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Modules Whose Endomorphism Rings Are Right Rickart

Abstract

In this paper, we study modules whose endomorphism rings are right Rickart (or right p.p.) rings,
which we call R-endoRickart modules. We provide some characterizations of R-endoRickart
modules. Some classes of rings are characterized in terms of R-endoRickart modules. We
prove that an R-endoRickart module with no infinite set of nonzero orthogonal idempotents in its
endomorphism ring is precisely an endoBaer module. We show that a direct summand of an R-
endoRickart modules inherits the property, while a direct sum of R-endoRickart modules does not.
Necessary and sufficient conditions for a finite direct sum of R-endoRickart modules to be an R-

endoRickart module are provided.
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1 Introduction

It is well known that Baer rings and Rickart rings (also known as p.p. rings ) play an important role in
providing a rich supply of idempotents and hence in the structure theory for rings. Rickart rings and
Baer rings have their roots in functional analysis with close links to C*-algebras and von Neumann
algebras. Kaplansky [1] introduced the notion of Baer rings, which was extended to Rickart rings in
([2],[3]), and to quasi-Baer rings in [4], respectively. A number of research papers have been devoted
to the study of Baer, quasi-Baer, and Rickart rings (see e.g [1], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]). Aring R is said to be Baer if the right annihilator of any nonempty subset of R
is generated by an idempotent as a right ideal of R. The notion of Baer rings was generalized to a
module theoretic version and studied in recent years (see [18],[19]). An R-module M is called a Baer
module if for each left ideal T of S = Endr(M), rar(I) = eM for e = e € S. A more general notion
of a Baer ring is that of a right Rickart ring. Aring R is called a right Rickart ring if the right annihilator
of any element in R is generated by an idempotent as a right ideal of R. It is clear that any Baer ring
is a right Rickart ring. A module Mfp, is called Rickart if the right annihilator of each left principal ideal
of Endr (M) is generated by an idempotent, i.e, for each ¢ € S = Endr(M), there exists e = e? in S
such that rar(¢) = eM. In this paper, we introduce the notion of R-endoRickart module, investigate
some basic properties of these modules.

In section 2, we introduce the notion of R-endoRickart module, investigate some basic properties
of these modules. It is shown that a direct summand of an R-endoRickart modules inherits the
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property. The classes of hereditary rings and von Neumann regular rings are characterized in terms
of R-endoRickart R-modules.

In Section 3, we investigate when a direct sum of R-endoRickart modules is also R-endoRickart.
We obtain necessary and sufficient conditions for a finite direct sum of copies of R-endoRickart
modules to be R-endoRickart.

In Section 4, We show that if the endomorphism ring End g M of an R-endoRickart module M has
no infinite set of nonzero orthogonal idempotents, then M is an endoBaer module (a module whose
endomorphism ring is a Baer), and obtain that every R-endoRickart module with only countably many
direct summands is an endoBaer module. We also prove that a module M is an R-endoRickart with
the endomorphism ring Endr M has the SSIP if and only if M is an endoBaer module.

Throughout this paper, all rings are associative with unity. All modules are unital right R-modules
unless otherwise indicated and S = Endr (M) is the ring of endomorphisms of Mz. Mod-R denotes
the category of all right R-modules, and M a right R-module. By N C M, Nr < Mg and Ng <®
Mpg denote that N is a subset, submodule and direct summand of M, respectively. By R, Z and
N we denote the ring of real, integer and natural numbers, respectively. Z, denotes Z/nZ, M™
denotes the direct sum of n copies of M. The notations rr(.) and r(.) denote the right annihilator
of a subset of M with elements from R and the right annihilator of a subset of R with elements from
M, respectively.

2 R-endoRickart Modules

In this section, we introduce the notion of R-endoRickart module, investigate some basic properties
of these modules. It is shown that a direct summand of an R-endoRickart modules inherits the
property. The classes of hereditary rings and von Neumann regular rings are characterized in terms
of R-endoRickart R-modules.

Definition 2.1. An R-module M is called R-endoRickart if Endr (M) is a right Rickart ring.

Recall that R is a hereditary ring if all submodules of projective modules over R are again
projective. If this is required only for finitely generated submodules, it is called semihereditary. Also
recall R is a von Neumann regular ring if for every a € R there exists an z € R such that a = aza.

Remark 2.1. (1) Obviously, Rr is an R-endoRickart module if R is a right Rickart ring, a Baer ring, a
von Neumann regular ring or a hereditary ring.

(2) Every semisimple module is an R-endoRickart module.

(3) Any Rickart module is an R-endoRickart since the endomorphism ring of a Rickart module is
right Rickart [18, Proposition 3.2].

(4) Any Baer module is R-endoRickart since the endomorphism ring of a Baer module is a Baer.
(see [20, Theorem 4.1]).

Recall that a sequence (ao, a1, az, ...) is a p-adic number if for all n > 0 we have a,, € Z/p"'Z
and an+1 = a, (Mod p™). The set of p-adic numbers is denoted Z, and is called the ring of p-adic
integers. In the next example we shows that not every R-endoRickart module ia a Rickart ( i.e, the
converse of Remark 4.1 (3) does not hold in general).

Example 2.1. Consider the module M = 7, , as a Z-module. We know that the endomorphism ring
S = Endz(M) is the ring of p-adic integers (see [21, Example 3, p. 216]). Since S is a Baer ring, it is
a Rickart ring, and then M = Z,~ is an R-endoRickart module. However M is not a Rickart module.

Recall that a module M is k-local retractable if ras(¢) = rs(e)(M) forany ¢ € S = Endr(M).

Proposition 2.1. Let M be a k-local retractable module and S = Endr(M). Then the following
conditions are equivalent:
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(i) M is an Rickart module.
(ii) M is an R-endoRickart module.

Proof. (i) = (ii) follows from Remark 2.1.
(if) = (i) Let M be an R-endoRickart module, since S = Endr (M) is a right Rickart ring and M is
k-local retractable module, then M is an Rickart module by [18, Theorem 3.9]. ]
Recall that a module M is said to have D, condition if for any N < M with M/N = M’ <® M,
we have N <® M.

Corollary 2.1. The following conditions are equivalent for a k-local retractable module M and S =
End R(M ) N

(i) M is an R-endoRickart module.

(ii) M is an Rickart module.

(iii) M satisfies the D, condition, and Ime is isomorphic to a direct summand of M forany ¢ € S.

Proof. Follows from Proposition 2.1 and [18, Proposition 2.11] . m]

If M is an R-module, N a direct summand of M, and e the projection of M onto N, then it is easy
to see that e is an idempotent of S = Hompg(M, M) and Homg (N, N) = eSe. This fact will be used
in the next proposition.

Proposition 2.2. Every direct summand of an R-endoRickart module is R-endoRickart.

Proof. Let M be an R-endoRickart module, N a direct summand of M, S = Homg (M, M), and e the
projection onto N. Then Homg (N, N) = eSe. But for any right Rickart ring S and any idempotent
e € S, eSeis aright Rickart ring by [18, Corollary 3.3]. Thus N is R-endoRickart. m]

Recall that a morphism f : M — N, (M and N are right R-modules) is a regular morphism (or
regular map) if there exists g : N — M such that f = fgf.

Remark 2.2. If M is an R-endoRickart module, then so are Kery and Imy for every regular ¢ €

Endg(M).
Proof. This follows from the fact that ¢ € Endr(M) is regular if and only if Kery and Imyp are direct
summands of M by [22, Theorem 16]. |

Corollary 2.2. If R is a right Rickart ring, then ¢R is an R-endoRickart R-module for every e*> = e € R.

Corollary 2.2 also follows from the fact that if R is a right Rickart ring then so is eRe for every
e? = e € R by [18, Corollary 3.3].

The next example shows an application of Proposition 2.2.
Example 2.2. (Example 1.7, [23]) Let A = [[.7_, Z> . Consider T = {(an)s>1 € Alan is eventually
constant}, I = {(an)sz1 € Alan = 0 is eventually } = @, Z>. Now, consider the ring R =

T T/I (1,1,..) 0+1

( 0 T/I 0 0+1
ring, but R is not a Baer ring. Since R is a right Rickart ring (being right hereditary), M = Rg is an
R-endoRickart module, and the modules M, = eR and M, = (1 — e)R are endoRickart R-modules
by Proposition 2.2.

) and the idempotent e = in R. Note that R is a right hereditary

The next example shows that the submodule of a module can be an R-endoRickart however the
module is not.

Example 2.3. The Z-module Z. is not R-endoRickart since S = Endz(Z4) is not right Rickart ring.
However, the submodule 274 of Z4 is an R-endoRickart Z-module because 27., =y 72 ( Z2 is a
Rickart module).
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Proposition 2.3. /fEndr (M) is a von Neumann regular ring, then M is an R-endoRickart module.

Proof. Since Endr(M) is a von Neumann regular ring, then it is a right Rickart ring. Hence M is an
R-endoRickart module. O

Recall that a right R-module M is retractable if Homgr (M, N) # 0 whenever N is a non-zero
submodule of M. Also recall that a module M is quasi-retractable if Homg (M, ras (1)) # 0 for every
I < SS with ’r‘]w(f) ;é 0.

Proposition 2.4. Let M be a (quasi-) retractable module and S = Endr(M). Then the following
conditions are equivalent:

(i) M is an Rickart module.

(ii) M is an R-endoRickart module.

Proof. (i) = (ii) follows from Remark 2.1.
(i) = (i) Let M be an R-endoRickart module, since S = Endg (M) is a right Rickart ring and M is
(quasi-) retractable module, then M is an Rickart module by [18, Proposition 3.5]. ]
Recall that a module M is said to have C> condition if any submodule N of M which is isomorphic
to a direct summand of M is a direct summand of M.

Proposition 2.5. Let M be either a (quasi-) retractable or a k-local retractable module and S =
Endgr(M). Then the following conditions are equivalent:

(i) M is an R-endoRickart module with C> condition.

(ii) S is a von Neumann regular ring.

(iii) For each ¢ € S, Kery and Imy are direct summands of M.

Proof. Follows from [18, Theorem 3.17], Proposition 2.1, Proposition 2.3 and Proposition 2.4. m|

Corollary 2.3. Let M be either a (quasi-) retractable or a k-local retractable module with C> condition.
If M is an R-endoRickart module, then Kery and Imy are R-endoRickart for each ¢ € S.

Proof. Keryp and Imy are direct summands of M for each ¢ € S by Proposition 2.5. Thus they are
R-endoRickart modules by Proposition 2.2. |
Next, we characterize several classes of rings in terms of R-endoRickart modules.

Theorem 2.1. The following conditions are equivalent for a ring R:
(i) Every free module Mr is an R-endoRickart module.
(ii) Every free module Mr is a Rickart module.

Proof. (i) = (ii) This follows from the fact that the endomorphism ring of a free module Mfp, is a right
Rickart ring if and only if Mg is a Rickart module by [18, Corollary 5.3].
(i) = (i) ltis clear. |
Recall that a module M is endoregular if Endr (M) is a von Neumann regular ring.

Proposition 2.6. Every endoregular module M is an R-endoRickart module.

Proof. Let M be an endoregular module. Then Endr (M) is a von Neumann regular ring, thus M is an
R-endoRickart module by Proposition 2.3. O

Proposition 2.7. Let M be either a (quasi-) retractable or a k-local retractable module with Cs
condition and S = Endr (M), Then the following conditions are equivalent:

(i) M is an endoregular module.

(ii) M is an R-endoRickart module.

(iii) For each ¢ € S, Kery and Imy are direct summands of M.
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Proof. (i) = (ii) follows from Proposition 2.6.
(i) = (i), (i) = (iii) and (iii) = (i) follows from Proposition 2.5. |
Recall that a module M has the (strong) summand intersection property, SIP (SSIP), if the
intersection of any two (any family of) direct summands is a direct summand of M. M is said to
have the (strong) summand sum property, SSP (SSSP), if the sum of any two (any family of) direct
summands is a direct summand of M.

Corollary 2.4. Let M be either a (quasi-) retractable or a k-local retractable module with C> condition,
Then the following statements hold:

(i) Every R-endoRickart module M satisfies the SIP and the SSP.

(ii) For every R-endoRickart module M, ;_, Kery; and )", Imy; are R-endoRickart modules
for every finite set {¢1, p2,- - -, on} in Endr(M).

Proof. (i) Note that every R-endoRickart module is an endoregular by Proposition 2.7. This is a direct
consequence of [24, Proposition 2.28].

(i) For each ¢; € {p1,p2, - -, vn}, Kerp; and Imyp; are direct summands of M by Proposition
2.7. Then (N}, Keryp; and "7 | Imy; are direct summands of M by (i). Thus R-endoRickart modules
by Proposition 2.2. O

Proposition 2.8. Let M be an R-module and S = Endr(M), if forevery 0 # ¢ € S, ¢ is a
monomorphism, then M is an indecomposable R-endoRickart module.

Proof. Assume that M is not indecomposable. Then M = N; @& N, with N1, Ny # 0. Take ¢ =
71 the canonical projection of M onto N;. Then Ker(¢) = N2 # 0, a contradiction (as ¢ is a
monomorphism), and so M is indecomposable. It is clear that for every ¢ € S, Kerp <® M, M is a
Rickart module, and hence an R-endoRickart module. ]

Proposition 2.9. If the End(M) is a domain, then a module M is an indecomposable R-endoRickart.

Proof. Every domain is trivially a right Rickart ring, then M is an R-endoRickart module. Since there
are no idempotents other than 0 and 1 in a domain, M is also indecomposable. O

Proposition 2.10. /f M is an R-endoRickart module, with only countably many direct summands,
then M contains no infinite direct sums of disjoint summands.

Proof. Since M has only countably many direct summands, .S has no infinite set of nonzero orthogonal
idempotents, hence there exist no infinite sets of mutually disjoint direct summands in M. |

Corollary 2.5. If M is an R-endoRickart module, with only countably many direct summands, then
M is a finite direct sum of indecomposable summands.

Proof. By Proposition 2.10, S has no infinite sets of orthogonal idempotents, hence any direct sum
decomposition of M must be finite, thus M is a finite direct sum of indecomposable submodules. O

Recall that a ring is regular in the sense of commutative algebra if it is a commutative unit ring
such that all its localizations at prime ideals are regular local rings.

Corollary 2.6. Let M be an R-endoRickart module with only countably many direct summands and
the endomorphism ring S = Endr(M) is a regular. Then M is a semisimple Artinian.

Proof. S is a regular Baer ring with only countably many idempotents by Theorem [25, Theorem 7.55].
Then S is a semisimple Artinian ring, by [26, Theorem 2 and Theorem 3]. It is easy to check that M
is also a semisimple Artinian module. ]

Corollary 2.7. Let M be R-module with only countably many direct summands and S = Endr(M)
is a regular ring. Then M is an R-endoRickart module if and only if M is a semisimple Artinian.
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Proof. The proof follows directly from Remark 2.1 and Corollary 2.6. ad

Proposition 2.11. The following conditions are equivalent for a ring R:
(i) Every free R-module M is an R-endoRickart module.
(ii) R is a right hereditary ring.

Proof. Since that a free module is a retractable, M is R-endoRickart module if and only if it is a Rickart
by Proposition 2.4. Thus every free R-module M is an R-endoRickart module if and only if R is a right
hereditary ring by [18, Theorem 2.26] and Remark 2.1. |

Corollary 2.8. Let R be a right hereditary ring, then every projective right R-module is an R-endoRickart
module.

Proof. From Proposition 2.11 every free R-module is an R-endoRickart module, since that every
projective module is a direct summand of a free module, then every projective module is an R-
endoRickart by Proposition 2.2. m]

Proposition 2.12. Let R be a von Neumann regular ring. Then a free module R™ is an R-
endoRickart R-module for some n € N.

Proof. This follows from the well-known fact that R is von Neumann regular if and only if so is
Mat,(R). since Mat,(R) = Endr(R") is a von Neumann regular ring. Thus R™ is R-endoRickart
by Proposition 2.3. a

Recall that a ring R is a principal ideal domain or PID if R is an integral domain in which every
ideal is principal, i.e., can be generated by a single element.

Proposition 2.13. Let M be a free module M of countable rank over a principal ideal domain (PI1D)
R, then M is an R-endoRickart and has the SSIP.

Proof. Since R is a principal ideal domain (PID), then M has the SSIP (see [26, Exercise 51(c)], and
it is a Rickart R-module by [18, Theorem 2.26]. Thus it is an R-endoRickart by Remark 2.1. m|

Corollary 2.9. Let M be a projective module. Then the following statements hold:

(i) Every submodule of M over a hereditary ring is an R-endoRickart module.

(ii) Every finitely generated submodule of M over a von Neumann regular ring is an R-endoRickart
module.

Proof. (i) Since that all submodules of projective modules over a hereditary ring R are again projective.
Thus they are R-endoRickart modules by Corollary 2.8.

(i) Let I be a finitely generated submodule of M. It is well-known that a von Neumann regular
ring is left and right semihereditary, and every finitely generated submodule of a projective module
over a von Neumann regular ring R is isomorphic to a direct summand of a finitely generated free
R-module by [27]. Hence I = K <® R™ . Therefore, I is an R-endoRickart module by Proposition
2.2 and Propositions 2.12 . m]

3 Direct Sums Of R-endoRickart Modules

It is shown that a direct sum of R-endoRickart modules may not be R-endoRickart. In this section, we
investigate when a direct sum of R-endoRickart modules is also R-endoRickart. We obtain necessary
and sufficient conditions for a finite direct sum of copies of (k-local) retractable R-endoRickart module
to be R-endoRickart.

The next example shows that a direct sum of R-endoRickart modules may not inherit the R-
endoRickart property.
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Example 3.1. A finite direct sum of R-endoRickart modules is not necessarily an R-endoRickart
module. For example, the Z-module Z & Z. is not R-endoRickart while 7Z. and Z. are both R-
endoRickart Z-modules (Z and 7. are both Rickart modules). We note that the Z-module 7. & Z»
is a retractable module (Any direct sum of 7, is retractable, where p is a prime number). For the
endomorphism f(xz,§) = & where xz € Z andy € Z, Kerf = 27 & Z2 which is not a direct summand
of Z® 7Zs. So07Z & Zs is not a Rickart module [see ([20], Example 2.24)]. Thus Z & Z» is not an
R-endoRickart module by Proposition 2.4.

Recall that a module M is a quasi-continuous if every complement in M is a direct summand of
M, and for any direct summands M; and M- of M such that M; N M> = 0, the submodule M; & M-
is also a direct summand of M.

Proposition 3.1. Let M, be a direct summand of a quasi-continuous R-endoRickart module M for
alli =1,..,n, such that M; N M; = 0 fori # j. Then M; is an R-endoRickart module for all i and
1 M; is an R-endoRickart module.

Proof. Since M is a quasi-continuous module and M; N M; = 0 for all i # j, @ _, M; is a direct
summand of M, Therefore, it is an R-endoRickart module by Proposition 2.2. |

Proposition 3.2. Let M be an artinian R-endoRickart module. Then there exists a decomposition
M=N1®N2@®N3D---D Ny,

where N; is an indecomposable R-endoRickart module for each i.

Proof. From [28, Proposition 19.20] Since M is artinian, there exists a decomposition
M=N1®N2BN3D---® Np,

where each N; is an indecomposable. Also, each N, is an R-endoRickart module by Proposition
2.2. O

Proposition 3.3. Let R be acommutative ring and M = @, ., M; a direct sum of cyclic R-endoRickart
modules M; over an arbitrary index set I. If S = Endr(M) is a domain, then M is an R-endoRickart
module.

Proof. Note that M is a k-local retractable Rickart module by [18, Proposition 4.9] and [18, Proposition
5.1]. Thus M is an R-endoRickart module by Proposition 2.1. O
The following result study finite direct sums of copies of an arbitrary R-endoRickart module M.

Theorem 3.1. Let M be a finitely generated R-endoRickart module and S = End(M), Then the
following conditions are equivalent:

(i) The arbitrary direct sum of copies of M is an R-endoRickart module.

(i) S = End(M) is a hereditary ring.

Proof. (i)=(ii) For a finitely generated module M and S = End(M), we have that End(M(f>)
End(S) as rings, where f is an arbitrary set. Hence, if an arbitrary direct sum of copies of M is
R-endoRickart, its endomorphism ring End(M ") is a right Rickart ring, hence End(S'") is also a
right Rickart ring, thus S) is an R-endoRickart module. Hence By Proposition 2.11, S is hereditary.

(i)=(i) let S = End(M) is hereditary, for an arbitrary set f, Since S is a free S-module, we
obtain that S/) is an R-endoRickart S-module By Proposition 2.11, hence End(S")) is a right Rickart
ring, thus End(M ) is a right Rickart ring, and M/ is an R-endoRickart module. o

The following result studies finite direct sums of copies of an arbitrary (k-local) retractable R-
endoRickart module M.

IR
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Proposition 3.4. Let M be a (k-local) retractable R-endoRickart module with C> condition. Then any
finite direct sum of copies of M is an R-endoRickart module.

Proof. Since that a finite direct sum of copies of M is a Rickart module by [29, Corollary 2.31],
Proposition 2.1 and Proposition 2.4. Thus it is an R-endoRickart by Remark 2.1. m|
The next example shows an application of Proposition 3.4.
Recall that an element m € M is singular if rr(m) <°°* Rr. We denote the set of all singular
elements of M by Z(M). Then we say a module M nonsingular if Z(M) = 0 and singular if Z(M) =
M. Aring R is right nonsingular if Ry is nonsingular.

Example 3.2. Let R =[]’7, Z2 and the R-module M = @,"_, Z> . Since M is a nonsingular quasi-
injective R-module, M is a Rickart module with C> condition(see [29], Example 2.32), thus M is an
R-endoRickart module with C, condition. Thus M ™ is an R-endoRickart module by Proposition 3.4.

Recall that a ring R is a Prifer domain if R is a commutative ring without zero divisors in which
every non-zero finitely generated ideal is invertible.

Theorem 3.2. (30, Corollary 15]). If R is a commutative integral domain, then M, (R) is a Baer ring
(for some n. > 1) if and only if every finitely generated ideal of R is invertible, i.e., if R is a Priifer
domain.

Theorem 3.3. Let M be a free R-module of finite rank > 1 with only countably many direct summands.
Then the following conditions are equivalent for a commutative integral domain R :

()M is R-endoRickart.

(i) R is a Priifer domain.

Proof. Consider R is a Prifer domain, then M., (R) is a Baer ring by Theorem 3.2. but End(M) 2
M, (R) is a Baer ring, thus End(M) is a right Rickart ring, so we obtain that M is an R-endoRickart
module.

Conversely, if M is an R-endoRickart module, End(M) is a right Rickart ring has no infinite set
of nonzero orthogonal idempotents (as M is R-module with only countably many direct summands),
then it is a Baer ring by [25, Theorem 7.55]Theorem, hence M, (R) for n > 1 is a Baer ring, thus R
must be a Prifer domain. |

We now characterize the semisimple artinian rings in terms of free R-endoRickart modules.

Proposition 3.5. Let M be a (quasi-) retractable module. Then the following conditions are equivalent
foraring R :

(i) All R-module M is an R-endoRickart module;

(iDAll R-module M is a Rickart module;

(iii)All injective R-module M is a Rickart module;

(iv)All extending R-module M is a Rickart module;

(v)All (injective) R-module M is a Baer module;

(vi) R is a semisimple artinian ring.

Proof. (i) < (i¢) Since M is a retractable module, then the result follows from Proposition 2.4.
(73) = (4i1) = (iv) ltis clear.
w) < (v) Is easy to see because every injective Rickart module is Baer (see [18], Remark

(
).
(v) = (vi) Since M is a Baer module, thus R is a semisimple artinian ring by in [31, Theorem
]
(

vi) = (1) Every right R-module M is a Rickart module, thus an R-endoRickart by Remark
2.1. |

Recall that a module over a ring is torsion free if 0 is the only element annihilated by a regular
element (nonzero divisor) of the ring.
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Proposition 3.6. Let M be a finite direct sum of copies of some finite rank, torsion-free module and
S = End(M) is a PID. Then M is R-endoRickart module.

Proof. By [32] Kery <® M,Vyp € S, hence M is a Rickart module, thus it is an R-endoRickart by our
Remark 2.1. m|
Recall that a ring R is a right n-fir if any right ideal that can be generated with < n elements is
free of unique rank (i.e., for every I < Rp, I & RF forsome k < n,andif I 2 R' = k = 1) (for
alternate definitions see , [33, Theorem 1.1]).
The definition of (right) n-firs is left-right symmetric, thus we will call such rings simply n-firs.

Proposition 3.7. Let M be a module with endomorphism ring S is n-fir, then M is an R-endoRickart
module and S™ is a Baer module. Consequently, M, (S) is a Baer ring

Proof. Since S is an n-fir, it is in particular an integral domain (see page 45, [33]), then trivially a

right Rickart ring. Thus M is an R-endoRickart module. S™ is a Baer module by [19, Theorem 3.16].

Consequently, M,,(S) is a Baer ring. O
Next we study finite direct sums of copies of a finitely generated R-endoRickart module M.

Proposition 3.8. Let M be a finitely generated module with endomorphism ring S is n-fir, then M is
an R-endoRickart module and a finite direct sum of copies of M is an R-endoRickart module.

Proof. We note that, for a finitely generated module M and S = End(M), we have that End(M™) =
End(S™) as rings, where n € N. Since S is n-fir, then M is an R-endoRickart module and S™ is
a Baer module by Proposition 3.7, and so End(S™) is a Baer ring ( the endomorphism ring of a
Baer module is a Baer ). Thus S™ is an R-endoRickart S-module by Remark 2.1, hence End(S™)
is a right Rickart ring (being a Baer ring), thus End(M™) is a right Rickart ring, and M™ is an R-
endoRickart. O

4 R-endoRickart Modules Versus EndoBaer Modules

In this section, we show that if the endomorphism ring Endr M of an R-endoRickart module M has
no infinite set of nonzero orthogonal idempotents, then M is an endoBaer module, and obtain that
every R-endoRickart module with only countably many direct summands is an endoBaer module. We
also prove that a module M is R-endoRickart with the endomorphism ring Endr M has the SSIP if
and only if M is an endoBaer module.

Definition 4.1. An R-module M is called endoBaer if Endr (M) is a Baer ring.

Remark 4.1. Any Baer module is an endoBaer, since the endomorphism ring of a Baer module is a
Baer. (see [20, Theorem 4.1]).

Proposition 4.1. Let M be a (quasi-) retractable module. Then the following conditions are equivalent:
(i) M is an endoBaer module.
(ii) M is a Baer module.

Proof. (i) = (ii) Since M is an endoBaer module, S = Endr(M) is a Baer ring, Also M is a (quasi-)
retractable, thus M is a Baer module by [20, Proposition 4.6] and [19, Theorem 2.5].
(i) = (i) follows from Remark 4.1. |

Remark 4.2. ltis clear any endoBaer module is an R-endoRickart, since that any Baer ring is a right
Rickart ring. But the converse does not hold in general.

The following examples exhibit an R-endoRickart module which is not an endoBaer module with
the property that its endomorphism ring has an infinite set of nonzero orthogonal idempotents.
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Example 4.1. Let R = [[7, Z> be a commutative ring, R is a von Neumann regular, and Baer.
Consider T = {(an)sZ1 € R|a, is eventually constant}, a subring of R. Then T is a right Rickart
ring, while T is not a Baer ring by ([23, Example 7.54] and it has an infinite set of nonzero orthogonal
idempotents, {c; = (ax) € T | ar, = 1 if k = i, otherwise, a, = 0}. Consider M = Tr. Then M is an
R-endoRickart module, which is not an endoBaer module.

Example 4.2. From example 2.2, note that R is a right hereditary ring, but R is not a Baer ring. Since
R is a right Rickart ring (being right hereditary), M = Rgr is an R-endoRickart module, which is not
an endoBaer module.

Example 4.3. ([10], Example 1.6). Let A be a field, take A,, = A forn =1,2,.... and let

(Gt i)

which is a subring of the 2 x 2 matrix ring over the ring [[°7_, An, where (.-, An, 1) is the A-algebra
generated by @:-_, A and 1. Then R is a von Neumann regular ring which is not a Baer ring. thus
M = Rg is an R-endoRickart module, which is not an endoBaer module. Denote the idempotent
e= ( 8 (1) ) Then M = eR is a R-endoRickart R-module by Proposition 2.2. However, M is not
an endoBaer R-module because Endr(M) = (P, , An,1) is not a Baer ring (see ([18], Example
2.19)).

Example 4.4. Since that a free modules Z and Z® are R-endoRickart Z-modules (Z™ and Z® are
both Rickart modules,see Example 2.2.12 in [34]), then Endz(ZN) and Endz(Z%®) are right Rickart
rings. Note that Endz(Z™) is also a Baer ring, but Endz(Z®) is not a Baer ring. This, because Z®
is retractable but is not a Baer Z-module (see [19, Proposition 2.5]. Thus Z~ is an endoBaer module,
but Z® is not.

Theorem 4.1. Let M be a (quasi-)retractable module, Then the following conditions are equivalent
foraring R :

(i) All R-module M is an R-endoRickart module;

(iDAll R-module M is a Rickart module;

(ii)All R-module M is a Baer module;

(iv)All R-module M is an endoBaer module;

(v) R is a semisimple artinian ring.

Proof. Follows from Proposition 4.1 and Proposition 3.5. m]

Proposition 4.2. Let M = P, ., M; be a direct sum of finitely generated R-endoRickart modules
M,;, where I is a countable index set over a principal ideal domain R. Then the following conditions
are equivalent:

(i) M is a semisimple module.

(ii) M is an R-endoRickart module.

(iii) M is an endoBaer module.

Proof. (i)=- (ii) By Remark 2.1 (1).
(iii) = (ii) It is clear.
(i) = (iii) and (iii) = (i) follows from [18, Corollary 5.8]. m|

Proposition 4.3. The following conditions are equivalent for a (quasi-) retractable module M :
(i) M is an indecomposable R-endoRickart module.
(ii) M is an endoBaer module.
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Proof.(i) = (ii) Since M is an indecomposable R-endoRickart module, then M is a Baer module by
[18, Corollary 4.6] and Proposition 2.4. Thus an endoBaer module by Remark 4.1.
(i) = (i) M is a Baer module by Propsition 4.1 and indecomposable Rickart module by [18,
Corollary 4.6]. Thus an R-endoRickart module by Remark 2.1. O
Recall that a module M is quasi-injective if every homomorphism of a submodule of M into M
may be realized by an endomorphism of M.

Corollary 4.1. Let M be a quasi-injective R-module. The following statements are equivalent:
(i) M is an endoBaer module.
(i) M is an R-endoRickart module.

Proof. (i) = (i) ltis clear.
(¢4) = (i) M is a Baer module by [35, Theorem 3.11] , thus it is an endoBaer by Remark
4.1. O

Theorem 4.2. Let M be a right R-module, and let S = EndrM have no infinite set of nonzero
orthogonal idempotents. Then the following conditions are equivalent:

(i) M is an R-endoRickart module.

(ii) M is an endoBaer module.

Proof.(i) = (ii) Since M is an R-endoRickart module, R is a right Rickart ring has no infinite set of
nonzero orthogonal idempotents. Thus R is a right Rickart ring if and only if R is a Baer ring by [25,
Theorem 7.55].

(i) = (i) It is clear. a

Proposition 4.4. Let M be a right R-module with only countably many direct summands. Then the
following conditions are equivalent:

(i) M is an R-endoRickart module.

(ii) M is an endoBaer module.

Proof. (i) = (ii) Since M has only countably many direct summands, Endz (M) has no infinite set of
nonzero orthogonal idempotents. Hence M is an endoBaer module by Theorem 4.2.
(i) = (i) ltis clear. a

Theorem 4.3. An R-module M is an R-endoRickart and S = Endr(M) has the SSIP if and only if
M is an endoBaer module.

Proof. Let N be any submodule of S. Since M is R-endoRickart, S is a right Rickart ring and for each
n € N, there exists e2 = e, € S such that rs(n) = e,S. Thus, there exists e> = e € S such that
rs(N) = N,en rs(n) = ,en enS = eS by the SSIP. Thus, S is a Baer ring and M is an endoBaer
module. Conversely, suppose M is an endoBaer module. Hence M is an R-endoRickart module by
Remark 4.2, and S is a Baer ring. Thus, S has the SSTP. O

Corollary 4.2. Let M be a retractable module and S = Endr(M) has the SSIP. Then the following
conditions are equivalent:

(i) M is an R-endoRickart module.

(ii) M is an endoBaer module.

(iii) ¢ splits in M for any ¢ € Endgr(M).

Proof. (i) < (ii) Follows from Theorem 4.3.
(i) = (iii) For ¢ € Endg(M), consider the short exact sequence

0 — Kerp =rm(p) > M — oM — 0.
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Since M is a retractable module and S is a Baer ring, M is a Baer module by [20, Proposition 4.6].
Thus M is a Rickart module and Kerp <% M. So the short exact sequence splits.

(iii) < (i) o splits in M for any ¢ € Endg (M) if and only if Kerpp <® M if and only if M is a Rickart
module if and only if M is an R-endoRickart module by Proposition 2.4. a

Proposition 4.5. Let M be a (quasi-) retractable module and S = End r (M) with only two idempotents,
0 and 1. Then the following conditions are equivalent:

(i) M is an R-endoRickart module.

(ii) M is an endoBaer module.

Proof. (i) = (4¢) Since S is a right Rickart ring with only two idempotents, 0 and 1, then S is a domain
by [18, Remark 4.10]. and then M is an indecomposable R-endoRickart module by [18, Proposition
4.9] and Remark 2.1. Thus M is an endoBaer module by Proposition 4.3.
(i) = (i) ltis clear. m]
Recall that a ring R is a right (left) self injective ring if it is injective over itself as a right (left)
module. If a von Neumann regular ring R is also right or left self injective, then R is Baer.

Proposition 4.6. Let M be an R-module and S = Endr(M) be any right self-injective ring. Then
the following conditions are equivalent:

(i) M is an R-endoRickart module.

(it) M is an endoBaer module.

Proof. (i) = (ii) Let M be an R-endoRickart module, S is a right Rickart ring. Since S is right
self-injective ring, then S is a right Rickart ring if and only if it is a Baer ring by [25, Theorem 7.52].
Thus M is an endoBaer module.

(if) = (i) ltis clear. m|
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