
Modules Whose Endomorphism Rings Are Right Rickart

Abstract
In this paper, we study modules whose endomorphism rings are right Rickart (or right p.p.) rings,
which we call R-endoRickart modules. We provide some characterizations of R-endoRickart
modules. Some classes of rings are characterized in terms of R-endoRickart modules. We
prove that an R-endoRickart module with no infinite set of nonzero orthogonal idempotents in its
endomorphism ring is precisely an endoBaer module. We show that a direct summand of an R-
endoRickart modules inherits the property, while a direct sum of R-endoRickart modules does not.
Necessary and sufficient conditions for a finite direct sum of R-endoRickart modules to be an R-
endoRickart module are provided.
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1 Introduction

It is well known that Baer rings and Rickart rings (also known as p.p. rings ) play an important role in
providing a rich supply of idempotents and hence in the structure theory for rings. Rickart rings and
Baer rings have their roots in functional analysis with close links to C∗-algebras and von Neumann
algebras. Kaplansky [1] introduced the notion of Baer rings, which was extended to Rickart rings in
([2],[3]), and to quasi-Baer rings in [4], respectively. A number of research papers have been devoted
to the study of Baer, quasi-Baer, and Rickart rings (see e.g [1], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]). A ring R is said to be Baer if the right annihilator of any nonempty subset of R
is generated by an idempotent as a right ideal of R. The notion of Baer rings was generalized to a
module theoretic version and studied in recent years (see [18],[19]). An R-module M is called a Baer
module if for each left ideal I of S = EndR(M), rM (I) = eM for e2 = e ∈ S. A more general notion
of a Baer ring is that of a right Rickart ring. A ring R is called a right Rickart ring if the right annihilator
of any element in R is generated by an idempotent as a right ideal of R. It is clear that any Baer ring
is a right Rickart ring. A module MR is called Rickart if the right annihilator of each left principal ideal
of EndR(M) is generated by an idempotent, i.e, for each ϕ ∈ S = EndR(M), there exists e = e2 in S
such that rM (ϕ) = eM . In this paper, we introduce the notion of R-endoRickart module, investigate
some basic properties of these modules.

In section 2, we introduce the notion of R-endoRickart module, investigate some basic properties
of these modules. It is shown that a direct summand of an R-endoRickart modules inherits the
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property. The classes of hereditary rings and von Neumann regular rings are characterized in terms
of R-endoRickart R-modules.

In Section 3, we investigate when a direct sum of R-endoRickart modules is also R-endoRickart.
We obtain necessary and sufficient conditions for a finite direct sum of copies of R-endoRickart
modules to be R-endoRickart.

In Section 4, We show that if the endomorphism ring EndRM of an R-endoRickart moduleM has
no infinite set of nonzero orthogonal idempotents, then M is an endoBaer module (a module whose
endomorphism ring is a Baer), and obtain that every R-endoRickart module with only countably many
direct summands is an endoBaer module. We also prove that a module M is an R-endoRickart with
the endomorphism ring EndRM has the SSIP if and only if M is an endoBaer module.

Throughout this paper, all rings are associative with unity. All modules are unital right R-modules
unless otherwise indicated and S = EndR(M) is the ring of endomorphisms of MR. Mod-R denotes
the category of all right R-modules, and MR a right R-module. By N ⊆ M , NR ≤ MR and NR ≤

⊕
MR denote that N is a subset, submodule and direct summand of M , respectively. By R, Z and
N we denote the ring of real, integer and natural numbers, respectively. Zn denotes Z/nZ, M (n)

denotes the direct sum of n copies of M . The notations rR(.) and rM (.) denote the right annihilator
of a subset of M with elements from R and the right annihilator of a subset of R with elements from
M , respectively.

2 R-endoRickart Modules
In this section, we introduce the notion of R-endoRickart module, investigate some basic properties
of these modules. It is shown that a direct summand of an R-endoRickart modules inherits the
property. The classes of hereditary rings and von Neumann regular rings are characterized in terms
of R-endoRickart R-modules.

Definition 2.1. An R-module M is called R-endoRickart if EndR(M) is a right Rickart ring.

Recall that R is a hereditary ring if all submodules of projective modules over R are again
projective. If this is required only for finitely generated submodules, it is called semihereditary. Also
recall R is a von Neumann regular ring if for every a ∈ R there exists an x ∈ R such that a = axa.

Remark 2.1. (1) Obviously, RR is an R-endoRickart module if R is a right Rickart ring, a Baer ring, a
von Neumann regular ring or a hereditary ring.

(2) Every semisimple module is an R-endoRickart module.
(3) Any Rickart module is an R-endoRickart since the endomorphism ring of a Rickart module is

right Rickart [18, Proposition 3.2].
(4) Any Baer module is R-endoRickart since the endomorphism ring of a Baer module is a Baer.

(see [20, Theorem 4.1]).

Recall that a sequence (a0, a1, a2, ...) is a p-adic number if for all n ≥ 0 we have an ∈ Z/pn+1Z
and an+1 ≡ an (mod pn). The set of p-adic numbers is denoted Zp and is called the ring of p-adic
integers. In the next example we shows that not every R-endoRickart module ia a Rickart ( i.e, the
converse of Remark 4.1 (3) does not hold in general).

Example 2.1. Consider the module M = Zp∞ , as a Z-module. We know that the endomorphism ring
S = EndZ(M) is the ring of p-adic integers (see [21, Example 3, p. 216]). Since S is a Baer ring, it is
a Rickart ring, and then M = Zp∞ is an R-endoRickart module. However M is not a Rickart module.

Recall that a module M is k-local retractable if rM (ϕ) = rS(ϕ)(M) for any ϕ ∈ S = EndR(M).

Proposition 2.1. Let M be a k-local retractable module and S = EndR(M). Then the following
conditions are equivalent:
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(i) M is an Rickart module.
(ii) M is an R-endoRickart module.

Proof. (i)⇒ (ii) follows from Remark 2.1.
(ii)⇒ (i) Let M be an R-endoRickart module, since S = EndR(M) is a right Rickart ring and M is

k-local retractable module, thenM is an Rickart module by [18, Theorem 3.9]. 2

Recall that a module M is said to have D2 condition if for any N ≤ M with M/N ∼= M ′ ≤⊕ M ,
we have N ≤⊕ M .

Corollary 2.1. The following conditions are equivalent for a k-local retractable module M and S =
EndR(M):

(i) M is an R-endoRickart module.
(ii) M is an Rickart module.
(iii)M satisfies theD2 condition, and Imϕ is isomorphic to a direct summand ofM for any ϕ ∈ S.

Proof. Follows from Proposition 2.1 and [18, Proposition 2.11] . 2

If M is an R-module, N a direct summand of M , and e the projection of M onto N , then it is easy
to see that e is an idempotent of S = HomR(M,M) and HomR(N,N) = eSe. This fact will be used
in the next proposition.

Proposition 2.2. Every direct summand of an R-endoRickart module is R-endoRickart.

Proof. Let M be an R-endoRickart module, N a direct summand of M , S = HomR(M,M), and e the
projection onto N . Then HomR(N,N) = eSe. But for any right Rickart ring S and any idempotent
e ∈ S, eSe is a right Rickart ring by [18, Corollary 3.3]. ThusN is R-endoRickart. 2

Recall that a morphism f : M → N , (M and N are right R-modules) is a regular morphism (or
regular map) if there exists g : N →M such that f = fgf .

Remark 2.2. If M is an R-endoRickart module, then so are Kerϕ and Imϕ for every regular ϕ ∈
EndR(M).

Proof. This follows from the fact that ϕ ∈ EndR(M) is regular if and only if Kerϕ and Imϕ are direct
summands of M by [22, Theorem 16]. 2

Corollary 2.2. IfR is a right Rickart ring, then eR is an R-endoRickartR-module for every e2 = e ∈ R.

Corollary 2.2 also follows from the fact that if R is a right Rickart ring then so is eRe for every
e2 = e ∈ R by [18, Corollary 3.3].

The next example shows an application of Proposition 2.2.

Example 2.2. (Example 1.7, [23]) Let A =
∏∞

n=1 Z2 . Consider T = {(an)∞n=1 ∈ A|an is eventually
constant}, I = {(an)∞n=1 ∈ A|an = 0 is eventually } =

⊕∞
n=1 Z2. Now, consider the ring R =(

T T/I
0 T/I

)
and the idempotent e =

(
(1, 1, ...) 0 + I

0 0 + I

)
in R. Note that R is a right hereditary

ring, but R is not a Baer ring. Since R is a right Rickart ring (being right hereditary), M = RR is an
R-endoRickart module, and the modules M1 = eR and M2 = (1 − e)R are endoRickart R-modules
by Proposition 2.2.

The next example shows that the submodule of a module can be an R-endoRickart however the
module is not.

Example 2.3. The Z-module Z4 is not R-endoRickart since S = EndZ(Z4) is not right Rickart ring.
However, the submodule 2Z4 of Z4 is an R-endoRickart Z-module because 2Z4

∼=Z Z2 ( Z2 is a
Rickart module).
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Proposition 2.3. If EndR(M) is a von Neumann regular ring, then M is an R-endoRickart module.

Proof. Since EndR(M) is a von Neumann regular ring, then it is a right Rickart ring. Hence M is an
R-endoRickart module. 2

Recall that a right R-module M is retractable if HomR(M,N) 6= 0 whenever N is a non-zero
submodule of M . Also recall that a module M is quasi-retractable if HomR(M, rM (I)) 6= 0 for every
I ≤ SS with rM (I) 6= 0.

Proposition 2.4. Let M be a (quasi-) retractable module and S = EndR(M). Then the following
conditions are equivalent:

(i) M is an Rickart module.
(ii) M is an R-endoRickart module.

Proof. (i)⇒ (ii) follows from Remark 2.1.
(ii)⇒ (i) Let M be an R-endoRickart module, since S = EndR(M) is a right Rickart ring and M is

(quasi-) retractable module, then M is an Rickart module by [18, Proposition 3.5]. 2

Recall that a moduleM is said to have C2 condition if any submoduleN ofM which is isomorphic
to a direct summand of M is a direct summand of M .

Proposition 2.5. Let M be either a (quasi-) retractable or a k-local retractable module and S =
EndR(M). Then the following conditions are equivalent:

(i) M is an R-endoRickart module with C2 condition.
(ii) S is a von Neumann regular ring.
(iii) For each ϕ ∈ S, Kerϕ and Imϕ are direct summands of M .

Proof. Follows from [18, Theorem 3.17], Proposition 2.1, Proposition 2.3 and Proposition 2.4. 2

Corollary 2.3. LetM be either a (quasi-) retractable or a k-local retractable module with C2 condition.
If M is an R-endoRickart module, then Kerϕ and Imϕ are R-endoRickart for each ϕ ∈ S.

Proof. Kerϕ and Imϕ are direct summands of M for each ϕ ∈ S by Proposition 2.5. Thus they are
R-endoRickart modules by Proposition 2.2. 2

Next, we characterize several classes of rings in terms of R-endoRickart modules.

Theorem 2.1. The following conditions are equivalent for a ring R:
(i) Every free module MR is an R-endoRickart module.
(ii) Every free module MR is a Rickart module.

Proof. (i)⇒ (ii) This follows from the fact that the endomorphism ring of a free module MR is a right
Rickart ring if and only if MR is a Rickart module by [18, Corollary 5.3].

(ii)⇒ (i) It is clear. 2

Recall that a module M is endoregular if EndR(M) is a von Neumann regular ring.

Proposition 2.6. Every endoregular module M is an R-endoRickart module.

Proof. LetM be an endoregular module. Then EndR(M) is a von Neumann regular ring, thusM is an
R-endoRickart module by Proposition 2.3. 2

Proposition 2.7. Let M be either a (quasi-) retractable or a k-local retractable module with C2

condition and S = EndR(M), Then the following conditions are equivalent:
(i) M is an endoregular module.
(ii) M is an R-endoRickart module.
(iii) For each ϕ ∈ S, Kerϕ and Imϕ are direct summands of M .
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Proof. (i)⇒ (ii) follows from Proposition 2.6.
(ii)⇒ (i), (ii)⇒ (iii) and (iii)⇒ (i) follows from Proposition 2.5. 2

Recall that a module M has the (strong) summand intersection property, SIP (SSIP ), if the
intersection of any two (any family of) direct summands is a direct summand of M . M is said to
have the (strong) summand sum property, SSP (SSSP ), if the sum of any two (any family of) direct
summands is a direct summand of M .

Corollary 2.4. LetM be either a (quasi-) retractable or a k-local retractable module with C2 condition,
Then the following statements hold:

(i) Every R-endoRickart module M satisfies the SIP and the SSP .
(ii) For every R-endoRickart module M ,

⋂n
i=1 Kerϕi and

∑n
i=1 Imϕi are R-endoRickart modules

for every finite set {ϕ1, ϕ2, · · ··, ϕn} in EndR(M).

Proof. (i) Note that every R-endoRickart module is an endoregular by Proposition 2.7. This is a direct
consequence of [24, Proposition 2.28].

(ii) For each ϕi ∈ {ϕ1, ϕ2, · · ··, ϕn}, Kerϕi and Imϕi are direct summands of M by Proposition
2.7. Then

⋂n
i=1 Kerϕi and

∑n
i=1 Imϕi are direct summands ofM by (i). Thus R-endoRickart modules

by Proposition 2.2. 2

Proposition 2.8. Let M be an R-module and S = EndR(M), if for every 0 6= ϕ ∈ S, ϕ is a
monomorphism, then M is an indecomposable R-endoRickart module.

Proof. Assume that M is not indecomposable. Then M = N1 ⊕ N2 with N1, N2 6= 0. Take ϕ =
π1 the canonical projection of M onto N1. Then Ker(ϕ) = N2 6= 0, a contradiction (as ϕ is a
monomorphism), and so M is indecomposable. It is clear that for every ϕ ∈ S, Kerϕ ≤⊕ M , M is a
Rickart module, and hence an R-endoRickart module. 2

Proposition 2.9. If the End(M) is a domain, then a moduleM is an indecomposable R-endoRickart.

Proof. Every domain is trivially a right Rickart ring, then M is an R-endoRickart module. Since there
are no idempotents other than 0 and 1 in a domain, M is also indecomposable. 2

Proposition 2.10. If M is an R-endoRickart module, with only countably many direct summands,
then M contains no infinite direct sums of disjoint summands.

Proof. SinceM has only countably many direct summands, S has no infinite set of nonzero orthogonal
idempotents, hence there exist no infinite sets of mutually disjoint direct summands inM . 2

Corollary 2.5. If M is an R-endoRickart module, with only countably many direct summands, then
M is a finite direct sum of indecomposable summands.

Proof. By Proposition 2.10, S has no infinite sets of orthogonal idempotents, hence any direct sum
decomposition of M must be finite, thus M is a finite direct sum of indecomposable submodules. 2

Recall that a ring is regular in the sense of commutative algebra if it is a commutative unit ring
such that all its localizations at prime ideals are regular local rings.

Corollary 2.6. Let M be an R-endoRickart module with only countably many direct summands and
the endomorphism ring S = EndR(M) is a regular. Then M is a semisimple Artinian.

Proof. S is a regular Baer ring with only countably many idempotents by Theorem [25, Theorem 7.55].
Then S is a semisimple Artinian ring, by [26, Theorem 2 and Theorem 3]. It is easy to check that M
is also a semisimple Artinian module. 2

Corollary 2.7. Let M be R-module with only countably many direct summands and S = EndR(M)
is a regular ring. Then M is an R-endoRickart module if and only if M is a semisimple Artinian.
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Proof. The proof follows directly from Remark 2.1 and Corollary 2.6. 2

Proposition 2.11. The following conditions are equivalent for a ring R:
(i) Every free R-module M is an R-endoRickart module.
(ii) R is a right hereditary ring.

Proof. Since that a free module is a retractable, M is R-endoRickart module if and only if it is a Rickart
by Proposition 2.4. Thus every free R-module M is an R-endoRickart module if and only if R is a right
hereditary ring by [18, Theorem 2.26] and Remark 2.1. 2

Corollary 2.8. LetR be a right hereditary ring, then every projective rightR-module is an R-endoRickart
module.

Proof. From Proposition 2.11 every free R-module is an R-endoRickart module, since that every
projective module is a direct summand of a free module, then every projective module is an R-
endoRickart by Proposition 2.2. 2

Proposition 2.12. Let R be a von Neumann regular ring. Then a free module R(n) is an R-
endoRickart R-module for some n ∈ N.

Proof. This follows from the well-known fact that R is von Neumann regular if and only if so is
Matn(R). since Matn(R) = EndR(Rn) is a von Neumann regular ring. Thus Rn is R-endoRickart
by Proposition 2.3. 2

Recall that a ring R is a principal ideal domain or PID if R is an integral domain in which every
ideal is principal, i.e., can be generated by a single element.

Proposition 2.13. Let M be a free module M of countable rank over a principal ideal domain (PID)
R, then M is an R-endoRickart and has the SSIP .

Proof. SinceR is a principal ideal domain (PID), thenM has the SSIP (see [26, Exercise 51(c)], and
it is a RickartR-module by [18, Theorem 2.26]. Thus it is an R-endoRickart by Remark 2.1. 2

Corollary 2.9. Let M be a projective module. Then the following statements hold:
(i) Every submodule of M over a hereditary ring is an R-endoRickart module.
(ii) Every finitely generated submodule ofM over a von Neumann regular ring is an R-endoRickart

module.

Proof. (i) Since that all submodules of projective modules over a hereditary ringR are again projective.
Thus they are R-endoRickart modules by Corollary 2.8.

(ii) Let I be a finitely generated submodule of M . It is well-known that a von Neumann regular
ring is left and right semihereditary, and every finitely generated submodule of a projective module
over a von Neumann regular ring R is isomorphic to a direct summand of a finitely generated free
R-module by [27]. Hence I ∼= K ≤⊕ R(n). Therefore, I is an R-endoRickart module by Proposition
2.2 and Propositions 2.12 . 2

3 Direct Sums Of R-endoRickart Modules
It is shown that a direct sum of R-endoRickart modules may not be R-endoRickart. In this section, we
investigate when a direct sum of R-endoRickart modules is also R-endoRickart. We obtain necessary
and sufficient conditions for a finite direct sum of copies of (k-local) retractable R-endoRickart module
to be R-endoRickart.

The next example shows that a direct sum of R-endoRickart modules may not inherit the R-
endoRickart property.
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Example 3.1. A finite direct sum of R-endoRickart modules is not necessarily an R-endoRickart
module. For example, the Z-module Z ⊕ Z2 is not R-endoRickart while Z and Z2 are both R-
endoRickart Z-modules (Z and Z2 are both Rickart modules). We note that the Z-module Z ⊕ Z2

is a retractable module (Any direct sum of Zpi is retractable, where p is a prime number). For the
endomorphism f(x, ȳ) = x̄ where x ∈ Z and y ∈ Z2, Kerf = 2Z⊕ Z2 which is not a direct summand
of Z ⊕ Z2. So Z ⊕ Z2 is not a Rickart module [see ([20], Example 2.24)]. Thus Z ⊕ Z2 is not an
R-endoRickart module by Proposition 2.4.

Recall that a module M is a quasi-continuous if every complement in M is a direct summand of
M , and for any direct summands M1 and M2 of M such that M1 ∩M2 = 0, the submodule M1 ⊕M2

is also a direct summand of M .

Proposition 3.1. Let Mi be a direct summand of a quasi-continuous R-endoRickart module M for
all i = 1, .., n, such that Mi ∩Mj = 0 for i 6= j. Then Mi is an R-endoRickart module for all i and⊕n

i=1Mi is an R-endoRickart module.

Proof. Since M is a quasi-continuous module and Mi ∩Mj = 0 for all i 6= j,
⊕n

i=1Mi is a direct
summand ofM , Therefore, it is an R-endoRickart module by Proposition 2.2. 2

Proposition 3.2. Let M be an artinian R-endoRickart module. Then there exists a decomposition

M = N1 ⊕N2 ⊕N3 ⊕ · · · ⊕Nn,

where Ni is an indecomposable R-endoRickart module for each i.

Proof. From [28, Proposition 19.20] Since M is artinian, there exists a decomposition

M = N1 ⊕N2 ⊕N3 ⊕ · · · ⊕Nn,

where each Ni is an indecomposable. Also, each Ni is an R-endoRickart module by Proposition
2.2. 2

Proposition 3.3. LetR be a commutative ring andM =
⊕

i∈I Mi a direct sum of cyclic R-endoRickart
modules Mi over an arbitrary index set I. If S = EndR(M) is a domain, then M is an R-endoRickart
module.

Proof. Note thatM is a k-local retractable Rickart module by [18, Proposition 4.9] and [18, Proposition
5.1]. ThusM is an R-endoRickart module by Proposition 2.1. 2

The following result study finite direct sums of copies of an arbitrary R-endoRickart module M .

Theorem 3.1. Let M be a finitely generated R-endoRickart module and S = End(M), Then the
following conditions are equivalent:

(i) The arbitrary direct sum of copies of M is an R-endoRickart module.
(ii) S = End(M) is a hereditary ring.

Proof. (i)⇒(ii) For a finitely generated module M and S = End(M), we have that End(M (f)) ∼=
End(S(f)) as rings, where f is an arbitrary set. Hence, if an arbitrary direct sum of copies of M is
R-endoRickart, its endomorphism ring End(M (f)) is a right Rickart ring, hence End(S(f)) is also a
right Rickart ring, thus S(f) is an R-endoRickart module. Hence By Proposition 2.11, S is hereditary.

(ii)⇒(i) let S = End(M) is hereditary, for an arbitrary set f , Since S(f) is a free S-module, we
obtain that S(f) is an R-endoRickart S-module By Proposition 2.11, henceEnd(S(f)) is a right Rickart
ring, thus End(M (f)) is a right Rickart ring, and M (f) is an R-endoRickart module. 2

The following result studies finite direct sums of copies of an arbitrary (k-local) retractable R-
endoRickart module M .
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Proposition 3.4. Let M be a (k-local) retractable R-endoRickart module with C2 condition. Then any
finite direct sum of copies of M is an R-endoRickart module.

Proof. Since that a finite direct sum of copies of M is a Rickart module by [29, Corollary 2.31],
Proposition 2.1 and Proposition 2.4. Thus it is an R-endoRickart by Remark 2.1. 2

The next example shows an application of Proposition 3.4.
Recall that an element m ∈ M is singular if rR(m) ≤ess RR. We denote the set of all singular

elements of M by Z(M). Then we say a module M nonsingular if Z(M) = 0 and singular if Z(M) =
M . A ring R is right nonsingular if RR is nonsingular.

Example 3.2. Let R =
∏∞

n=1 Z2 and the R-module M =
⊕∞

n=1 Z2 . Since M is a nonsingular quasi-
injective R-module, M is a Rickart module with C2 condition(see [29], Example 2.32), thus M is an
R-endoRickart module with C2 condition. Thus M (n) is an R-endoRickart module by Proposition 3.4.

Recall that a ring R is a Prüfer domain if R is a commutative ring without zero divisors in which
every non-zero finitely generated ideal is invertible.

Theorem 3.2. ([30, Corollary 15]). If R is a commutative integral domain, then Mn(R) is a Baer ring
(for some n > 1) if and only if every finitely generated ideal of R is invertible, i.e., if R is a Prüfer
domain.

Theorem 3.3. LetM be a freeR-module of finite rank > 1 with only countably many direct summands.
Then the following conditions are equivalent for a commutative integral domain R :

(i)M is R-endoRickart.
(ii) R is a Prüfer domain.

Proof. Consider R is a Prüfer domain, then Mn(R) is a Baer ring by Theorem 3.2. but End(M) ∼=
Mn(R) is a Baer ring, thus End(M) is a right Rickart ring, so we obtain that M is an R-endoRickart
module.

Conversely, if M is an R-endoRickart module, End(M) is a right Rickart ring has no infinite set
of nonzero orthogonal idempotents (as M is R-module with only countably many direct summands),
then it is a Baer ring by [25, Theorem 7.55]Theorem, hence Mn(R) for n > 1 is a Baer ring, thus R
must be a Prüfer domain. 2

We now characterize the semisimple artinian rings in terms of free R-endoRickart modules.

Proposition 3.5. LetM be a (quasi-) retractable module. Then the following conditions are equivalent
for a ring R :

(i) All R-module M is an R-endoRickart module;
(ii)All R-module M is a Rickart module;
(iii)All injective R-module M is a Rickart module;
(iv)All extending R-module M is a Rickart module;
(v)All (injective) R-module M is a Baer module;
(vi) R is a semisimple artinian ring.

Proof. (i)⇔ (ii) Since M is a retractable module, then the result follows from Proposition 2.4.
(ii)⇒ (iii)⇒ (iv) It is clear.
(iv) ⇔ (v) Is easy to see because every injective Rickart module is Baer (see [18], Remark

2.13).
(v) ⇒ (vi) Since M is a Baer module, thus R is a semisimple artinian ring by in [31, Theorem

2.20].
(vi) ⇒ (1) Every right R-module M is a Rickart module, thus an R-endoRickart by Remark

2.1. 2

Recall that a module over a ring is torsion free if 0 is the only element annihilated by a regular
element (nonzero divisor) of the ring.
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Proposition 3.6. Let M be a finite direct sum of copies of some finite rank, torsion-free module and
S = End(M) is a PID. Then M is R-endoRickart module.

Proof. By [32] Kerϕ ≤⊕ M,∀ϕ ∈ S, hence M is a Rickart module, thus it is an R-endoRickart by our
Remark 2.1. 2

Recall that a ring R is a right n-fir if any right ideal that can be generated with 6 n elements is
free of unique rank (i.e., for every I ≤ RR, I ∼= Rk for some k 6 n, and if I ∼= Rl ⇒ k = l) (for
alternate definitions see , [33, Theorem 1.1]).

The definition of (right) n-firs is left-right symmetric, thus we will call such rings simply n-firs.

Proposition 3.7. Let M be a module with endomorphism ring S is n-fir, then M is an R-endoRickart
module and Sn is a Baer module. Consequently, Mn(S) is a Baer ring

Proof. Since S is an n-fir, it is in particular an integral domain (see page 45, [33]), then trivially a
right Rickart ring. Thus M is an R-endoRickart module. Sn is a Baer module by [19, Theorem 3.16].
Consequently, Mn(S) is a Baer ring. 2

Next we study finite direct sums of copies of a finitely generated R-endoRickart module M .

Proposition 3.8. Let M be a finitely generated module with endomorphism ring S is n-fir, then M is
an R-endoRickart module and a finite direct sum of copies of M is an R-endoRickart module.

Proof. We note that, for a finitely generated module M and S = End(M), we have that End(Mn) ∼=
End(Sn) as rings, where n ∈ N. Since S is n-fir, then M is an R-endoRickart module and Sn is
a Baer module by Proposition 3.7, and so End(Sn) is a Baer ring ( the endomorphism ring of a
Baer module is a Baer ). Thus Sn is an R-endoRickart S-module by Remark 2.1, hence End(Sn)
is a right Rickart ring (being a Baer ring), thus End(Mn) is a right Rickart ring, and Mn is an R-
endoRickart. 2

4 R-endoRickart Modules Versus EndoBaer Modules
In this section, we show that if the endomorphism ring EndRM of an R-endoRickart module M has
no infinite set of nonzero orthogonal idempotents, then M is an endoBaer module, and obtain that
every R-endoRickart module with only countably many direct summands is an endoBaer module. We
also prove that a module M is R-endoRickart with the endomorphism ring EndRM has the SSIP if
and only if M is an endoBaer module.

Definition 4.1. An R-module M is called endoBaer if EndR(M) is a Baer ring.

Remark 4.1. Any Baer module is an endoBaer, since the endomorphism ring of a Baer module is a
Baer. (see [20, Theorem 4.1]).

Proposition 4.1. LetM be a (quasi-) retractable module. Then the following conditions are equivalent:
(i) M is an endoBaer module.
(ii) M is a Baer module.

Proof. (i)⇒ (ii) Since M is an endoBaer module, S = EndR(M) is a Baer ring, Also M is a (quasi-)
retractable, thus M is a Baer module by [20, Proposition 4.6] and [19, Theorem 2.5].

(ii)⇒ (i) follows from Remark 4.1. 2

Remark 4.2. It is clear any endoBaer module is an R-endoRickart, since that any Baer ring is a right
Rickart ring. But the converse does not hold in general.

The following examples exhibit an R-endoRickart module which is not an endoBaer module with
the property that its endomorphism ring has an infinite set of nonzero orthogonal idempotents.
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Example 4.1. Let R =
∏∞

n=1 Z2 be a commutative ring, R is a von Neumann regular, and Baer.
Consider T = {(an)∞n=1 ∈ R|an is eventually constant}, a subring of R. Then T is a right Rickart
ring, while T is not a Baer ring by ([23, Example 7.54] and it has an infinite set of nonzero orthogonal
idempotents, {αi = (ak) ∈ T | ak = 1 if k = i, otherwise, ak = 0}. Consider M = TT . Then M is an
R-endoRickart module, which is not an endoBaer module.

Example 4.2. From example 2.2, note that R is a right hereditary ring, but R is not a Baer ring. Since
R is a right Rickart ring (being right hereditary), M = RR is an R-endoRickart module, which is not
an endoBaer module.

Example 4.3. ([10], Example 1.6). Let A be a field, take An = A for n = 1, 2, .... and let

R =

( ∏∞
n=1An

⊕∞
n=1An⊕∞

n=1An 〈
⊕∞

n=1An, 1〉

)
which is a subring of the 2×2 matrix ring over the ring

∏∞
n=1An, where 〈

⊕∞
n=1An, 1〉 is theA-algebra

generated by
⊕∞

n=1An and 1. Then R is a von Neumann regular ring which is not a Baer ring. thus
M = RR is an R-endoRickart module, which is not an endoBaer module. Denote the idempotent

e =

(
0 0
0 1

)
. Then M = eR is a R-endoRickart R-module by Proposition 2.2. However, M is not

an endoBaer R-module because EndR(M) ∼= 〈
⊕∞

n=1An, 1〉 is not a Baer ring (see ([18], Example
2.19)).

Example 4.4. Since that a free modules ZN and ZR are R-endoRickart Z-modules (ZN and ZR are
both Rickart modules,see Example 2.2.12 in [34]), then EndZ(ZN) and EndZ(ZR) are right Rickart
rings. Note that EndZ(ZN) is also a Baer ring, but EndZ(ZR) is not a Baer ring. This, because ZR

is retractable but is not a Baer Z-module (see [19, Proposition 2.5]. Thus ZN is an endoBaer module,
but ZR is not.

Theorem 4.1. Let M be a (quasi-)retractable module, Then the following conditions are equivalent
for a ring R :

(i) All R-module M is an R-endoRickart module;
(ii)All R-module M is a Rickart module;
(iii)All R-module M is a Baer module;
(iv)All R-module M is an endoBaer module;
(v) R is a semisimple artinian ring.

Proof. Follows from Proposition 4.1 and Proposition 3.5. 2

Proposition 4.2. Let M =
⊕

i∈I Mi be a direct sum of finitely generated R-endoRickart modules
Mi, where I is a countable index set over a principal ideal domain R. Then the following conditions
are equivalent:

(i) M is a semisimple module.
(ii) M is an R-endoRickart module.
(iii) M is an endoBaer module.

Proof. (i)⇒ (ii) By Remark 2.1 (1).
(iii)⇒ (ii) It is clear.
(ii)⇒ (iii) and (iii)⇒ (i) follows from [18, Corollary 5.8]. 2

Proposition 4.3. The following conditions are equivalent for a (quasi-) retractable module M :
(i) M is an indecomposable R-endoRickart module.
(ii) M is an endoBaer module.

UNDER PEER REVIEW



Proof.(i) ⇒ (ii) Since M is an indecomposable R-endoRickart module, then M is a Baer module by
[18, Corollary 4.6] and Proposition 2.4. Thus an endoBaer module by Remark 4.1.

(ii) ⇒ (i) M is a Baer module by Propsition 4.1 and indecomposable Rickart module by [18,
Corollary 4.6]. Thus an R-endoRickart module by Remark 2.1. 2

Recall that a module M is quasi-injective if every homomorphism of a submodule of M into M
may be realized by an endomorphism of M .

Corollary 4.1. Let M be a quasi-injective R-module. The following statements are equivalent:
(i) M is an endoBaer module.
(ii) M is an R-endoRickart module.

Proof. (i)⇒ (ii) It is clear.
(ii) ⇒ (i) M is a Baer module by [35, Theorem 3.11] , thus it is an endoBaer by Remark

4.1. 2

Theorem 4.2. Let M be a right R-module, and let S = EndRM have no infinite set of nonzero
orthogonal idempotents. Then the following conditions are equivalent:

(i) M is an R-endoRickart module.
(ii) M is an endoBaer module.

Proof.(i) ⇒ (ii) Since M is an R-endoRickart module, R is a right Rickart ring has no infinite set of
nonzero orthogonal idempotents. Thus R is a right Rickart ring if and only if R is a Baer ring by [25,
Theorem 7.55].

(ii)⇒ (i) It is clear. 2

Proposition 4.4. Let M be a right R-module with only countably many direct summands. Then the
following conditions are equivalent:

(i) M is an R-endoRickart module.
(ii) M is an endoBaer module.

Proof. (i)⇒ (ii) Since M has only countably many direct summands, EndR(M) has no infinite set of
nonzero orthogonal idempotents. Hence M is an endoBaer module by Theorem 4.2.

(ii)⇒ (i) It is clear. 2

Theorem 4.3. An R-module M is an R-endoRickart and S = EndR(M) has the SSIP if and only if
M is an endoBaer module.

Proof. Let N be any submodule of S. Since M is R-endoRickart, S is a right Rickart ring and for each
n ∈ N , there exists e2n = en ∈ S such that rS(n) = enS. Thus, there exists e2 = e ∈ S such that
rS(N) =

⋂
n∈N rS(n) =

⋂
n∈N enS = eS by the SSIP . Thus, S is a Baer ring and M is an endoBaer

module. Conversely, suppose M is an endoBaer module. Hence M is an R-endoRickart module by
Remark 4.2, and S is a Baer ring. Thus, S has the SSIP . 2

Corollary 4.2. Let M be a retractable module and S = EndR(M) has the SSIP . Then the following
conditions are equivalent:

(i) M is an R-endoRickart module.
(ii) M is an endoBaer module.
(iii) ϕ splits in M for any ϕ ∈ EndR(M).

Proof. (i)⇔ (ii) Follows from Theorem 4.3.
(ii)⇒ (iii) For ϕ ∈ EndR(M), consider the short exact sequence

0→ Kerϕ = rM (ϕ)→M → ϕM → 0.
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Since M is a retractable module and S is a Baer ring, M is a Baer module by [20, Proposition 4.6].
Thus M is a Rickart module and Kerϕ ≤⊕ M . So the short exact sequence splits.

(iii)⇔ (i) ϕ splits inM for any ϕ ∈ EndR(M) if and only if Kerϕ ≤⊕ M if and only ifM is a Rickart
module if and only if M is an R-endoRickart module by Proposition 2.4. 2

Proposition 4.5. LetM be a (quasi-) retractable module and S = EndR(M) with only two idempotents,
0 and 1. Then the following conditions are equivalent:

(i) M is an R-endoRickart module.
(ii) M is an endoBaer module.

Proof. (i)⇒ (ii) Since S is a right Rickart ring with only two idempotents, 0 and 1, then S is a domain
by [18, Remark 4.10]. and then M is an indecomposable R-endoRickart module by [18, Proposition
4.9] and Remark 2.1. Thus M is an endoBaer module by Proposition 4.3.

(ii)⇒ (i) It is clear. 2

Recall that a ring R is a right (left) self injective ring if it is injective over itself as a right (left)
module. If a von Neumann regular ring R is also right or left self injective, then R is Baer.

Proposition 4.6. Let M be an R-module and S = EndR(M) be any right self-injective ring. Then
the following conditions are equivalent:

(i) M is an R-endoRickart module.
(ii) M is an endoBaer module.

Proof. (i) ⇒ (ii) Let M be an R-endoRickart module, S is a right Rickart ring. Since S is right
self-injective ring, then S is a right Rickart ring if and only if it is a Baer ring by [25, Theorem 7.52].
Thus M is an endoBaer module.

(ii)⇒ (i) It is clear. 2
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