that

)] < exful? +mn(2), m e I2(RY), (3.4)
flz,u)u — coF(z,u) > no(x), no € LY(R™), (3.5)
F(x,u) > calulP™ —n3(x), ns € L*(R™), (3.6)
af af 2 n
—_— < — <
L ww <8, 12 @l <me), me 2@, (3.7
where 3 >0, 1 <p< Z—fj Note that (3.4) and (3.5) imply
F(z,u) < cluf® + [ul"* 405 + o). (3.8)

(2) There exist two constants 31, 82 such that

h(0) =0, 0<p <h'(v) <Py <oo. (3.9)
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For our purpose, it is convenient to convert the problem (1.1)-(1.2) (or (3.2)-(3.3)) into a
deterministic system with a random parameter, and then show that it generates a cocycle over R
and (2, F, P, {0 }ier)-

We identify w(t) with W (t), i.e., w(t) = W(t) = W(t,x), t € R. Set v(t) = £(t) — ¢pw(t), we
obtain the equivalent system of (3.2)-(3.3),

% +du = v+ gw(t),
DS+ AN+ 82+ Au+ (p— |Vu|?)Au+ f(z,u) = gla,t) (3.10)
—h(v+ gw(t) — du) + ddw(t),

with the initial value conditions
u(z, 7,7) = uo(x), v(x, T,7) = vo(x), (3.11)

where vo(x) = &o(z) — dw(t), = € R™.

The well-posedness of the deterministic problem (3.10)-(3.11) in H2(R") x L?(R™) can be

established by standard methods as in [21,24], more precisely, if Assumption I is fulfilled, then we
can prove the following Lemma.
Lemma 3.2 Put o(t +7,7,0_;w,00) = (u(t + 7,7,0_ w,ugp),v(t +7,7,0_,w,v0)) ", where py =
(ug,v0) ", and let Assumption I and Assumption II below hold. Then for every w € Q, 7 € R
and o € E(R™), problem (5.10)-(3.11) has a unique (F, B(H?*(R")) x B(L*(R")))-measurable
solution ¢(-, T,w, o) € C([r,00), E(R™)) with (T, T,w,v0) = ¢o, @(t,T,w,p0) € ER™) being
continuous in @ with respect to the usual norm of E(R™) for each t > 7. Moreover, for every
(t, 7w, p0) € RT x R x Q x E(R™), the mapping

(b(tv Tawach) = QO(t+7', T, Q_TW,QD()) (312)

generates a continuous cocycle from RT x R x Q x E(R™) to E(R™) over R and (2, F, P, {0:}icr)-
Introducing the homeomorphism P(6,w)(u,v)" = (u,v + 2(6;w)) ", (u,v)" € E(R") with an
inverse homeomorphism P~!(0yw)(u,v) " = (u,v — 2(6;w)) . Then, the transformation

&)(t, T,w, (ug, &)) = P(0;w)®(t, T,w, (ug, v0)) P~ (fsw) (3.13)

generates a continuous cocycle with (3.2)-(3.3) over over R and (Q, F, P, {6; }+cr)-

Note that these two continuous cocycles are equivalent. By (3.13), it is easy to check that ®
has a random attractor provided ® possesses a random attractor. Then, we only need to consider
the continuous cocycle .

Next we make another assumption:

Assumption II. We assume that o, and g(z,t) satisfy the following conditions:

2
O’:min{é,%}, /\+§2—625>0, 61>46+6 36

TR (3.14)

Moreover,

0
/ e Nlg(-, 7+ 8)||3ds < 00, VT ER, (3.15)
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and o
lim / e”s/ lg(z, 7+ 8)|?dxds =0, ¥V 7 € R, (3.16)
k—o0 — 00 |I|2k
where | - | denotes the absolute value of real number in R.

Given a bounded nonempty subset B of E, we write || B|| = sup ||¢||g. Let D = {D(1,w) : 7 €
¢EB

R, w € 2} be a family of bounded nonempty subsets of E such that for every 7 € R,w € Q,

lim e7||D(T + s,0,w)||% = 0. (3.17)

S§—r— 00

Let D be the collection of all such families, that is,

D={D={D(r,w): 7 € R,w € N} : D satisfies (3.17)}. (3.18)

4 Uniform estimates of solutions

In this section, we conduct uniform estimates on the weak solutions of the stochastic plate
equations (3.2)-(3.3) defined on R™, through the converted random equation (3.10)-(3.11), for
the purposes of showing the existence of a pullback absorbing sets and the pullback asymptotic

compactness of the random dynamical system.

We define a new norm || - ||g by
1Yz = ([oll* + A+ 6% = Bod) Jull® + |Aul®) 2, for Y = (u,v) € B (4.1)
It is easy to check that || - || g is equivalent to the usual norm || - ||[gzx 2 in (3.1).

First we show that the cocycle ® has a pullback D-absorbing set in D.
Lemma 4.1 Under Assumptions I and II, for every T € R,w € Q, D = {D(1,w) : 7T € R,w € Q} €
D, there exists T = T(1,w, D) > 0 such that for all t > T the solution of problem (3.10)-(3.11)

satisfies
1
Y (7,7 —t,0_rw,D(T —t,0_w))||% + §(||Vu(7',7' —t,0_rw,up)||* —p)? < Ry(1,w),

and Ri(7,w) is given by

Rl(T,w):M+M/j eCf(S*ﬂHg(x,s)Hch/ 7 (|w(s)? + |w(s)[* + [w(s)[P)ds, (4.2)

— 00

where M is a positive constant independent of T,w, D.
Proof. Taking the inner product of the second equation of (3.10) with v in L?(R"), we find that

S Lol = 8ol + (r+ 62)(a,) + (Au,0) + (p — [ VulP) (B, ) + (£ ), v)
= (g(z,t),v) — (h(v + Pw(t) — du),v) + 6(¢, v)w(t). (4.3)

By the first equation of (3.10), we have

v =u — ¢w(t) + du. (4.4)
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By (3.9) and Lagranges mean value theorem, we have

— (h(v + ¢w(t) — bu), v)

— (h(v + pw(t) — du) — h(0),v)

— (W (9)(v + ¢w(t) — du),v)

= Bullvll* = (W (9)(¢w(t) — du), v)

= Billvll* + Balw(®)l[@lv]] + ' (9)8(u, v)

-0
< = Bullvl® + ﬂlTllvllz +cw®)PlI¢l* + b (9)8(u, v), (4.5)

IN

IN

where 9 is between 0 and v + ¢w(t) — du.
By (3.9) and (4.4), we get

B (9)6(u,v)
=h'(9)6(u, uy — pw(t) + du)

1d
<B20 - 5 llull® + Bod®||ul* + Baslw (@)1 ]l ][ul
1d
<820 - 5 llull® + Bod®|ful* + L5(0+ 82 - Bd)llull? + cleo(t) 210112 (4.6)

Substituting (4.4) into the third, fourth and fifth terms on the left-hand side of (4.3), we find that

(A +0%)(u,v)
A+ 52)(u, up — Qw(t) + du)

> (4 8 Sl + 60+ 8%) Jul? ~ <A + ) ®)llol

§<A+6Q> ol + 50+ )full? — 160+ 8 = o)l — ()P0l (A7)
(Au,v) = (Au, Av) = (Au, Auy — w(t )A¢+6Au)

;di\muu?wumn? WOl as]lAul

Dl + 2l ~ koI AgI, (43)

(p = I Vull®)(Au,v)
=(p = [Vull®) (Au, ue — guw(t) + du)
=(IVull* = p) (Vu, V(ue = w(t) + 6u))

_1d 9 [ 9 4 (5p
= Tl 5 + S (Il —p)? + vl — 2
—w(®)([Vullf = p)(Vu, Vo)
1 2 g 2 9, 0 4 5]92
> (IVul? = p)? + S(IVul? = ) + 5| Vul* = 2
)
- *(HWHQ -p)* - 5||Vu||4L — clw®*Vel*
1d 1) op?
> (1Vul2 = ) + (1 Vul? = p)? = 2= = clo(®)*| V6. (4.9)
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Using the Cauchy-Schwarz inequality and Young’s inequality, we have

—4
§(pw(t),v) < slw®)llgllllvll < cllgll*w ()] + ’&TIIUHZ, (4.10)

and 5 5
| —
(g,0) < llgllllvll < ellgl® + 7llv\|2~ (4.11)

Let F (z,u) = [gn F(x,u)dz. Then for the last term on the left-hand side of (4.3) we have
(f(z,u),0) = (f(z, u), up — dw(t) + bu)
d ~

By condition (3.5) we get

(f(z,u),u) > czﬁ(m,u) —|—/ na(z)dx. (4.13)

n

Following from condition (3.4) and (3.6), we obtain

(), (1)
< [ (el + mie)los(o)ds

<llm @) [[lolllw )] + 01(/ [ufP 1 da) 7| a o (1)
R‘Il
<[lm (@)l ®)] +cl(/R (F(w,u) + n3(2))dz) 757 || ]| 1w (1)
<gIm@I + Sl + 2P + 52 [ m@de+ ol )
By (4.12)-(4.14), we get

§(f(x,u),u) — (f(z,u), dw(t))
z%ﬁ(%u) + 5/ 2(x)d — %Hm(w)\l2 - %H¢|I2|w(t)|2

n

oc
- 72 A ns(x)de — c||p||h5 w(t)PT (4.15)

Substitute (4.5)-(4.15) into (4.3) to obtain

1d 1 ~
§§(Ilvl\2 A+ 6% = Bod)ull® + | Aul®* + S(IVul® = p)* + 2F(x, u))
562

1) 1 1
ol 4 S0+ 8 = )l + 3 Aal + GIVul? — )2 + 2
26 — ﬂl

ﬁ(a:,u)
[0 + ¢(1 + w(®)]? + [w(®)|* + |w(®)[P*) + cllg]>. (4.16)

Let o = min{4, °2}, then

d 1 ~
a(HUIF + (A4 6% = B20)|ull® + || Aul® + §(WuH2 —p)* + 2F (x,u))
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1 ~
+o (vl + (A + 0% = Bod)|lull” + [ Aul® + S(IVull* = p)* + 2F (2, u))

<cllgl? + e+ w(®)* + [w(®)* + [w(@)[PFT). (4.17)
Multiplying (4.17) by €% and then integrating over (7 —t,7), we have
e (Jo(r, T — t,w,vo)||* + (A + 6% — Ba2d) |lu(r, T — t,w, uo)||?
+ [[Au(r, T = t,w,uo)|I* + 5 (HVU( T —t,w,u0)|” = p)® + 2F (x, (1,7 — t,w,u0)))

_ 1 ~
<e”T I (Jfuo|* + (A + 6% — B28) oI + || Auol|* + 5 (IVuoll* = p)* + 2F (. uo))

o[ elgslPdste [ et Ul + (o)l + w(o) s
T—t T—t
Replacing w by §_,w in the above we obtain, for every t € RT, 7 € R, and w € ,
llo(r, 7 —t,0_rw,v0)||*> + (A4 6% = B2d)|Ju(r, T — t,0_rw,uo)||* + || Au(r, T — t,w, up)||?

1 -
+ 5(||Vu(77 T—1,0_,w, uo)H2 — p)2 + 2F (z,u(r,7 — t,0_;w,up))

1 ~
<€"”(Hvoll2 + (A4 6% = Bad)uol|* + | Auol|* + 5 (IVuoll* = p)* + 2F (x, uo))

T—t
Again, by (3.8), we get

to T 0 wls) + [0_rws)* + 0_w(s)PH)ds

C=7lg(x, 5)]%ds. (4.18)

F(,up) < e(1+ [|uol|* + uol”*).

Therefore, for the first term on the right-hand side of (4.18), we have
o 1 =
“(lvoll® + (A + 62 = Bad) [uol|* + [|Auol|* + 5 (IVuo I = p)* + 2F(x, uo))
o 1
<ce” 7 (1+ ool + lluollzr= + luollfs")-
Since that (ug,vo)" € D(1 —t,0_4w) and D € D, then we find
i e (ol + o3 + ol = 0.
Therefore, there exists T'= T'(7,w, D) > 0 such that for all ¢ > T,
oo 1

(14 flvoll® + [luoll = + lluolls') < 1. (4.19)

For the second term on the right-hand side of (4.18), we find

c/ e?CTD (L4 [0-rw(s)* + [0-rw(s)[* + [0-rw(s)["T)ds
T—t

0
SC/ e (Lt w() + lw(o)[* + lw(s)FF)ds

—t

0
<c / &7 (L + w(s)]? + Jw(s)|* + fw(s)[P*)ds

— 00

c 0
<-+ C/ 7 (lw(s)|* + lw(s)* + lw(s)["*)ds
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It is worth mentioning that w(s) has at most linear growth at |s| — oo, which combines (3.18), we

can have
c/ e (14 10_rw(s)]? + 0_rw(s)|* + [0_rw(s)|PT)ds — g, (t = 00). (4.20)
T—1

In order to complete the proof, we still need to estimate the fifth term on the left-hand side of
(4.18). Thanks to (3.6), we obtain that, for all t > 0,

—2F (z,u(r, 7 — t,0_ w,up)) < 2/ nsdx. (4.21)

n

Then it follows from (4.18)-(4.21), we find

lo(r, 7 —¢t,0_rw, vo)H2 + A+ 5% — B20)||lu(r, T — t,977w7u0)\|2

1
+ ||AU(T,T - taw’uo)Hz + (HVU(T, T —t, 0—7"*‘]; u0)||2 - p)2

5
T 0

<cte / " g(a, )|2ds + ¢ / e ()2 + w(s)|* + Jwls) P*)ds. (4.22)

Thus the proof is completed. |

The following lemma will be used to show the uniform estimates of solutions as well as to
establish pullback asymptotic compactness.
Lemma 4.2 Under Assumptions LII, for every 1 € R,w € Q, D ={D(r,w): 7 € R,w € Q} € D,
there exists T = T(r,w,D) > 0 such that for all t > T the solution of problem (8.10)-(3.11)
satisfies

|A3Y (7,7 — t,0_w, D(T — t,0_w))||% < Ra(T,w),
and Ra(7,w) is given by
Ry(r,w) = ce™ (| A uo|* + | AT uol|* + A% uo||* + [ A% uo*[| A2 uol* — pl| A= uo||*)
T 0
—|—c/ e”(sz)Hg(a:,s)Hfds—!—c/ e (1 + |w(s)|[*)ds + R3(T,w). (4.23)

— 00 — 00

Proof. Taking the inner product of the second equation of (3.10) with Azv in L2(R™), we find

that
Sl AY? — 5 A% £ A+ 8%)(, Abo) + (Au, Ado)
— (p = [IVul®)(A%u, A%v) + (f(x,u), Av)
=(g(x, 1), A7v) — (h(v + gw(t) — 6u), ATv) + 6(p, ATv)w(t). (4.24)

Similar to the proof of Lemma 4.1, we have the following estimates:
— (h(v + gu(t) — 6u), Av)

= — (h(v+ gw(t) — du) — h(0), A>v)
— — (W (9)(v + dw(t) — 6u), Atv)
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<= Bl A5 v||2 = (W (9)(guw(t) — bu), Av)
— Byl A% 0] + Balw(t >|||A%¢||||A%v|| +H(9)5(u, A2v)
< gt + 2
W (9)8(u, A2v)
=1 (9)5(u, AZu; — w(t)AZ ¢ + 5AZu)
1d

B0y abu)2 + cluw()2 AR | + 1 (9)5(u, A o), (4.25)

<f20 567”‘44“”2+6262||A4U\|2+ﬂ25IW( B[l A% ||| A% ul]
1d N i
<Pad - 5 AT ul® + Bab® | A ul® + Lo+ 82 — o) | AYul? + ()Pl AT )2, (4.26)

(A +0%)(u, A2v)
=X+ 02)(u, AZuy — w(t)AZ ¢+ 5 A% )
1 d, .1 1 1 1
2§(A+52)fllA4u||2+5(A+52)||A4uH2—(A+52)|w(t)|||A4¢>IIIIA4uH
1 1 1
25()\+52) JATu|)? + §(A + 62) | ATul® — GO+ 6% = Ba8) [ Al u?
— clw(®)?|A% ], (4.27)
(Au, A20) = (Au, A2uy — w(t)A2¢+ A% )
1d, s 3 3 3
> 5 lA%ul + 6||A4u||2 — lw@® ATl [| A% ull
Ady|? 4+ 2| Adul? - 2| A% |2 4.2
> thll I+ || ull® = clw(®) "l A7 o]%, (4.28)
-(p- IIVuIIQ)(Afu,Afv)
= (p— || Atul?) (A%u,A%ut —w(t)Ad e+ 5A%u)

=5 o (1A P ALl — plAul) 4+ 51 A ) Abu)? — pllAdul?)
+w(t)(p— | Atul?) (Abu, A5g) — | ATul* (43w, )

>2 9 (abullAdul? — pl AL ul?) + 3 (14 ul A ul? — pllAdul?)
— SlpllARul? — oIl + A )| AL ul | AR g] — ARl (A3, )
>2 9 (abullAdul? — plALul?) + 3 (A4 ul]Abul? — plladul?)

1 1,1 1 1
= (Ghl+ 001+ 14322 ) Ba¥ul? - AP - AR (Abun), (420

5(¢w(t),A5v)
<5lw(t)[]| AT ||| AT o]

[31

<c| AT || (1) + atop?, (4.30)

1 1 B
(9,A%v) < ||9||1|\A4v|| < clglif + = ||A4v||2 (4.31)
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For the last term on the left-hand side of (4.24), thanks to (3.7), we have

- %f(x,u) CAdy - A%vdac|

8 1 a 1 1
< A - |A% — JAay| - |Ae
—/n‘axf(‘"”’“” A U|d17+/n|auf(x,u)| |ATul - |ATv|dz
S/ 4| - |Adv|de + B |Adu| - |Aiv|dz
n Rn

1 1 1
<lInallllATv[l + Bl ATull|ATv]|

332
S(A+ 62 — B20)

1 1 1
<c+ (045 JAS | + 63+ 6% — 5ad) [ AL u. (4.32)

Plugging (4.25)-(4.32) into (4.24) and together with (3.14) to obtain

1d 1 1 3 1 1 1
§$(||A4v||2 + (A4 6% = B2b)[|ATull® + AT ul® + [[ATu|*| A2 u* — p[| A7 ul?)

) 1 1 3 1 1 1
+ §(||A4v||2 + (A4 6% = Bad) | ATl + [ATul® + (| ATu|?|AZul]> — pl|AZul?))

1) 1 1 1 1 1
<ol + 5 (ol + ATl | ARl + | Abu)? (Adu,w)

+e(l+ |wt)]?) +cllglT. (4.33)
then according to Lemma 4.1, we have

d 1 1 3 1 1 1

AR + (A4 6% = 5od) | Abul® + [ A%ul]® + | AT ul*| A2u]* — pl A ul)

+o([ATo| + (A + 82 — Bod) | AT ul|® + [|ATu|? + (AT u) 2| A2 ul® — p||AZu||?)
<Ry(m,w) + (1 + [w(t)|?) + cllgl3, (4.34)

where R3(7,w) = (0|p| + (|p| + R1(7,w))?) Ry (7,w) + 2R3 (7, w).
Multiplying (4.34) by et and then integrating over (7 — t,7), we have

(AT o(r, T — t,w, v0) |12 + (A + 62 — Bad) | ATu(r, T — t,w, ug)|?
+ ||A%U(T,T —t,w, uo)||2 + ||A%u(7',7' — t,w,uo)H2
12

Az u(r, T — 0, u0)l|” = pll A u(r, T — t,w,u0) *)

<eT T (AT wo|[? + (A + 6% — B20) [ ATug||? + || AT |2

-
1 1 1
+ AT uo||*|AZuo | —p||A2u0\|2)+C/ e’ gz, s)llids
T—1
T

+c/ e”s(lJr|w(s)|2)ds+R3(T,w)/ e’?ds.
T—1 T

—t
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Replacing w by §_,w in the above we obtain, for every t € RT, 7 € R, and w € ,

JATv (T, 7 = 1,0, v0)||* + (A + 6% = B2d) | ATu(r, 7 — 1,0, o) ||
AT u(r, T — t,0_rw, uo)||2 + [[ATu(r, T — ¢, 0_rw, uo)||?
&

. ||A%u(r, T—1,0_,w,u)|* — p||A%u(7'7 T —t,0_rw,up)|?

<e (|| AT | + (A + 82 — Ba8)[| AT uo||? + | A uo |

.
1 1 1 —
+ [l AT uo|*]| A= uo —pllAquHz)JrC/ "¢ g(x, 5)||ds
T—t

T

+ c/ e (1 4 |0_rw(s)|?)ds —|—/ e?CT Ry(s,0_rw)ds
T—t T

—t
_ 1 1 3 1 1 1
<ce™ " ([[ATvo]|* + | A% uo|* + | A% uo||* + [| AT uo|I*| A2 uol|* — pllAZuo|*)
0

T 0
+ c/ e? gz, s)||?ds + c/ e”* (1 4+ |w(s)|*)ds + R3(T,w) / e??ds.

— 00 — 00 —00

By Lemma 4.1, we have
A o(r, 7 —t,0_rw,00)||2 + (A + 6% — Bod) || AT u(r, T — t,0_rw,uo)||?

+ AT u(r, T — £, 0w, ug)|?
. 1 1 3 1 1 1
<ce 7' (| ATvo* + [[ATuol® + | A% uo||* + [| AT uo||* || AZuol|* — pl| A2 uo||?)

- 0
ve [ et ve [ e+ R

— 00 — 00

Thus the proof is completed.

O

Next we conduct uniform estimates on the tail parts of the solutions for large space variables

when time is sufficiently large in order to prove the pullback asymptotic compactness of the cocycle

associated with Egs.(3.10)-(3.11) on the unbounded domain R™.

Lemma 4.3 Under Assumptions I and II, for everyn > 0,7 € R,w € Q, D ={D(r,w): 7T ER,w €
O} € D, there exists T =T(1,w,D,n) > 0,K = K(1,w,n) > 1 such that for allt > T, k > K, the

solution of problem (3.10)-(3.11) satisfies
Y (r,7 —t,0_,w, D(T —t, Q,tw))Hfg(Rn\Bk) <n

where for k> 1, By = {z € R": |z| < k} and R™ \ By, is the complement of By.
Proof. Choose a smooth function p, such that 0 < p <1 for s € R, and

o {0 o<l
S) =
P 1, it |s| > 2,

(4.35)

(4.36)

and there exist constants pp, 2, ps, pa such that [p/(s)] < p1, |p7(s)] < pa, [p(s)] <

35 |p""( )] < pg for s € R. Taking the inner product of the second equation of (3.10) with

,0( ‘i‘z Jv in L2(R™), we obtain
|22

1d |x\2 9 x
331 . o o = 5/ By o 2de + (A + 6 )/R”p(?)uvdx
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|z

X 2 X 2 s
+ [ <'k' pode + o= [9uP) | pErauds + [ ol s wyeda

—5/ | | t)vdx — /R” p(%)(h(v + ¢w(t) — du)vdz
—|—/Rn p(lk—L)g(w,t)vd:ﬂ.

Similar to (4.5), we have
|z
~ [ D0 + utt) — supvs

|z

_ / (T (v + Gult) — bu) — (0)ud

2 2
IS A opas + 5/ uvdm+52/ ool (o) el

Taking (4.38) into (4.37), we have

x 1'2 fL'2
s | olbwras—6-s0 [ EDpwrar+ [ Ay
Y [ o2 =l
s =w o) [ e+ - 19up) [ auwvas
+/ (|I<:|2 )V f(z, w)vdz
§(5+52)/R P(ﬂ

P8 [ lDepar e [ pEopepar+ [ o e

For the fourth term on the left-hand side of (4.39), we have

(A + 62 — B (9)5) / o

il

Nolle®lllde + | o5 )ale toda

|k|2 Yuvdx
=457 = 1@0)0) [ oD+ bu = ot

$2
:()\+62—h’(z9)5)/ p(lk—L)(E%u 4 6u? — du(t)u)dz
20+5 = 03 [ oD ude+5 [ oD pupan

- 057 500) [ ool ol
{EQ 2
20+ = pa0) g [ oo s [ o)
st 8 =) [ o upae—c [ o2 : 6P ko0

For the third term on the left-hand side of (4.39), we have

/. (Ao yod

15

(4.37)

(4.38)

(4.39)

(4.40)
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D s ot

|z

I
:/Rn(AQu) <?)(—+5 u — gu(t))dz
I

|

(AU)A(p(f)(f +0u — ¢uw(t)))dw

. [ZRAYT
[ @ E Ay )
I L R R AT N
+2- %P’(lﬂz )V(%+5 — g ())+p(|kL )A((ciTtJréu_W( R

20 dpsx 4,u T
> [ ey s - [ 1 (Aw) (Vo) d
k<z<2k k<z<2k

1d T x|? z|?
+5 (| i )| Au IQdI+5/ p(*' L)\AUIzdm*/ p(f‘ L)IAUI\A¢|IW(t)IdI
2dt n ok gk

2111 + 8o 421, 1d ||
> - /RJTW“)“W‘L @) (Volde+ 55 [ o(r)Aufds

s / s - [ o) A 1)

23 +4,u2 4\f,u1 1d x
> Y i 4 o) - 2 a0l + 3 [ o duas

1'2 QCQ
o [ oionatar [ o aulsdlluln

pa +4p Q\f,u 1d T
¥<HA 2+ 11 - 22 g + 901 + 5 5 [ o2 iuae

K} 2
o [ oD supan-3 [ p<',ﬁ—L>|Au|2dx—c [ oisoperas
of?

[ o) s wpuds

Rn

-/ L) pa ) (B 4 50— ut))d
= Rnp o (@) (o U — pw i

2 2
% (|ac| F(x,u dx—|—6/ f(z,u)udx — /R p(%)f(m,u)gbw(t)dx.

Similar to (4.12) and (4.13) in Lemma 4.1, we have
2 2 2
[ o mute = [ oDy pe [ S e,
2 x
[ ol swmostonr < 3 [ olympan+ g [ ol yorionpas

|z
N

ée
+ 5 ,p(

D) J(F (2, u) +n3)dx —&—c/R” p(‘ zf” )|¢|P+1Hw( )|p+1dx.

x|? z|? By — 2|2
/ P(%)g(w,t)vdm < c/ p(%)|g(m,t)|2dx+ ! / p(%)|v|2dx.
e e Tk 6 Juu VK

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)
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For the fifth term on the left-hand side of (4.39), by Lemma 4.1 we have

_ 2 |.'L'|2 A
(p = Vul) . p(Fz)Auvdz

x2 1'2
—— - 1vuP) [ A evidie - - valtyy g [ s
_ _ 2 ﬂ 2 _ 2 |z |
5o = IValP) [ pEoIValde + o= IVal?) [ (T vaTos(s
Qve-n [ EDvaE

2
#8019l —p) [ o Ewutas - (vl [ p<ﬂ>vw¢w<t>das

2 _
b VP =0 d [P

5 g )| Vul|*dx

Vel =) o e IVHlEpd [l
> g--n -
> “AVUEZ2) 2 4 o) 4 P22 LT (2D 9
2
X
oVl =) [ oGPl - (19ul? - ) / ,p<'k—'2>vw¢w<t>dx
—c(||Vul)? —p Vul|2 —p d x
> =B g 4 gy + 2L =24 [ v

#2090l =) [ oD valdr = c1vul? -p) [ o wopla i

_C(HVUHQ_P) 2 2 Pd/ |33| 2
> 770 S _ <
> =S 2 (1 9ul? + ol?) - 22 [ o)Vl

5 2
50 [ ol ywuan —cvu? -p) [ ('“"' V0l lt) P (4.46)
By (4.39)-(4.46), we have
L ol (1t 62— bl + | Au? — pIVul + 2P (e, u))da
2 dt .- P 12 2 p )

23 [ oD+ S0 - o) [ oD a5 [ o a0
=50 [ ol wupar+ 2 [ oD P e

B ot [ oy el + il b+ 0P o e
el [ o0+ 16 + 180e + (9l = P [ oET) Vo

c(|[Vul> = p pi+4p 2\[/$
+ =D g 4 o)+ L2 o+ o) + 222l + [ 90P)

(4.47)

Since that n;(z) € L*([R"), na(z) € LY(R"), n3(x) € L'(R™) and the embedding H?(R") —
LPTL(R™), we obtain that there exists K1 = K;(7,n) > 1 such that for all k¥ > K,

2
xZ
[ o mP + el + ol + (0P do
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2 @ 2 2 2 2 |z]? 2
+ clw(t)] - p(o) A+ [0 +1A¢1%)dz + (| Vul]” = p)lw(t)] - p(G IVl de

:c/ p(m Y(Iml? + ] + Ins| + (@) P[P+ ) de

reat [ oERI 10 + 80P + Tl =t [ oG vepas

<C/| (I + [n2| + [ns] + lw(@) [P g+ ) dae
x|>k

lz| >k

T elw(t)? /| L 10P 4 180+ elVul” —pl(o)? / Vo[

<en(L+ [w(®) + w(®)P), (4.48)

together with
|=[?

c/ p(x—)g2(x,t)dm < c/ g*(x,t)dx, (4.49)

2
k 2| >k

we have that for all £ > K1,

d 2
G ool + (82— Bad)luf? + | 8uf? — pIVul + 2P (2, )

2
x
+ a/Rn p(|k—|2)(|v|2 + A+ 5% — 526)|u|2 + |Au|2 — p|Vu\2 + 2F (z,u))dx

c(IVul® —p

201 + 81 4\f,u
<t V2wl + o) + AV g2

- k2

+l?) +en(1 + lw(®)” + \w(t)l”“) +C/ o *(w, t)da.

([Au]? +[lv]|?) +
(4.50)

Multiplying (4.50) by et and then integrating over (7 —t,7), we find
2
T
/ p(|k—|2)(\v(7',7' —t,w,v0)]2 + (A + 0% = Bod)|u(r, T — t,w,up)|?
+ |Au(r, T — t,w,u0)|* — p|Vulr, T — t,w,u0)|* + 2F (z,u(r, 7 — t,w, up)))dx
<e 7t / (| il Y(Jvo|? + (A + 6% — Ba6)|ug|* + |Aug|? — p|Vug|* + 2F (z, up))dx

2 8 T
ul]j_g K2 eg(S_T)(|Au(SaT_tawauo)‘Q + \U(S,T—t,w,v0)|2)ds
T—t

4+/2 T
+ im / e (|Auls, T — t,w,u0)|” + | Vu(s, T — t,w,v)[2)ds
T—1

k
welon [ e + @ s e [ [ et g, s duds,
Tt T—t J|z|>k

Replacing w by 6_,w, it then follows from above that

C T
+ — / e”(s_T)(HVu(S,T —t,w,u0)||* = p)(||Vu(s, T — t,w, up)||* + |[v(s, T — t,w,v0)||?)ds
T—1

2
x
/ p(%)(\v(r,r —t, G_Tw,vo)\Q + (A + 0% - B20)|u(r, T —t, H_Tw,u0)|2
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+ |Au(r, T — t,0_,w, uo)|2 —p|Vu(r, 7 —t,0_,w, uo)\2 + 2F(x,u(r, 7 — t,0_rw,up)))dx

<cn + e_"t/ (| all )(\vo|2 + (AN +0% - 626)|u0|2 + |Auo|2 —p|Vuo|2 + 2F(x,up))dz

2p11 + 8o

2 / e (|Au(s, T — t,0_rw, ug)|? + [v(s, T —t,0_rw, v9)|?)ds
T—1

4
\['ul / G (|Au(s, T — t,0_rw,uo) |2 4 [Vo(s, 7 — t,0_rw,v0)|*)ds

k/ e?CT(IVu(s, 7 — t,6_rw,u0)|* — p) (| Vuls, 7 — t,0—rw, uo)||?

+v(s, 7 — t,0—rw, v0)[|*)ds + 077/ T (—rw () + 10-rw(s)[P)ds

T—1

c/ / e?) g2 (x, s)dxds
T—t J|z|>k

<en+ e_"t/ (| 2’ Y(Jwol? + (A + 0% — Bad)|uo|? — p|Vuo|® + |Auo|® + 2F (z, up))dx

2 +8 g(s—T

+ % /T_t T (|Au(s, T — t,0_rw, ug)|? + [v(s, T — t,0_rw, v9)|?)ds
42 T

N V};/ﬂ/

T—1

- f/ eI (|Vu(s, T — t,0_rw, uo)||> — p) (| Vuls, 7 — t,0_rw, uo) ||
T—1

T (| Aus, T — t, 0w, uo)[* + [Vu(s, T — t,0_rw, v0)[*)ds

k
0

+ [Jv(s, T — ¢, 9_Tw,vo)H2)ds+cn/ e"S(|w(5)|2 + |w(s)|p+1)ds

— 00

19

+c/ / e?) g2 (2, s)dxds. (4.51)
—oo J|z|>k

By (3.16), we see that there exists Ko = Ky(7,1) > K7 such that for all k > Ko,

c/ / e?C g2 (2, s)dxds < 1. (4.52)
—oo J|z|>k

Following from (4.51)-(4.52), Lemma 4.1 and Lemma 4.2 that there exists T} = T (7, w, D, n)
such that for all t > Ty, k > Ko,

2
| o0t = 60 )+ (4 67 = a0, = 6 uo) P

+ | Au(T, T —t,0_rw,up)|* — p|Vulr, T —t,0_rw,up)|* + 2F (z,u(r, 7 — t,0_rw,ug)))dx

>0

0 T
<en(1+ / e (lw(s))? + |w(s)[PF)ds + / /l |>ke”(s_7)g2(x,s)dxds)7 (4.53)

— 00

where (ug,v9)" € D(1 —t,0_4w).
Note that (3.6) holds, then we find

n

|| || ||
=2 [ p(5)F(z,u)de <2 | p(—5)nsde < 2 p(—5 Insdz,
Ry k e R
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which along with 3 € L*(R™), we obtain that there exists K3 = K3(7,7) > K» such that for all
k > K37

—2/Rn p(%)F(m, w)dr <. (4.54)

Then from (4.53)-(4.54), we get that there exists To = To(7,w, D,n) > T3 such that for all ¢ > T5
and k > K3,

2
[ o 1067 = 10—, w) P+ (82 = (7 = 1,00, 0

+ | Au(T, T —t,0_w,up)|?)da

0 T
<en(1+ / e (Jw(s)]? + |w(s)[PT)ds + / /-|>k e?C g (x, 5)dxds), (4.55)
which completes the proof. O

We now derive uniform estimates of solutions in bounded domains. These estimates will be
used to establish pullback asymptotic compactness. Let p = 1 — p with p given by (4.36). Fix

k > 1, and set

alt, 7w, ) = P u(t, 7, w, o),

2
o(t, T,w,0p) = p(‘k—lz)v(t,T,w,vo),
By (3.10)-(3.11) we find that @ and ¥ satisfy the following system in Boy = {z € R" : |z| < 2k}:

(4.56)

da . __|z|? .
ikl + p(ﬁ)dw(t) — ou, (4.57)
do 2
E_é 04+ (02 + A+ A)u+ (p— || Vul| )Au—l—p(|k|2 Vf(z,u)
__af of? s o
o gt 1) — A0 + o(t) — o)+ (14 (T )
x|? x|? z|? _|x]?
+ 4AV (| | )Vu 4+ 6A (| | )JAu + 4V (| | YAV + uA? (|k|2)
2 2
+ o= 1Vul?ant ) + 20 — [l vavaih), (4.58)
with boundary conditions
u=0v=0 for |[z|=2k. (4.59)
Let {e,}22, be an orthonormal basis of L?(Bo) such that Ae, = \,e, with zero boundary
condition in Bog. Given n, let X,, = span{ey,---,e,} and P, : L?(By,) — X,, be the projection
operator.

Lemma 4.4 Under Assumptions I and II, for everyn > 0,7 € R,w € Q, D = {D(1,w) : 7 €
R,w € Q} € D, there exists T = T(r,w,D,n) > 0,K = K(7,w,n) > 1 and N = N(r,w,n) > 1
such that for allt > T, k> K and n > N, the solution of problem (4.57)-(4.59) satisfies

(I = Po)Y (7,7 = t,0_rw, D(T — t,0_ 7)) | g,y < -

Proof. Let U, 1 = Pou, Up2 = (I — P4, Up1 = P,0, Up2 = (I — P,)v. Applying I — P, to
(4.57), we obtain

Bz = g o+ B2 — (I = P)p( ) (t). (4.60)
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Then applying I — P, to (4.58) and taking the inner product with v, 2 in L?(Bas), we have

1d
2dt

+ (/\ + 52 + A)(an,% i}\n,Q) + (p - HVUHQ)(Aan,%%\n,Q)
2
o kL ) (x.), B2)
|=[?

(1~ P a0 502) + 3G vo(0). )

— (I = Po)p(=5 ) (h(v + duw(t) — 6u), 0n 2)

- )Vu + 6A (' il )Au + 4V (|k|2

|z

+ (4AVH(L JAVU 4+ uA?p( ), Ba.2)

2
—~ T ~

(o~ 1vulPuss( 50 + 20 — [l 7uva ). 5,2). (4.61)

Substituting v, 2 in (4.60) into the third term on the left-hand side of (4.61), we have

At 2 ||
2 | iy — (= Po)p( ) ()

(A+ 52)*Ilun 2|* + 0(A + 6%)[[in 2

()\ + 52)(’(7”72, a71,,2)

/\

un 2 T

»JMH [\D\H

2
= L5t 82— sl — el - PR ol (a62)
and then

din2 22

(Aan,g,an,g):(mw,m 2 4 Sy — (1= Pl

7 )ow(t))

> 2 Al + 2 AT el - an(ﬁ(k—;)asnﬁwan? (163
For the fourth term on the left-hand side of (4.61), we have
(0 = IVul|*) (At 2, Tn,2)
(Il = (T2, T (P2 5,5 — (1~ PREL

IVul? —pd oo o (IVull* = p)d
Pl | e A1t |

(||Vu||2 ot - PV D)

)ow(t)))

Vi 2|

)O)1?|w(t)]?

2\

> - (IVull® = p)II(I = Pa)V(B(—5) )P |w(t) . (4.64)
2 dt k
For the fifth term on the left-hand side of (4.61), we have

z|?
@) (@, ),50.2)
ey @ dan,? ~ | |2
|x|2
k2

)f;(%u)ut, ﬂn,2)
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+0(p( 5 ) (@, u), Un,2) = (P55 ) f s w), (1 = Pa)p(= 5 ) dw(t)). (4.65)
For the third term on the right-hand side of (4.61), we have

(1= PRI (o + buo(t) — ), 5,.2)

— (I = PR3 ) (h(v + 6w(t) = 6u) = h(0), Br.)

2
< Bl W ()02, B) + D =

dun 2

dt

||vn2||2+ elltZ = Pa)p(= 5

|z

k2

)0l |w(t)?
Br—9, .

< = Bulln2l” + 1 (9)3(in 2, = + 0Tn,2 — (I = Pa) () dw (1)) + —— 2|

+ell(I = Po)p(=5

jz/?

< — B
51

0% [ oI + B20(I = Pa) (5

5 )Pl lw®)][tn, 2l

jz/?

||vnz||2+6||(f Pa)o(= )@l lw(t))”

Sfﬂl\lﬁn,zl\“rﬁz ||un2H2+5252||un2||2+ 5(A+52 B20) [t 2

2dt
Ry A S PIR (4.66)
Using the Cauchy—Schwarz inequality and Young’s inequality, we get
000, 502) < 2225, 0l + 1 = P00, (4.67)
(1 = P gt ).502) < A2, a2 el - POGAE gt @)

Now, we estimate the last two terms on the right-hand side of (4.61),

ez 2 N 2
(4AVp(‘k|2) Vu —|—6Ap(| il ) Au + 4V (‘kl) AVu + uA? ('kL ), Un.2)
12|z| _,, |z|? 89:3A T 2 z|? 422, |z|?
:<4Vu-<—kL'p”<']7L>+ S ) o (2 4 25 ()
S o) 12l 8 el 162, el

AV () (5

k4 k2 ) 16 p ( 2 ) L8 P ( 12 ))76"72)
<16f (3 + 4)

12(p1 + 4p)

< 13 [Vl - [[on,2]] + 12 [[Aul] - [[on 2]
8fu 3o + 243 + 164 .
LA -5, o) + 222 R IOM) ) g
(48u2+64u3) 2 (12u1 +48u2) 2 512u1 3 19
S TEM T EOB2) ) Awl? + —2HL Ay
4 12,u + 963 + 641 5
St ;) Ju ||2 B, (4.69)

Similar to the estimates of (4.69) and by Lemma 4.1, we get
|z

(0 = 1 Vul) (wb( >

)+2VV( )’Ung)



UNDER PEER REVI EW

Random attractor for extensible plate equation on unbounded domains 23
201 + 81 N 2\f,u
<1Vl = p) == lull[Bn.2ll + IVl —p) =7 [ Vul 8.2
Bi—=0, o, B8(IVul® = p)*(u1 +4p2)* 36#1(HVUH2 -p)? 2
<—||v, + ul|® + Vull®. 4.70

Assemble together (4.61)-(4.70) to obtain

|z

d
[T 2ll* + (A + 6% = B26) [tin 2| +2(0(5) (2, w), Un.2)]

4
2 dt
0Bl + (A4 8 = Ba) ol + 1A — 9l Vi o2 + G ), )

30 — B~
4

N
< lBnall® +

5
2y §(A + 02 — Bod)|[Un2® +

2 AW+ 640 18RIVl = p)* O
G (el S P v

2(12p1 + 48112)* 5 256u3 2(12ug + 9643 + 64p14)?

ull? X )2 |x)?
L 9Vl 124(ﬂ +4pa) )Hu||2)+c||(I—Pn)(p(|k7|2)g(‘T )7

[

po
B Vs +

AT ul|* + (

|z

+ellt = Pu)p(5 5 )Pl

AP w®) + c(IVull* = I = P.) V(555

T 2

+ell(T = P)AG )Pl + (ﬁ(',?'2
|z

() ), (T = P () (471)

)o@, wyug, U 2)

For the nonlinear terms in (4.71), by (3.7), using Holder inequality and Gagliardo-Nirenberg in-
equality, we obtain

(ﬁ(%)f (x u)utaun 2) n+1HUtH2~ (472)
By (3.4), we know
B0 ), (= P ot
<ell( — P60+ el oy I~ P o) (4.73)

Since 1 < p < Z—j and A, — oo, by Lemma 4.1 and 4.2, there are Ny = N(n), K; = K(n) such
that for all n > Ny, k> K,

2 A48z + 64p3)° 1843 (|[Vul? — p)? o 21241 +48pu2)? 2
IS — | AN
i e MY
256u 3 2(12p2 + 963 + 644 Vul|? = p)?(p1 + 4puz)?
4 0 gt (2224 OO0y 3 Oy | SOV - PV + a7y

2
+cA;f1||utH2+cH<I—Pn> D)ol + clfulEyn oy 7 = PG )6 0

el Dy )22

/?

+ell(T = P)p( )0l (@) + el (T = Pa)V(A(~
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T 2
+ (I = IDn)A(ﬁ(',?L)sb)llz\w(t)l2

<en(1+lw®)? + luell™® + llull 2 gn))- (4.74)
Then by (4.71)-(4.74), we obtain

d

2
D1l + (82 = 8o v

+ 2(5( ) (2 0), 0 2)]

2
~ ~ —~ T ~
+ ||Aun72||2 _p||vun,2”2 + 2<p(|k|2 )f(xvu)7un,2)]
|z

Sen(L+ [w® + e + l[ull Fqny) + el (T = Pa) (B )g (2, D). (4.75)

+ o[[On2ll® + (A + 6% — B26) ||

Multiplying (4.75) by €t and then integrating over (7 —¢,7), we have for all n > Ny and k > K1,

[Tn2(7, 7 = £, w)|I* + (A + 6% — )Han,2(7'77' — Lw)lI* + Al o (7,7 — £ W)

_pllvanﬂ( Tt w)|‘2+2( ( )f(.%',u),an’g(T,T—t,w))

<e™ " ([lvol|* + [luol|* + (A + 6° — 32 )| Auol|* = pl[Vuo |

z|? T

B o) +en [ eI o) + (s, — o)
T—t1

+ (s, 7 — 1,0, 10) [ gy ds + ¢ /

T—1

2050
(1 = Py ) s @.70)

Replacing w by 6_,.w, by a similar process as in Lemma 4.1, we get,

[On2(r, 7 =, 0_rw)[I* + (A + 67 — )Ilunz( —t,0_rw)[|* = p|| V(7,7 — t,0_-w)||?

+ Ao (7,7 — £ 0_7w)|* +2( ( )f(wvu)ﬁn,z(Tﬁ —t,0_;w))

<e=7 (1 + [lvoll® + [Juoll® + (A + 6% — 52 N Auol® = pl| Vuo |l + l[uolFr2gny + lluolgn))
+ cn/ 66(577-)(1 F10_rw(8)|* + |Jue(s, T — t,0_rw, uo)||*°
T—1

|z

+IIU(S,Tft,t‘)_Tw,uO)llﬁ?z(Rn))dHC/ "IN = Po)p P59, )| ds
T—t

<™ (L [lvoll® + [luoll® + (A + 8% = B26) || Auo||* — pl|Vuol|* + l|uto | Frz gy + 1ol )

0 T
+c77/ e (1 + \w(s)|2)ds+cn/ e?C) (||ug(s, 7 — t, 0_rw, ug)||*®
T—1

0
X
+||u(S,T—t,H,Tw,uo)H}fz(Rn))ds—i-c/ (1 = P ('rL V(s s + 7| 2ds. (477)
— 00

By the first equation of (3.10) and ¢ € H?(R") as well as the Minkowski inequality, we can obtain

llue(s, 7 —t,0_rw, u0)||18

=|| = du(s, 7 —t,0_rw,up) +v(s, 7 —t,0_rw,v) + pO_rwl||'®

<c(|Juls, 7 —t,0_rw,up)||*® + |lv(s, T — t,0_rw,v0)||*® + [0_rw|'®)
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<cRY(,w) + c|f_,w|'®, (4.78)
and
l[u(s, 7 — 1,07, u0) | FHzny < cRI(T,w), (4.79)
where ¢ = max{9, ||¢||'®,1} and R;(7,w) is given in Lemma 4.1. Hence, it follows from (4.77)-
(4.79),
[n,2(7, 7 = £, 0 w)[I” + (A + 6% — )Ilﬂn,z(T,T — .0 w)[I” = pl[ Vg2 (r, 7 — t,0_rw)||?

+ AT 2 (7,7 = £, 07w)|* + 2(p ( )f(%U) Un,2(T, T — 1,0 _7w))

<e™ 7' (1 + [lvoll® + lluol* + (/\+62—62 )IIAuOHQ—pHVuoHQJrHuoH%{a(Rn)+||uO||’;?;}Rn))
0

+ enRY (1, w) + cn[ e (14 |w(s)|* + |w(s)|'®)ds
0 |22
+c[ e”’ (I = Pp)p(—- 2 )g(x, 5+T)|| ds. (4.80)

Since that (ug,vo)" € D(1T —t,0_;w) and D € D, then
e (14 [lvol|* + fluol® + (X + 0% = B28) [ Auo||? — pl| Vuol|®
1
+ [luollFr2 @y + lluolfgny) = 0, ¢ — oo, (4.81)

For the last term on the right-hand side of (4.80), by (3.15), there exists Ny = Na(7,w,n) > Ny,
such that for all n > Ns,

0
[ e = e ygtw, s+ iPas <. (482
—o0
The proof is completed by (3.4), (4.81)-(4.82) and Lemma 4.1. a

5 Random attractors

In this section, we prove existence and uniqueness of D- pullback attractors for the stochastic system
(3.10)-(3.11). First we apply the lemmas shown in Section4 to prove the asymptotic compactness
of solutions of (3.10)-(3.11) in E.

Lemma 5.1 Under Assumptions I and II, for every T € R, w € Q, the sequence of weak solutions
of (3.10)-(3.11), {Y (1,7 — ty, 0_rw, Yo (0_¢,,w))}2°_, has a convergent subsequence in E whenever
tm — 00 and Yo(0_¢ w) € D(T — tp,0_, w) with D € D.

Proof. Let t,, — oo and Yy(0_¢,,w) € D(T—tp,0_, w) with D € D. By Lemma 4.1, there exists
my = mq(7,w, D) > 0 such for all m > m;, we have

Y (7,7 = tm, 07w, Yo(0_y, w))||% < Ri(T,w). (5.1)

By Lemma 4.3, for every n > 0, there exist ko = ro(7,w,n) > 1 and mo = ma(r,w, D, n) > my

such for all m > msy,

1Y (7,7 —t,0_rw,D(T — tve—tw))HQE(R"\Bko) =, (5.2)
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By Lemma 4.4, there exist k1 = ki(7,w,n) > ko and mg = mz(r,w,D,n) > mg and n; =
n1(T,w,n) > 0 such for all m > ms,

N(I—-P,)Y(r,7 —t,0_rw,D(T —t, 9_Tw))||2E(IB2k1) <. (5.3)
Using (4.56) and (5.1), we get
”Pni}(Ta T—1, Q—Twa D(T —t, 0—7'("])) H?%E(]B%l) <chy (T7 w)a (54)

which together with (5.3) implies that {Y (7,7 — ¢y, 0—rw, Yo(0_;,, w))} is precompact in E(Bag, ).
Note that ﬁ(%) =1 for || < k;. Therefore, {Y (7,7 — tym,0_rw,Y(0_¢, w))} is precompact in
E(By, ), which along with (5.2)shows the precompactness of this sequence in E. O
Theorem 5.1 Under Assumptions I and II, the random dynamical system ® generated by the
stochastic plate equation (3.10)-(3.11) has a unique pullback D-attractor A = {A(T,w) : 7 €
R, w € Q} € D in the space E.

Proof. Note that the cocycle ® is pullback D-asymptotically compact in £ by Lemma 5.1. On
the other hand, the cocycle ® has a pullback D-absorbing set by Lemma 4.1. Then the existence
and uniqueness of a pullback D-attractor of ® follow from Proposition 2.1 immediately. O
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