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Abstract

By applying the classical Holder’s inequality, Young’s inequality, Minkowski’s inequality and some

other analytical tools, we establish some inequalities involving the Chaudhry-Zubair extension of

the gamma function. The established results serve as generalizations to some known results in

the literature.
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1 Introduction

The classical Euler’s gamma function, which is an extension of the factorial notation to non-integer
values, is usually defined as

Γ(x) =

∞∫
0

tx−1e−tdt, x > 0. (1)

It was first defined by Leonhard Euler and later studied by several renowned mathematicians. Since
its introduction, the gamma has found and continue find useful applications in almost all branches
of mathematics. As a result of its importance and wide applicable areas, it has been studied
extensively. Several extesions and generalizations have also been established. See for example [1],
[2], [6], [7], [8], [11], [12], [13], [15], [29], [33]. Closely associated with the gamma function, is the
digamma function which is defined as

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
, x > 0.

Keywords: Chaudhry-Zubair extension, gamma function, log-convex function, Holder’s inequality,
Young’s inequality, Minkowski’s inequality, inequality.

On Some Inequalities for the Chaudhry-Zubair
Extension of the Gamma Function

UNDER PEER REVIEW

file:www.sciencedomain.org


In this paper, our focus is on the Chaudhry-Zubair extension of the gamma function which is
defined as [2]

Γp(x) =

∞∫
0

tx−1e(−t− p
t

)dt, p > 0, x > 0, (2)

where, Γp(x) tends to the classical gamma function Γ(x) when p = 0. It satisfies the following
identities

Γp(x+ 1) = xΓp + pΓp(x− 1),

Γp(−x) = p−xΓp(x).

The Chaudhry-Zubair extension of the gamma function has attracted the attention of several
researchers and it has be investigated in diverse ways (see [4], [3], [5], [9], [10], [14], [16], [19],
[20], [21], [31], [32], and the related references therein).

By differentiating (2) repeatedly, one obtains

Γ(n)
p (x) =

∞∫
0

(ln t)ntx−1e(−t−
p
t )dt, p > 0 (3)

where n ∈ N0. It is clear that Γ
(n)
p (x) returns to Γp(x) when n = 0. Here, and for the rest of the

paper, N0 = N ∪ {0} and N = {1, 2, 3, . . . }.
Our aim in this paper is, to establish some properties such as log-convexity, monotonicity

and inequalities concerning the Chaudhry-Zubair extension of the gamma function. The results
established serve as generalizations of some known results in the literature.

2 Preliminaries

The following results are well known in the scientific community.

Lemma 2.1 (Holder’s Inequality). Let r > 1, s > 1 and 1
r

+ 1
s

= 1. If f(t) and g(t) are continuous
real-valued functions on [a, b], then inequality∫ b

a

|f(t)g(t)| dt ≤
(∫ b

a

|f(t)|r dt
) 1
r
(∫ b

a

|g(t)|s dt
) 1
s

, (4)

holds.

Lemma 2.2 (Young’s Inequality). If u ≥ 0, v ≥ 0, α, β ∈ (0, 1) such that α+β = 1, then inequality

uαvβ ≤ αu+ βv, (5)

holds.

Lemma 2.3 (Minkowski’s Inequality). Let u ≥ 1. If f(t) and g(t) are continuous real-valued
functions on [a, b], then inequality(∫ b

a

|f(t) + g(t)|u dt
) 1
u

≤
(∫ b

a

|f(t)|u dt
) 1
u

+

(∫ b

a

|g(t)|u dt
) 1
u

, (6)

holds .

Definition 2.4. A function f : I → (0,∞) is said to be log-convex if ln f is convex on I. That is if

ln f(αx+ βy) ≤ α ln f(x) + β ln f(y)

or equivalently
f(αx+ βy) ≤ (f(x))α(f(y))β

for each x, y ∈ I and α, β ∈ (0, 1) such that α+ β = 1.
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3 Results and Discussion

Theorem 3.1. The Chaudhry-Zubair extended gamma function satisfies the inequality

Γ(αm+βn)
p (αx+ βy) ≤

[
Γ(m)
p (x)

]α [
Γ(n)
p (y)

]β
, (7)

where, x > 0, y > 0, α, β ∈ (0, 1), α+ β = 1, and m,n ∈ {2s : s ∈ N0}.

Proof. Let x > 0, y > 0, α, β ∈ (0, 1), α+ β = 1, and m,n ∈ {2s : s ∈ N0}. Then by using (3), we
obtain

Γ(αm+βn)
p (αx+ βy) =

∫ ∞
0

(ln t)αm+βnt(αx+βy)−(α+β)e(−t−
p
t )(α+β)dt

=

∞∫
0

(ln t)mα(ln t)nβtα(x−1)tβ(y−1)eα(−t− p
t

)eβ(−t− p
t

)dt

=

∞∫
0

(ln t)αmtα(x−1)eα(−t− p
t

)(ln t)βntβ(y−1)eβ(−t− p
t

)dt,

By virtue of the Holder’s inequality, we have

∞∫
0

(ln t)αmtα(x−1)eα(−t− p
t

)(ln t)βntβ(y−1)eβ(−t− p
t

)dt

≤

 ∞∫
0

[
(ln t)αmtα(x−1)eα(−t− p

t
)
] 1
α
dt

α  ∞∫
0

[
(ln t)βntβ(y−1)eβ(−t− pt )

] 1
β
dt

β

=

 ∞∫
0

(ln t)mtx−1e(−t− p
t

)dt

α  ∞∫
0

(ln t)nt(y−1)e(−t− p
t

)dt

β

=
[
Γ(m)
p (x)

]α [
Γ(n)
p (y)

]β
.

Hence,

Γ(αm+βn)
p (αx+ βy) ≤

[
Γ(m)
p (x)

]α [
Γ(n)
p (y)

]β
.

Corollary 3.2. The Chaudhry-Zubair’s extended function satisfies the inequality

Γ(n)
p (αx+ βy) ≤

[
Γ(n)
p (x)

]α [
Γ(n)
p (y)

]β
, (8)

where, x > 0, y > 0, α, β ∈ (0, 1), α+ β = 1 and n ∈ {2s : s ∈ N0}.

Proof. Let m = n in Theorem 3.1.

Corollary 3.3. The inequality

Γ
(m+n

2
)

p

(x+ y

2

)
≤
√

Γ
(m)
p (x)Γ

(n)
p (y), (9)

holds for x > 0, y > 0 and m,n ∈ {2s : s ∈ N0}.
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Proof. Let α = β = 1
2

in Theorem 3.1.

Remark 3.4. Corollary 3.3 is a genralization of the results of Mortici as presented in Theorem 2.1
of [17].

Corollary 3.5. The function, Γp(x) satisfies the inequality

Γp (αx+ βy) ≤ [Γp(x)]α [Γp (y)]β , (10)

where, x > 0, y > 0, α, β ∈ (0, 1) and α+ β = 1.

Proof. Let m= n = 0 in Theorem 3.1.

Remark 3.6. Corollary 3.2 is another way of saying that the Chuahdry-Zubair gamma function is
log-convex. This fact has been established in Theorem 4.1 of [30].

Corollary 3.7. The function, Γp(x) satisfies the inequality

Γp (x) Γ′′p (x) ≥
[
Γ′p (x)

]2
. (11)

In other words,

det

[
Γp (x) Γ′p (x)
Γ′p (x) Γ′′p (x)

]
≥ 0. (12)

Proof. Since Γp(x) is log-convex, then [ln Γp (x)]′′ ≥ 0 for all x > 0. Then

[ln Γp (x)]′′ =

[
Γ′p (x)

Γp (x)

]′
=

Γp (x) Γ′′p (x)− [Γ′p (x)]2

[Γp (x)]2
≥ 0.

Hence

Γp (x) Γ′′p (x)− [Γ′p (x)]2 ≥ 0,

which completes the proof.

Corollary 3.8. Let ψp(x) =
Γ′p(x)

Γp(x)
, x > 0 be the Chaudhry-Zubair extension of the digamma.Then

ψp(x) is increasing.

Proof. By direct differentiation and by Corollary 3.7, we have,

ψ′p(x) =

[
Γ′p (x)

Γp (x)

]′
≥ 0,

which concludes the proof.

Theorem 3.9. The function Γp(x) satisfies the inequality

Γp(x+ y) ≤
[
Γp
(x
α

)]α [
Γp

(
y

β

)]β
, (13)

for x > 0, y > 0, α, β ∈ (0, 1) and α+ β = 1.
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Proof. By definition (2), we have

Γp(x+ y) =

∞∫
0

t(x+y)−1e(−t− p
t

)dt

=

∞∫
0

t(x+y)−(α+β)e(−t− p
t

)(α+β)dt

=

∞∫
0

tx−αe(−t− p
t

)αty−βe(−t− p
t

)βdt,

and by employing the Holders inequality, we obtain

∞∫
0

tx−αe(−t− p
t

)αty−βe(−t− p
t

)βdt

≤

 ∞∫
0

[
tx−αe(−t− p

t
)α
] 1
α
dt

α  ∞∫
0

[
ty−βe(−t− p

t
)β
] 1
β
dt

β

=

 ∞∫
0

t(
x
α

)−1e(−t− p
t

)dt

α  ∞∫
0

t
( y
β

)−1
e(−t− p

t
)dt

β

=
[
Γp
(x
α

)]α [
Γp

(
y

β

)]β
.

Hence,

Γp(x+ y) ≤
[
Γp
(x
α

)]α [
Γp

(
y

β

)]β
.

Corollary 3.10. The inequality

Γp(x+ y) ≤ αΓp
(x
α

)
+ βΓp

(
y

β

)
, (14)

holds where x > 0, y > 0, α, β ∈ (0, 1) and α+ β = 1.

Proof. From Theorem 3.9 it is obtained that,

Γp(x+ y) ≤
[
Γp
(x
α

)]α [
Γp

(
y

β

)]β
, (15)

and then by Young’s inequality (5), we have[
Γp
(x
α

)]α [
Γp

(
y

β

)]β
≤ αΓp

(x
α

)
βΓp

(
y

β

)
. (16)

Now, combining equations (15) and (16) gives (14).

Theorem 3.11. For a ≥ 1, the function

f(x) =
Γp(ax)

[Γp(x)]a
, (17)
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is increasing on (0,∞) and as a result, the inequality(
Γp(y)

Γp(x)

)a
≤ Γp(ay)

Γp(ax)
(18)

is satisfied for 0 < x < y.

Proof. Let g(x) = ln f(x) = ln Γp(ax)− a ln Γp(x) for x > 0. Then

g(x)′ = a
Γ′p(ax)

Γp(ax)
− a

Γ′p(x)

Γp(x)
,

= a [ψp(ax)− ψp(x)] > 0,

since ψp(x) is increasing. Hence g(x) is increasing. Consequently f(x) is also increasing and for
0 < x < y, we have f(x) ≤ f(y) which gives

Γp(ax)

[Γp(x)]a
≤ Γp(ay)

[Γp(y)]a
,

and by rearrangement, we obtain (18).

Theorem 3.12. The inequality[
Γ(m)
p (x) + Γ(n)

p (y)
] 1
k ≤

[
Γ(m)
p (x)

] 1
k

+
[
Γ(n)
p (y)

] 1
k
, (19)

holds for x > 0, y > 0, k ≥ 1 and m,n ∈ {2s : s ∈ N0}.

Proof. We apply the Minkowski’s inequality and also use the fact that Ak + Bk ≤ (A + B)k, for
A,B ≥ 0 and k ≥ 1. By (3), we obtain[

Γ(m)
p (x) + Γ(n)

p (y)
] 1
k

=

[∫ ∞
0

(ln t)mtx−1e(−t−
p
t )dt+

∫ ∞
0

(ln t)nty−1e(−t−
p
t )dt

] 1
k

=

[∫ ∞
0

([
(ln t)

m
k t

x−1
k e

1
k (−t− pt )

]k
+
[
(ln t)

n
k t

y−1
k e

1
k (−t− pt )

]k)
dt

] 1
k

≤
[∫ ∞

0

([
(ln t)

m
k t

x−1
k e

1
k (−t− pt )

]
+
[
(ln t)

n
k t

y−1
k e

1
k (−t− pt )

])k
dt

] 1
k

≤
[∫ ∞

0

(ln t)mtx−1e(−t−
p
t )dt

] 1
k

+

[∫ ∞
0

(ln t)nty−1e(−t−
p
t )dt

] 1
k

=
[
Γ(m)
p (x)

] 1
k

+
[
Γ(n)
p (y)

] 1
k
,

which gives the desired result.

Theorem 3.13. The inequality

exp
{

Γ(m−r)
p (x)

}
exp

{
Γ(m+r)
p (x)

}
≥
(

exp
{

Γ(m)
p (x)

})2

, (20)

holds for x > 0 and m, r ∈ {2s : s ∈ N0} such that m ≥ r.
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Proof. By using (3), we make the following estimation.

1

2

(
Γ(m−r)
p (x) + Γ(m+r)

p (x)
)
− Γ(m)

p (x)

=
1

2

(∫ ∞
0

(ln t)m−rtx−1e(−t−
p
t )dt+

∫ ∞
0

(ln t)m+rtx−1e(−t−
p
t )dt

)
−
∫ ∞

0

(ln t)mtx−1e(−t−
p
t )dt

=
1

2

∫ ∞
0

[
1

(ln t)r
+ (ln t)r − 2

]
(ln t)mtx−1e(−t−

p
t )dt

=
1

2

∫ ∞
0

[1− (ln t)r]2 (ln t)m−rtx−1e(−t−
p
t )dt

≥ 0.

Thus,
Γ(m−r)
p (x) + Γ(m+r)

p (x) ≥ 2Γ(m)
p (x),

and by taking exponents, we obtain (20).

Remark 3.14. Theorem 3.13 is a genralization of the results of Mortici as given in Theorem 3.1
of [18].

Remark 3.15. For similar results concerning other generalizations and other special functions,
one may refer to the recent works [22], [23], [24], [25], [26], [27] and [28].

4 Conclusion

By applying the classical Holder’s inequality, Young’s inequality, Minkowski’s inequality and some
other analytical tools, we have established some inequalities involving the Chaudhry-Zubair extension
of the gamma function. The established results are generalizations of some known results in the
literature.
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