	1
	2
	3
	4 5
	6
	7
The H	8
crit	9
docume	10
their hea	11
out to	12
concer	13
practi	14
researc	15
that	16
pharma	17
present	18
vitro	19
disease,	20
effects	21
clinical	22
journa	23
activ	24
	25
	26

Review Paper A Review on Bioactivities of Honey Bee Venom

Abstract

Honeybee (Apis mellifera) is one of the world's most beneficial insects, as it plays a ical role in many terrestrial ecosystems. The use of honeybee products has been nted for thousands of years in many cultures for the treatment of human diseases, and aling properties have been documented in many religious texts. The present study sets compile information on the history, chemical composition and scientific evidence ming bee venom research. The promising bioactivities have the potential to provide cal directions for further investigation. PubMed database, Google Scholar Library, ch articles, books, and relevant web pages have been accessed to accumulate data so he updated information included in this study is as current as possible. At least 18 acologically active components including various enzymes, peptides, and amines are in bee venom. Medicinal use of bee venom therapy wields significant in vivo and in outcomes to some extent mitigate the effects of Parkinson's disease, Alzheimer's HIV, arthritis, liver fibrosis, cancer, tumors, fibrotic diseases, Lyme disease, etc. The of bee venom were the first documented in 1888 with the publication of a European study conducted on its impact on rheumatism. According to a study published in the al, bee venom has been used to treat various conditions for centuries. Such research vities confirm the therapeutic effectiveness of bee venom and as a potential future biomedicine.

27 28

Bee venom; Apis mellifera; melittin; apamin; apitherapy; venom immunotherapy.

1

Keywords

29 30

Introduction

Apitherapy is defined as the use of various honeybee products that serve as alternative 31 remedies: for example bee venom, melittin, propolis, royal jelly, and pollen.¹ Melittin, the 32 most dominant substance in bee venom, appears to have anti-inflammatory properties and has 33 indicated its ability to fight cancer cells have grown in laboratory conditions. Scientists from 34 35 Australia have altered the structure of the melittin molecule, by removing the allergen part and they documented some anti-cancer activities of melittin in studies using mice. 36 Specifically, melittin's cancer cell-killing ability and combining the molecule with an 37 antibody to target cancer cells have been reported.^{2,3} Propolis, a natural compound made by 38 the honeybee, has indicated antioxidant and antitumor activity in early laboratory and animal 39 studies.⁴⁻⁷ A study conducted in Japan concluded that honey had some cytotoxic effect against 40 bladder cancer cells in the laboratory and worked against bladder tumors in mice.⁸ 41 Furthermore, bee venom can destroy red blood cells.⁹ 42 In China, propolis was authorized as a new medicine.¹⁰ Propolis is a substance that 43 forms the bee's external immune defense system, making the bee hive one of the most sterile 44 environments known in nature.¹¹ Propolis consists of more than 180 different chemicals.¹² 45 46 Studies on propolis application have increased because of its therapeutic and biological properties. In dentistry, for example, propolis has served in the treatment of aphthous 47 stomatitis, candidiasis, acute necrotizing ulcerative gingivitis, periodontitis, and pulpitis. 48 Current research involving propolis in dentistry highlights its antimicrobial and anti-49 inflammatory activities, particularly in cardiology, oral surgery, pathology, periodontics, 50 endodontics and pedodontics.¹³ subsequently; propolis appears to be a promising alternative 51 for the control of oral diseases regarding antimicrobial response.¹⁴ 52 In south-western Nigeria, honey historically was used for the treatment of 18 53 conditions, some of this being cough, ulcer, fatigue, sleeplessness, sore throat and boils. Bee 54

55	venom (BV) was responsible for treating seven ailments, for example, rheumatism, arthritis,
56	high blood pressure, body pains, malaria, headache, stroke. Meanwhile, bee wax proved to be
57	useful for the treatment of frigidity in women and weak penile erection in men, while propolis
58	also helped in the treatment of measles and ringworm. ¹⁵ Traditional healers in Tanzania use
59	honey by mixing it with other ingredients to cure coughs, stomach ulcers, malaria, and
60	burns. ¹⁶ In Burkina Faso, honey has also been reported for assisting in the treatment of various
61	gastrointestinal disorders, respiratory ailments, fatigue, postnatal disorders, male impotence as
62	well as being applied as a skin cleansing agent. ¹⁷ This review focuses chiefly on the available,
63	robust scientific literature that have documents the effectiveness of honeybee venom in
64	treating diseases.
65	
66	Materials and methods
67	Research articles, books, and relevant websites were investigated with the aim of
68	accumulating data on the use of honeybee venom therapy in medicine. We also accessed the
69	PubMed database, Google Scholar Library, and the Google search engine to generate and
70	evaluate the maximum amount of the best and updated information for this review.
71	
72	A brief history of apitherapy
73	Apitherapy is an established outward appearance of alternative therapy and has been used in
74	many cultures and countries since ancient times. ¹⁸⁻²¹ The origin of apitherapy can be traced
75	back to ancient Egypt and Greece and had also been practiced in China for 3000-5000 years. ²²
76	The famous old Roman scholar, Pliny claimed in his writings that propolis reduces swellings,
77	soothes pain, and heals sores. There is a reference in the Quran on the medicinal properties of
78	the liquid produced by bees, and it is also cited in many religious texts including the Veda and
79	the Bible. ²³ In the USA, apitherapy was practiced nearly 100 years ago by a prominent doctor,
80	Dr. Bodog Beck, who started treating people in his New York City office in the late 1920s.

81	Dr. Beck's book Bee Venom Therapy has been a classic text for 60 years. The last surviving
82	student of Dr. Beck is Charles Marz, a beekeeper, who was known by many as the "King of
83	bee venom therapy." He has been practicing apitherapy for over 60 years and had remarkable
84	results; although most of his experience had been in the treatment of arthritis, his greatest
85	success was in the treatment of multiple sclerosis. ²² In Eastern Asia, bee venom has been
86	researched and practiced throughout the Korean peninsula with a focus on clinical
87	applications of meridian therapy. ²⁴ Finally, John Gerard wrote about the healing powers of
88	propolis in his book The History of Plants and studies conducted in 1919 confirmed that
89	honey comprised antibiotic properties. ²⁵
90	
91	The composition of honeybee venom
92	There are more than 60 identifiable components in bee venom, and melittin is the most
93	prevalent substance. The honeybee venom consists of enzymes, proteins, peptides, and a
94	variety of smaller molecules (amino acids, catecholamines, sugars, and minerals). The main
95	components are proteins and peptides. The compositions of dry bee venom are listed below in
96	Table 1. Most types of venom induce immediate pain because they contain phospholipases,
97	hyaluronidase, and other enzymes.
98	
99	Bioactivities of honeybee venom as medicine
100	Melittin is the main bee venom component and it has many positive biological effects and
101	relatively low toxicity, whereas MCD peptide and Phospholipase A2 are the most toxic
102	components. Diseases of the nervous system lead to changes in glutamate release and uptake
103	due to changing in the activity of glutamate transporters. These have been reported in many
104	neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease, and
105	amyotrophic lateral sclerosis. Glutamatergic toxicity occurs in neuronal cells and microglial
106	cells, and it has been found that BV protects against cell death.

107	Furthermore, BV significantly inhibits the cellular toxicity of glutamate, and pretreatment
108	with BV alters Mitogen-Activated Protein (MAP) kinase activation subsequent exposure to
109	glutamate. These results recommend that treatment with BV may help to reduce glutamatergic
110	cell toxicity in neurodegenerative diseases. ²⁹ Previous studies have investigated the effects of
111	bee venom on the prevention of amphetamine addiction. Furthermore, BV has been reported
112	to induce the activation of catecholaminergic neurons in the hypothalamus of rats. ^{30, 31}
113	
114	Parkinson's disease (PD)
115	Recent studies revealed that BV could protect dopaminergic neurons from degeneration in
116	experimental PD. It has been observed that BV reduces neuro-inflammation in the 1-methyl-
117	4-phenyl-1,2,3,6-tetrahydropyridine(MRTP)-induced model of PD in mice. BV acupuncture
118	effectively protected dopaminergic neurons against MPTP toxicity in mouse models of PD. ^{32,}
119	³³ BV also protects SH-SY5Y human neuroblastoma cells from MRTP-induced apoptotic cell
120	death. ³⁴
121	The neuroprotective effects of bee venom phospholipase A2 are claimed due to the
122	suppression of neuroinflammatory responses in a mouse model of PD. ³⁵ Bee venom
123	acupuncture revealed a neuroprotective effect in a mouse model of Parkinson's disease. ³⁶
124	Another study reported that the peptide apamin of BV can protect DA neurons in a model
125	system of midbrain cultures that mimics the selective demise of these neurons in PD. The
126	protective effect of apamin was attributed to a small increase in excitability of the DA
127	neurons that generated a moderate and persistent elevation in cytosolic calcium. ³⁷
128	The data of one very recent study suggests that BV can induce sustained protection of
129	dopaminergic neurons in an animal model that mimics the chronic degenerative process of
130	PD. The bee venom peptide apamin, a specific blocker of SK channels, only partially
131	reproduced these protective effects. An investigative clinical trial of bee venom (apamin) as a
132	neuro-protective agent in Parkinson's disease patients is currently being conducted. ³⁸

133 **Alzheimer's disease** 134 Individual reports on the positive effects of apamin in dementia and Alzheimer's disease have 135 been reported by Ludvanski.³⁹ Specific brain effects of BV in Alzheimer patients have been 136 elucidated.⁴⁰ Several analyses indicate that small conductance calcium-activated potassium 137 channels-blockade by apamin may enhance neuron excitability, synaptic plasticity, and long-138 term potentiation in the CornuAmmonis (CA1) hippocampal region. Due to this, apamin has 139 been proposed as a therapeutic agent in the treatment of Alzheimer's disease.^{41,42} 140 141 142 Multiple sclerosis (MS) MS is a chronic neurological disease characterized by inflammation, demyelination and 143 axonal degeneration in the central nervous system. BV therapy is widely employed against 144 MS in the hospitals of Japan, South Korea, Taiwan, and other Far East countries. 145 Castro et al. conducted a study., their objective being to evaluate the safety of bee 146 147 venom extract as a potential treatment for patients with progressive forms of MS. This preliminary study suggests safety, however, due to the small numbers studied, there were no 148 definite conclusions regarding efficacy. Consequently, little evidence emerged to support the 149 use of honevbee venom in the treatment of MS.⁴³ 150 Bee sting therapy is increasingly used to treat patients with multiple sclerosis (MS) in 151 the belief that it can stabilize or ameliorate the disease. A randomized cross-over study 152 reported that treatment with bee sting therapy in patients with relapsing multiple sclerosis did 153 not reduce disease activity, disability, or fatigue and did not improve these patients' quality of 154 life.44 155 156 **Amyotrophic lateral sclerosis (ALS)** 157

158	A study was done by South Korean researchers to determine whether BV suppresses motor
159	neuron loss and microglial cell activation in hsoD1 ^{G93A} mutant mice suggested that BV could
160	be a potential therapeutic agent for anti-neuro-inflammatory effects in an animal model of
161	ALS. ⁴⁵
162	One study revealed that BV inhibits cell death and activation of pro-apoptotic
163	signaling in glutamate-stimulated cells. Also, BV attenuates cell toxicity though inhibition of
164	the JNK(June N- terminal Kinase) and p38 pathways. These findings emphasize the clinical
165	importance of BV for treating glutamate-mediated syndromes and inflammatory diseases.
166	These include, for example, ALS. Further investigation of this activity in vivo is required to
167	explain more fully the mechanisms involved and to permit the full exploitation of the
168	therapeutic potential of BV. ⁴⁶
169	
170	Neuralgia
171	There is a case report describing the effects of bee stings on painful post-herpetic neuralgia in
172	a 51-year-old man. The patient was stung by three bees and one day after the bee stings, the
173	patient's painful post-herpetic neuralgia was completely relieved, and the relief lasted for 1
174	and a half months. The researchers then suggested that BV therapy should be further
175	investigated as a potential treatment modality for post-herpetic neuralgia.47
176	A very recent study done by the researchers at the Korea Institute of Orient Medicine
177	demonstrated that a neuropathic pain, cold allodynia, could help in treatment. Their finding
178	was that diluted bee venom (DBV) reduced cold allodynia in sciatic nerve chronic
179	constriction injury (CCI) rats. The possibility that spinal adrenergic receptors could mediate
180	these effects arose. Single or repetitive stimulation of DVB could alleviate CCI-induced cold
181	allodynia via activation of spinal α 2-adrenoceptor. ⁴⁸
182	
183	HIV

184	Melittin is a potent toxin found in bee venom. It can penetrate holes in the protective viral
185	envelope that surrounds the human immunodeficiency virus, as well as other viruses. Free
186	melittin in large-enough quantities can inflict considerable damage. Researchers at
187	Washington University, School of Medicine have demonstrated that nanoparticles containing
188	the bee venom toxin melittin can destroy the HIV virus that causes AIDS. A new study shows
189	that melittin on the nanoparticles fuse with the viral envelopes and form little pore-like attack
190	complexes. They rupture the envelopes, stripping them off the virus and these nanoparticles
191	do not harm normal cells. ⁴⁹
192	
193	Arthritis
194	Bee venom appears to offer new hope to arthritis patients. There are at least two mechanisms
195	involved in the anti-arthritic action of BV: (a) alteration of the immune response, probably via
196	antigen competition; and (b) an anti-inflammatory action via corticosteroids or through an as
197	yet undetermined mechanism. ⁵⁰ One study has been done to evaluate the anti-nociceptive
198	effect of BV injections into a specific acupoint (Zusanli) compared to a non-acupoint in an
199	animal model of chronic arthritis. It demonstrated that BV injection into the Zusanli acupoint
200	has both anti-inflammatory and anti-nociceptive effects on Freund's adjuvant-induced arthritis
201	in rats. These findings raise the possibility that BV acupuncture is a promising alternative
202	medicine therapy for the long-term treatment of rheumatoid arthritis. ^{51, 52}
203	
204	Osteoarthritis (OA)
205	OA is the most common form of joint disease, one that can occur in any joint but usually it
206	affects the hands, knees, hips or spine. A study has been done to compare BV therapy with
207	traditional needle acupuncture for relieving the pain of patients with knee OA. The study
208	showed that a significantly higher proportion of subjects receiving BV acupuncture reported

209	substantial pain relief when compared to those receiving traditional needle acupuncture
210	therapy. ⁵³
211	Another recent analysis was done to investigate bee venom (BV) and hyaluronic acid
212	(HA) in the intra-articular treatment of osteoarthritis in an experimental rabbit model. The
213	authors of this study revealed that intra-articular application of HA and BV for an
214	experimental model of osteoarthritis has no significant influence upon recovery after
215	therapy. ⁵⁴
216	
217	Rheumatoid arthritis (RA)
218	RA is an autoimmune disease where the body perceives tissue in the joints as being a foreign
219	object and fights the tissue through an immune response. ^{55, 56} The clinical effects of bee-sting
220	(venom) therapy in the treatment of RA were investigated by Liu et al. They concluded that
221	combined application of bee-venom therapy and medication is superior to simple use of
222	medication in relieving RA. When bee-sting therapy is used, the commonly-taken doses of
223	Western medicines may be reduced, and the relapse rate declines. ⁵⁷
224	
225	Lyme disease
226	One study revealed that the extraordinary sensitivity of Borrelia burgdorferi to melittin might
227	provide both: firstly, a research reagent useful in the research on selective permeability in
228	microorganisms; and secondly, essential clues to the development of effective new drugs
229	against Lyme disease. ⁵⁸
230	
231	Liver fibrosis
232	A study reported that melittin suppresses the expression of pro-inflammatory cytokines
233	through the nuclear factor (NF- κ B) signaling pathway and prevents TAA-induced liver
234	fibrosis by inhibiting liver inflammation and fibrosis, the mechanism of which is the

235	interruption of the NF-κB signaling pathway. These results suggest that melittin could
236	function as an active agent for preventing liver fibrosis. ⁵⁹
237	
238	Cell regeneration and healing activity
239	Using bee venom to combat skin diseases has been used since the beginning of the 20th
240	century. The following skin diseases, eczemas-like dermatitis, psoriasis, furunculosis, have
241	been successfully treated, and it has been used for the healing of cicatrices and against
242	baldness. The immune boosting effect of BV originated from melittin. A study using an in
243	vitro wound healing model demonstrated that BV could be applied topically to accelerate
244	wound healing through the cell regeneration process. Further, in vivo studies are needed to
245	evaluate the effect of BV treatment in topical application. ⁶⁰ It has been reported that propolis
246	promotes epithelial formation as well as vascular and fibroblastic neoformation of the
247	connective tissue. It can, therefore, be hypothesized that the topical application of propolis to
248	surgical wounds may promote faster epithelial and connective tissue healing. ⁶¹
249	
250	Cancer and tumors
251	Api-toxin has been widely used in the treatment of some immune-related diseases, as well as
252	in recent times for the treatment of tumors. Several cancer cells including renal, lung, liver,
253	prostate, bladder, mammary cancer cells and leukemia cells, can be targets of bee venom
254	peptides such as melittin and phospholipase A2. The cells' cytotoxic effect through the

activation of PLA2 by melittin has been suggested to be the critical mechanism for the anticancer activity of BV. The inducement of apoptotic cell death through several cancer cell
death mechanisms, for instance, the activation of caspase and matrix metalloproteinases, is
important for the melittin-induced anti-cancer effects. The conjugation of melittin with
hormone receptors and gene therapy carrying melittin can be useful as a novel targeted
therapy for some types of cancer, such as prostate and breast cancer.^{59, 62} However, a bee

261	venom peptide lasioglossin II exhibits cytotoxic activity against various cancer cells in vitro. ⁶³
262	Consequently, it seems that melittin, a potent anticancer peptide, may be the better choice
263	than whole BV. BV acupuncture and melittin were used to control neuropathy caused by
264	cancer chemotherapy. ⁶⁴
265	The possible tumor growth- and metastasis-inhibiting effects of bee venom in mice
266	and tumor cell cultures were investigated. Intravenous administration of bee venom in mice
267	significantly reduced the number of metastases in the lung. Researchers proposed that bee
268	venom has an indirect mechanism for inhibiting tumor growth and the promotion of tumor
269	rejection. It is a mechanism based on the stimulation of local cellular immune responses in
270	lymph nodes. Apoptosis, necrosis, and lysis of tumor cells are other possible mechanisms by
271	which bee venom inhibits tumor growth. ⁶⁵
272	Other findings demonstrate that anti-tumor and anti-metastatic effects of bee venom
273	depend highly on the route of injection and close contact between components of the bee
274	venom and tumor cells. These data show that honeybee products given orally or systemically
275	may play an important role in the control of tumor growth and tumor metastasizing ability. ⁶⁶
276	Polypeptides in bee venom (PBV) produced a significant growth inhibition against
277	SMMC-7721 human hepatoma cell line. Analysis of the mechanisms of cell death indicated
278	that PBV induced apoptotic cell death and hence PBV could be employed as a
279	chemotherapeutic agent against tumors. ⁶⁷ Melittin inhibits tumor cell metastasis by reducing
280	cell motility and migration by suppressing the Rac1-dependent pathway, suggesting that
281	melittin is a potential therapeutic agent for hepatocellular carcinoma. ⁶⁸
282	The results of one study demonstrated that low concentration BV possesses a potent
283	suppressive effect on anti-apoptotic responses of tumor necrosis factor (TNF- α /Act D)-treated
284	hepatocytes. It suggests these compounds may contribute substantial therapeutic potential for
285	the treatment of liver diseases. ⁶⁹ Also, the tumor-specific anti-angiogenic activity of BV takes
286	effect during different stages of tumor progression by blocking the tyrosine phosphorylation

287	of vascular endothelial growth factor receptor 2 (VEGFR-2). Thus the application of BV in
288	lung cancer treatment is validated. ⁷⁰
289	
290	Fibrotic diseases
291	BV suppressed CCl ₄ -induced hepatocyte necrosis markers of serum aspartate
292	aminotransferase (AST) and alanine aminotransferase (ALT). It also inhibited the secretion of
293	interleukin (IL)-1βand tumor necrosis factor (TNF)-α. Moreover, BV inhibited carbon
294	tetrachloride (CCl ₄)-induced expression of transforming growth factor (TGF)- β 1, α -smooth
295	muscle actin (SMA) and fibronectin. Similarly, ethanol-treated hepatocytes (ETH) exhibited
296	the ability to suppress IL-1 β significantly, TNF- α , TGF- β 1 and fibronectin when cultured
297	with BV. These results suggest that BV possesses anti-fibrogenic properties that are mediated
298	by the suppression of pro-inflammatory cytokines and fibrogenic gene expression. BV has the
299	substantial therapeutic potential for the treatment of fibrotic diseases. ⁷¹
300	
301	Benign prostatic hyperplasia (BPH)
302	Bee venom in one study was used to reduce inflammation and correct the imbalance between
303	prostate-cell proliferation and cell death, which is associated with the development of BPH, a
303 304	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH
303 304 305	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed
303 304 305 306	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear
 303 304 305 306 307 	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. These results suggest that bee venom has good potential
 303 304 305 306 307 308 	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. These results suggest that bee venom has good potential to treat benign prostatic hyperplasia. ⁷²
 303 304 305 306 307 308 309 	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. These results suggest that bee venom has good potential to treat benign prostatic hyperplasia. ⁷²
 303 304 305 306 307 308 309 310 	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. These results suggest that bee venom has good potential to treat benign prostatic hyperplasia. ⁷² Antimicrobial activity
 303 304 305 306 307 308 309 310 311 	prostate-cell proliferation and cell death, which is associated with the development of BPH, a common disorder in aging men. The efficacy of bee venom against testosterone-induced BPH rats is decreased prostate weight compared to the untreated group, and bee venom suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. These results suggest that bee venom has good potential to treat benign prostatic hyperplasia. ⁷² Antimicrobial activity A study has been done to investigate the antimicrobial activity of bee venom and its main

313	both Gram-positive and Gram-negative bacteria. These had strong anti-MRSA and anti-VRE
314	activity, and they showed a remarkable fungicidal activity with minimum fungicidal
315	concentration values between 30 and 200 μ g/ml. ⁷³
316	
317	Bee venom Immunotherapy
318	Venom Immunotherapy (VIT) is used for preventing or reducing sensitivity to allergens that
319	cause an allergic reaction. The VIT treatment carries a small but significant risk of systematic
320	reaction and is highly effective in treating patients with systemic allergic reactions (SARs) to
321	Hymenoptera (one of the largest orders of insects, comprising sawflies, wasps, bees and ants)
322	venom. VIT is highly effective for reducing allergic sensitivity in people and has been shown
323	to reduce the risk of systematic reactions in people with bee sting allergies by more than 95%.
324	This immunotherapy of bee venom can result in protection against adverse (or allergic)
325	reactions from stings in the great majority of cases. ⁷⁴⁻⁸⁸
326	The sublingual immunotherapy (SLIT) of honeybee venom can significantly reduce
327	reactions in people who are allergic to bee stings. ^{89, 90} SLIT is well-established allergen-
328	specific immunotherapy, and an effective strategy to reorient inappropriate immune responses
329	in allergic patients. ⁹¹ Much higher allergen doses are commonly used in sublingual
330	immunotherapy than in subcutaneous immunotherapy with fewer side effects. ⁹²
331	Venom Immunotherapy treatment failure may be associated with a variety of risk
332	factors. A cohort study has been done to evaluate the association of baseline serum tryptase
333	concentration (BTC) including other parameters with the frequency of VIT failure during the
334	maintenance phase. Furthermore elevated BTC wields a strong ability to reduce the number of
335	treatment failures. The most important factor associated with VIT failure was a honeybee
336	venom allergy. ⁹³
337	
338	General discussions

339 This review indicates that bee venom therapy may be considered a potential source of alternative medicines or drugs. It reveals the much practical potential for the treatment of 340 rheumatic diseases, peripheral nervous system disorders, arthritis, HIV, Parkinson's disease, 341 cancers, and tumors. It helps patients to strengthen their immune system, increase the number 342 of white blood cells and can help overcome high blood pressure. It is also remarkable to note 343 that we have a high number of historical records of treating people in this way. It is clear that 344 345 melittin is a potent anti-inflammatory agent and induces the production of cortisol in the 346 body. Apamin increases cortisol production in the adrenal gland and is also a mild neurotoxin. Adolapin, comprising 2-5% of peptides, acts as an anti-inflammatory and analgesic agent 347 348 because it blocks the cyclooxygenase pathway. Phospholipase A2 comprises 10-12% of peptides, and it is the most destructive component of API-toxin.⁹⁴ 349 Epilepsy is a common chronic central nervous system disorder characterized by 350 repeated malicious seizures. Current medications that have been implemented by medical 351 practitioners mostly suppress the seizures and induce symptomatic relief. However, they do 352 not affect epileptogenesis. A computational study and molecular dynamics simulation results 353 indicated that interaction between S100B (calcium binding protein) and melittin resulted in 354 the structural distortion and inaccessibility of calcium binding domain of the S100B protein. 355 This is required to maintain ionic imbalance due to over-expressed S100B in disease 356 conditions. For this reason, it has been suggested that the regulation of S100B by melittin has 357 the potential to successfully treat epilepsy.⁹⁵ 358 Melittin is a powerful anti-inflammatory and antimicrobial agent that has also recently been 359 shown to inhibit the HIV. In the March 2013 issue of Antiviral Therapy, researchers at 360 Washington University's School of Medicine demonstrated that nanoparticles containing 361

melittin could destroy the HIV virus that causes AIDS.⁹⁶ BV alone significantly produced
anti-arthritic effects. There is plenty of research evidence of individuals using bee venom

364	therapy to successfully treat Lyme disease, and several practitioners are starting to advocate
365	the use of bee venom therapy to cure Lyme disease as well.
366	Researchers at the Korea Institute of Oriental Medicine, Republic of Korea revealed
367	that bee venom should be considered as a candidate of therapeutic agents for Amyotrophic
368	lateral sclerosis (ALS), which is the most common adult-onset neurodegenerative disease. ⁹⁷
369	Concerning cancer, propolis has received special attention in the field of oncology research as
370	a source for prevention and treatment. Accordingly, a large number of compounds such as
371	caffeic acid phenethyl ester (CAPE), artepillin C, and propolin A-C which can engage in
372	anticancer activity have been reported as originating from propolis. Therefore, CAPE can be
373	considered as a potential anti-angiogenic agent that reduces neovascularization. ⁶¹
374	Recent studies have reported that propolis prevents and mitigates diabetes and
375	hypertension. Chinese propolis helped to reduce fasting blood glucose (FBG) and improve
376	oxidative stress and lipid metabolism in the alloxan-induced diabetic rat. ¹¹ An Italian study
377	states that this natural compound and its active principle, CAPE, were able to overcome the
378	harmful effects of IL-1 β . The data demonstrated the protective action of propolis in cartilage
379	alteration appears to be greater than that elicited by Indomethacin, which is commonly
380	employed in joint diseases. ⁹⁸
381	
382	Conclusions
383	By scientific statements, honeybee venom should be considered a candidate of therapeutic
384	agents for regulating various pathological events. As a traditional type of medicine, bee
385	venom has performed strongly against some critical diseases. Thus by appropriate dosing and
386	composing of its components, it can be effectively used as a medicine with much future
387	potential. By reviewing several pharmacological research studies on bee venom's fight
388	against various diseases and disorders, it was observed that the components of honeybee
389	venom not only have different bioactivities to boost the immune defense; they also acted in

390	several different pathways according to diseases encountered. Since clinical studies are		
391	largely missing and need to be undertaken, more scientific experiments with bee venom		
392	treatment should be conducted in order to have more worthwhile evidential documentation of		
393	the bioactivities against diseases. We can conclude that honeybee venom has much promise as		
394	a medication supplement and one mankind will benefit from this ideal natural medication.		
395			
396	Declaration		
397			
398		List of Abbreviation	
	BV	Bee Venom	
	MAP	Mitogen-Activated Protein Kinase	
	PD	Parkinson's disease	
	MS	Multiple Sclerosis	
	ALS	Amyotrophic Lateral Sclerosis	
	DBV	Diluted Bee Venom	
	CCI	Chronic Constriction Injury	
	OA	Osteoarthritis	
	НА	Hyaluronic Acid	
	RA	Rheumatoid Arthritis	
	NF	Nuclear Factor	
	PBV	A polypeptide in Bee Venom	
	TNF	Tumor Necrosis Factor	
	VEGFR	Vascular Endothelial Growth Factor Receptor	
	AST	Aspartate Aminotransferase	
	ALT	Alanine Aminotransferase	
	SMA	Smooth Muscle Actin	

ETH	Ethanol Treated Hepatocytes
BPH	Benign Prostatic Hyperplasia
VIT	Venom Immunotherapy
SLIT	Sublingual Immunotherapy
BTC	Baseline Serum Tryptase Concentration
CAPE	Caffeic Acid Phenethyl Ester
FBG	Fasting Blood Glucose

400	References
401	[1]. Hellner M, Winter D, Von Georgi R, Münstedt K. Apitherapy: Usage and Experience in
402	German Beekeepers. Evidence-based Complement Alt Med: eCAM 2008; 5(4): 475-479.
403	[2].Rao CV, Desai D, Simi B, Kulkarni N, Amin S, Reddy BS. Inhibitory effect of caffeic
404	acid esters on azoxymethane-induced biochemical changes and aberrant crypt foci
405	formation in rat colon. <i>Cancer Res</i> 1993; 53 (18): 4182-4188.
406	[3].Russell PJ, Hewish D, Carter T, et al. Cytotoxic properties of immuno conjugates
407	containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies.
408	<i>Cancer Immunol Immunother</i> 2004; 53 (5): 411-421.
409	[4]. Chen CN, Wu CL, Lin JK. Propolin C from propolis induces apoptosis through activating
410	caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol
411	2004; 67 (1): 53-66.
412	[5]. Chen CN, Wu CL, Lin JK. Apoptosis of human melanoma cells induced by the novel
413	compounds propolin A and propolin B from Taiwanese propolis. Cancer Lett 2007;
414	245 (1-2): 218-31.
415	[6]. Li H, Kapur A, Yang JX, et al. Antiproliferation of human prostate cancer cells by
416	ethanolic extracts of Brazilian propolis and its botanical origin. Int J Oncol 2007; 31 (3):
417	601-606.

418	[7]. Shimizu K, Das SK, Hashimoto T, et al. Artepillin C in Brazilian propolis induces	
419	G(0)/G(1) arrest via stimulation of Cip1/p21 expression in human colon cancer cells. Mo	
420	<i>Carcinog</i> 2005; 44 (4): 293-9.	
421	[8]. Swellam T, Miyanaga N, Onozawa M, et al. Antineoplastic activity of honey in an	
422	experimental bladder cancer implantation model: in vivo and in vitro studies. Int J Urol	
423	2003; 10 (4): 213-219.	
424	[9].Schmidt JO, Blum MS, Overal WL. Comparative enzymology of venoms from stinging	
425	Hymenoptera. Toxicon 1986; 24(9): 907-921.	
426	[10]. Zhu W, Chen M, Shou Q, Li Y, Hu F. Biological Activities of Chinese Propolis and	
427	Brazilian Propolis on Streptozotocin-Induced Type 1 Diabetes Mellitus in Rats. Evidence-	
428	based Complement Alt Med: eCAM 2011; (2011): 468529.	
429	[11]. Koya-Miyata S, Arai N, Mizote A, et al. Propolis Prevents Diet-Induced	
430	hyperlipidemia and mitigates weight gain in Diet-Induced obesity in mice. Biol. Pharm.	
431	Bull 2009; 32 (12): 2022-2028.	
432	[12]. Fearnley J, Bee vital propolis. URL: http://www.beevitalpropolis.com; Aug, 2013.	
433	[13]. Da Silva FB, De Almeida JM, De Sousa SMG. Natural medicaments in endodontics –	
434	a comparative study of the anti-inflammatory action. <i>Braz Oral Res</i> 2004; 18 (2): 174-9.	
435	[14]. Ahuja V, Ahuja A. Apitherapy- A sweet approach to dental diseases. Part II: Propolis.	
436	J Academy Adv Dental Res 2011; 2(1): 1-7.	
437	[15]. Ayansola AA, Davies BA. Apitherapy in Southwestern Nigeria: An assessment of	
438	therapeutic potentials of some honeybee products. J Pharm Biomed Sci 2012; 2(2): 9-15.	
439	[16]. Mwakatobe A. Medicinal uses of bee products in Tanzania. <i>Bee keeping Dev</i> 2001;	
440	60 : 4-5.	
441	[17]. Meda A, Lamien CE, Millogo J, Romits M, Nacoulma OG. Therapeutic uses of honey	
442	and honeybee larvae in central Burkina Faso. J Ethnopharmacol 2004; 95(1): 103–107.	

443	[18]. Klobusitzky DD. Animal venoms in therapy. In: venomous animals and their venoms,
444	New York: Venomous Invertebrates, Academic Press; 1971, (3); 443-478.
445	[19]. Billingham ME, Morley J, Hanson JM, Shipolini RA, Vernon CA. An anti-
446	inflammatory peptide from bee venom. Nature 1973; 245: 163-164.
447	[20]. Hider RC. Honeybee venom: A rich source of pharmacologically active peptides.
448	<i>Endeavor</i> 1988; 12 (2): 60-65.
449	[21]. Liu H, Tong F. Advances in the study of bee venom and its clinical uses. Zhong Yao
450	<i>Cai. Jun.</i> 2003; 26 (6): 456-458.
451	[22]. Rose A. Bees in balance. Bethesda, Maryland Starpoint Enterprises Ltd; 1994.
452	[23]. El-Barnby MA. Honeybees in the Koran and medicine. Egypt: Al-Ahram Centre for
453	Translation and Publication; 1994, p. 268.
454	[24]. Yin CS, Koh HG. The first documental record on bee venom therapy in Oriental
455	medicine: 2 prescriptions of bee venom in the ancient Mawangdui books of Oriental
456	medicine. J Kor Acu Mox Soc 1998; 15(1): 143–7.
457	[25]. WBR (Web-Based Reference 1) 2013. History of bee venom. Available at
458	http://medicineworld.org/alternative/apitherapy/history-of-apitherapy.html.
459	[26]. Banks BEC, Shipolini RA. Chemistry and pharmacology of honey-bee venom. In Piek
460	T (ed.) Venoms of the Hymenoptera. London: Academic Press; 1986, p. 330-416.
461	[27]. Dotimas EM, Hider RC. Honeybee venom. <i>Bee World</i> 1987; 68 (2): 51-70.
462	[28]. Shipolini RA. Biochemistry of bee venom. In: Handbook of natural toxins. New York:
463	TnAT (ed.), Marcel Dekker; 1984, 732 (2): 49-85.
464	[29]. Lee S, Yang E, Choi S, et al. Effects of Bee Venom on Glutamate-Induced Toxicity in
465	Neuronal and Glial Cells. Evidence-Based Complement Alt Med 2012; 368196.
466	[30]. Kwon YB, Li J, Kook JA, et al. Bee venom suppresses methamphetamine-induced
467	conditioned place preference in mice. Neurol. Res 2010; 32: 101-106.

468	[31]. Kwon YB, Han HJ, Beitz AJ, Lee JH. Bee venom acupoint stimulation increases Fos
469	expression in catecholaminergic neurons in the rat brain. Mol Cell 2004; 17: 329-333.
470	[32]. Doo AR, Kim S, Kim S, et al. Neuroprotective effects of bee venom pharmaceutical
471	acupuncture in acute 1-Parkinson's disease. Neurol Res Suppl 2010; 1: 88-91.
472	[33]. Kim JI, Yang EJ, Lee M, et al. Bee venom reduces neuroinflammation in the MPTP-
473	induced model of Parkinson's disease. Int J Neurosci 2011; 121: 209–217.
474	[34]. Doo AR, Kim SN, Kim ST, et al. Bee venom protects SH-SY5Y human
475	neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.
476	Brain Res 2012; 1429 : 106-115.
477	[35]. Chung ES, Bae H. Neuroprotective effects of bee venom phospholipase two by
478	suppression of neuroinflammatory responses in a mouse model of Parkinson's disease: the
479	role of CD4+CD25+Foxp3+regulatory T cells. <i>J Immunol</i> 2013; 190 : 43-24.
480	[36]. Yoon MH, Lee DW, Kim HJ, et al. Investigation of the neuroprotective effects of bee-
481	venom acupuncture in a mouse model of Parkinson's disease by using
482	immunohistochemistry and In-vivo H-1 magnetic resonance spectroscopy at 9.4 T. J
483	Korean Phys Soc 2013; 62(2): 320-327.
484	[37]. Salthun-Lassalle B, Hirsch EC, Wolfart J, Ruberg M, Michel PP. Rescue of
485	Mesencephalic Dopaminergic Neurons in Culture by Low-Level Stimulation of Voltage-
486	Gated. J Neurosci 2004; 24(26): 5922–5930.
487	[38]. Alvarez-Fischer D, Noelker C, Vulinović F, et al. Bee Venom and Its Component
488	Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model. PLoS ONE
489	2013; 8 (4): 61700.
490	[39]. Clark C, Gordon R, Harris B, Helvie C. Encyclopedia of Complementary Health
491	Practice. Springer, 1999.

492	[40].	Ikeda M, Dewar D, McCulloch J. Selective reduction of [125I]-apamin binding sites
493	in	Alzheimer hippocampus: a quantitative autoradiographic study. <i>Brain-Res</i> 1991; 567 :
494		51-56.
495	[41].	Behnisch T, Rayman K. Inhibition of apamin-sensitive calcium-dependent potassium
496	(channels facilitates the induction of long-term potentiation in the CA1 region of rat
497		hippocampus in vitro. Neurosci Lett. 1998; 253(2): 91-94.
498	[42].	Romero-Curiel A, Lopez-Carpinteyro D, Gamboa C, et al. Apamin induces plastic
499	cha	anges in hippocampal neurons in senile Sprague–Dawley rats. <i>Synapse</i> 2011; 65 (10):
500		1062-72.
501	[43].	Castro HJ, Mendez-Lnocencio JI, Omidvar B, et al. A phase I study of the safety of
502	ho	oneybee venom extract as a possible treatment for patients with progressive forms of
503		multiple sclerosis. <i>Allergy Asthma Proc</i> 2005; 26 (6): 470-6.
504	[44].	Wesselius T, Heersema DJ, Mostert JP, et al. A randomized crossover study of bee
505		sting therapy for multiple sclerosis. <i>Neurology</i> 2005; 65 (11): 1764-8.
506	[45].	Yang EJ, Jiang JH, Lee SM, et al. Bee venom attenuates neuroinflammatory events
507	and	extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 2010;
508		7: 69.
509	[46].	Lee SM, Yang EJ, Choi SM, et al. Effects of Bee Venom on Glutamate-Induced
510		Toxicity in Neuronal and Glial Cells. Evidence-Based Complement Alt Med 2012;
511		368196.
512	[47].	Janik JE, Wania-Galicia L, Kalauokalani D. Bee stings-a remedy for postherpetic
513		neuralgia? A case report. Req Anesth Pain Med 2007; 32(6): 533-5.
514	[48].	Kang SY, Roh JH, Lee HJ, Lee JH. Activation of Spinal α 2-Adrenoceptors Using
515	Ι	Diluted Bee Venom Stimulation Reduces Cold Allodynia in Neuropathic Pain Rats.
516		Evidence-Based Complement Alt Med 2012; 784713.

517	[49]. Hood JL, Jallouk AP, Campbell N, Ratner L, Wickline SA. Cytolytic nanoparticles
518	attenuate HIV-1 infectivity. Antiviral Ther 2013; 18: 95-103.
519	[50]. Chang YH, Bliven ML. Anti-arthritic effect of bee venom. Agents Actions 1979; 9(2):
520	205-11.
521	[51]. Kwon YB, Lee JD, Lee HJ, et al. Bee venom injection into an acupuncture point
522	reduces arthritis associated edema and nociceptive responses. <i>Pain</i> 2001; 90 (3): 271-80.
523	[52]. Kwon YB, Lee HJ, Han HJ, et al. The water-soluble fraction of bee venom produces
524	antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci
525	2002; 71 (2): 191-204.
526	[53]. Kwon YB, Kim JH, Yoon JH, et al. The analgesic efficacy of bee venom acupuncture
527	for knee osteoarthritis: a comparative study with needle acupuncture. Am J Chin Med
528	2001; 29 (2): 187-99.
529	[54]. Ozlem NH, Ozak A, Yardimci C. Evaluation of bee venom and hyaluronic acid in the
530	intra-articular treatment of osteoarthritis in an experimental rabbit model. Res Vet Sci
531	2012; 93 (1): 488-93.
532	[55]. Sommer O, Kladosek A, Weiler V, et al. Rheumatoid Arthritis: A Practical Guide to
533	State-of-the-Art Imaging, Image Interpretation, and Clinical Implications. Radiographics
534	2005; 25 : 381-398.
535	[56]. Visser H. Early Diagnosis of Rheumatoid Arthritis. Best Pract Res Clin Rheumatol
536	2005; 19 : 55-72.
537	[57]. Liu XD, Zhang JL, Zheng HG, et al. Clinical randomized study of bee-sting therapy
538	for rheumatoid arthritis. Zhen Ci Yan Jiu 2008; 33(3): 197-200.
539	[58]. Lubke LL, Garon CF. The antimicrobial agent melittin exhibits powerful in vitro
540	inhibitory effects on the Lyme disease spirochete. Clin. Infect. Dis 1997; 25(1): S48 51.

541	[59]. Park MH, Choi MS, Kwak DH, et al. Melittin attenuates liver injury in thioacetamide-
542	treated mice through modulating inflammation and fibrogenesis. <i>Prostate</i> 2011; 71 (8):
543	801-12.
544	[60]. Sang MH, Kwan KP, Young MN, Nicola M, Greig D. Effects of honeybee
545	(Apismellifera) venom on keratinocyte migration in vitro. <i>Phcog Mag</i> 2013; 9 (35): 220-
546	226.
547	[61]. Feng LI, Awale S, Tezuka Y, Kadota S. Cytotoxic constituents of propolis from
548	Myanmar and their structure-activity relationship. <i>Biol Pharm Bull</i> 2009; 32 (12): 2075-
549	2078.
550	[62]. Oršolić N. Bee venom in cancer therapy. <i>Cancer Metastasis Rev</i> 2012; 31 : 173-94.
551	[63]. Bandyopadhyay S, Lee M, Sivaraman J, Chatterjee C. Model membrane interaction
552	and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.
553	<i>Biochem Biophys Res Commun</i> 2013; 430 (1): 1-6.
554	[64]. Park J, Jeon J, Yoon J, et al. Effects of sweet bee venom pharmacopuncture treatment
555	for chemotherapy-induced peripheral neuropathy: A case series. Integr Cancer Ther 2012;
556	11 (2): 166-171.
557	[65]. Orsolić N, Silver L, Verstovsek S, Terzić S, Basić I. Inhibition of mammary
558	carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon
559	2003; 41 (7): 861-70.
560	[66]. Orsolić N, Knezević A, Sver L, et al. Influence of honey bee products on
561	transplantable murine tumours. Vet Comp Oncol 2003; 1(4): 216-226.
562	[67]. Hu H, Chen D, Li Y, Zhang X. Effect of polypeptides in bee venom on growth
563	inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in-vitro
564	and Balb/c nude mice in-vivo. J Pharm Pharmacol 2006; 58(1): 83-9.
565	[68]. Liu S, Yu M, He Y. Et al. Melittin prevents liver cancer cell metastasis through
566	inhibition of the Rac1-dependent pathway. <i>Hepatology</i> 2008; 47(6): 1964-73.

567	[69]. Park H, Kim KH, Kim SJ, et al. Bee venom protects hepatocytes from tumor necrosis
568	factor-alpha and actinomycin D. Arch Pharm Res 2010; 33(2): 215-23.
569	[70]. Huh JE, Baek YH, Lee MH, et al. Bee venom inhibits tumor angiogenesis and
570	metastasis by inhibiting tyrosine phosphorylation of VEGFR-2 in LLC-tumor-bearing
571	mice. Cancer Lett 2010; 292 (1): 98-110.
572	[71]. Kim SJ, Park JH, Kim KH, et al. Bee venom inhibits hepatic fibrosis through
573	suppression of pro-fibrogenic cytokine expression. <i>Am J Chin Med</i> 2010; 38 (5): 921-35.
574	[72]. Chung KS, An HJ, Cheon SY, Kwon KR, Lee KH. Bee venom suppresses
575	testosterone-induced benign prostatic hyperplasia by regulating the inflammatory response
576	and apoptosis. Exp Biol Med (Maywood) 2015; pii: 1535370215590823.
577	[73]. Al-Ani I, Zimmermann S, Reichling J, Wink M. Pharmacological synergism of bee
578	venom and melittin with antibiotics and plant secondary metabolites against multi-drug
579	resistant microbial pathogens. <i>Phytomedicine</i> 2015; 22(2): 245-55.
580	[74]. Boyle RJ, Elremeli M, Hockenhull J, et al. Venom immunotherapy for preventing
581	allergic reactions to insect stings. Cochrane Database Syst Rev 2012; 2012: 10.
582	[75]. Brown SG, Wiese MD, Blackman KE, Heddle RJ. Ant venom immunotherapy: a
583	double-blind, placebo-controlled, crossover trial. Lancet 2003; 361(9362): 1001.
584	[76]. Bonifazi F, Jutel M, Biló BM, et al. Prevention and treatment of Hymenoptera venom
585	allergy: guidelines for clinical practice. <i>Allergy</i> 2005; 60 (12): 1459.
586	[77]. Golden DB, Moffitt J, Nicklas RA, et al. Stinging insect hypersensitivity: a practice
587	parameter update. J Allergy Clin Immunol 2011; 127(4): 852.
588	[78]. Hunt KJ, Valentine MD, Sobotka AK, et al. A controlled trial of immunotherapy in
589	insect hypersensitivity. N Engl J Med 1978; 299(4): 157.
590	[79]. Müller U, Thurnheer U, Patrizzi R. et al. Immunotherapy in bee sting hypersensitivity:
591	Bee venom versus whole body extract. <i>Allergy</i> 1979; 34 (6): 369.

592	[80]. Müller U, Helbling A, Berchtold E. Immunotherapy with honeybee venom and yellow
593	jacket venom is different regarding efficacy and safety. J Allergy Clin Immunol 1992;
594	89 (2): 529.
595 596 597	 [81]. Kim SJ, Park JH, Kim KH et al. Bee venom inhibits hepatic fibrosis through suppression of pro-fibrogenic cytokine expression. <i>Am J Chin Med</i> 2010; 38(5): 921-35. [82]. Boyle RJ, Elremeli M, Hockenhull J, et al. Venom immunotherapy for preventing
598	allergic reactions to insect stings. Cochrane Database Syst Rev 2012; 10. Art. No.:
599	CD008838. doi: 10.1002/14651858.CD008838.pub2.
600	[83]. Hunt KJ, Valentine MD, Sobotka AK, et al. A controlled trial of immunotherapy in
601	insect hypersensitivity. N Engl J Med 1978; 299(4): 157.
602	[84]. Müller U, Thurnheer U, Patrizzi R, et al. Immunotherapy in bee sting hypersensitivity:
603	Bee venom versus whole body extract. <i>Allergy</i> 1979; 34 (6): 369.
604	[85]. Brown SG, Wiese MD, Blackman KE, Heddle RJ. Ant venom immunotherapy: a
605	double-blind, placebo-controlled, crossover trial. Lancet 2003; 361(9362): 1001.
606	[86]. Müller U, Helbling A, Berchtold E. Immunotherapy with honeybee venom and yellow
607	jacket venom is different regarding efficacy and safety. J Allergy Clin Immunol 1992;
608	89 (2): 529.
609	[87]. Ruëff F, Przybilla B, Müller U, Mosbech H. The sting challenge test in Hymenoptera
610	venom allergy: Position paper of the subcommittee on insect venom allergy of the
611	European academy of allergology and clinical immunology. <i>Allergy</i> 1996; 51 (4): 216.
612	[88]. Bonifazi F, Jutel M, Biló BM, et al. Prevention and treatment of Hymenoptera venom
613	allergy: guidelines for clinical practice. <i>Allergy</i> 2005; 60 (12): 1459.
614	[89]. Golden DB, Moffitt J, Nicklas RA, et al. Stinging insect hypersensitivity: a practice
615	parameter update. J Allergy Clin Immunol 2011; 127(4): 852.
616	[90]. Moffitt JE, Golden DBK, Reisman RE, et al. Stinging insect hypersensitivity: A
617	practice parameter update. J Allergy Clin Immunol 2004; 114(4): 869-869.

	Enzymes	Phospholipase A2	
	Class of molecules	Components	
640	Table 1.	The composition of honeybee venom. ²⁶⁻²⁸	
639			
638			
637	cartilage an	nd chondrocytes. Life Sci 2003; 73(8): 1027-35.	
636	[98]. Cardile V, Panico A,	Gentile B, Borrelli F, Russo A. Effect of propolis on human	
635		2013; 13 (1): 179.	
634	in hSOD1G85R-expressi	ng NSC34 motor neuron cells. BMC Complement Altern Med	
633	[97]. Kim SH, Jung SY, Lee	KW, et al. Bee venom effects on ubiquitin-proteasome system	
632	attenuate HI	V-1 infectivity. Antivir Ther 2013; 18(1): 95-103.	
631	[96]. Hood JL, Jallouk AP,	Campbell, N, Ratner L, Wickline SA. Cytolytic nanoparticles	
630	2013; 1: 55–60.		
629	S100B protein activity inhibition by melittin for the treatment of epilepsy. Int J Comp App		
628	[95]. Verma N, Karmakar	M, Singh KP, Smita S. Structural and dynamic insights into	
627	hexagon.net/files/file/fileE/Health/VenomBookReview.pdf. Accessed on May 2014.		
626	[94]. Stefan B. Bee product science, Available at http://www.bee-		
625	<i>PLoS ONE</i> 2013; 8 (5): e63233.		
624	of allergology and clinical immunology interest group on insect venom hypersensitivity.		
623	immunotherapy: A prospective observational multicenter study of the European Academy		
622	[93]. Ruëff F, Przybilla B,	Biló MB, et al. Clinical effectiveness of Hymenoptera venom	
621	Allergy Asthma Rep 2014; 14 (11): 473.		
620	[92]. Jay-DC, Nadeau KC. Immune mechanisms of sublingual immunotherapy. Curr		
619	comprehensive rev	iew. J Allergy Clin. Immunol 2006; 117(5): 1021-1035.	
618	[91]. Cox LS, Larenas L	innemann D, Nolte H, et al. Sublingual immunotherapy: A	

	Hyaluronidase
	Acid Phosphomonoesterase
	Lysophospholipase
	glucosidase
Peptides	Melittin Pamine
	Mast Cell Degranulating Peptide (MCD)
	Secapin
	Procamine
	Adolapin
	Protease inhibitor
	Tertiapin
Active amines	Histamine
	Dopamine (DA)
	Noradrenaline
Amino Acids	Aminobutyric acid
	Amino acids
Sugars	Glucose & fructose
Phospholipids	
Volatile compounds	Complex ethers
Minerals	P, Ca, Mg