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Review Paper 

Green synthesis of metallic nanoparticles using leaf extract of Calotropis spp and their 

applications: A Review. 

Abstract 

Biosynthesis of metallic nanomaterials has become an important field of research. The synthesis 

of metallic nanomaterials using plant extracts is a single-step, simple, rapid, bottom-up green 

synthesis (Eco-friendly). The reducing agents involved include the various water-soluble 

secondary metabolites (Alkaloids, phenolic compounds, terpenoids, carbohydrates etc.) of the 

plant extracts. Diverse salts of metals of the transition metal series such as Gold (Au), Silver 

(Ag), Iron (Fe), Zinc (Zn) and Copper (Cu) etc, have been used in the synthesis. This review 

focused on the use of extracts of Calotropis spp in the synthesis of metallic nanoparticles. The 

methods of characterization and various applications of the synthesized nanoparticles are also 

discussed. 
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10 Introduction 

This review focused on synthesis of metallic nanomaterials using plant extracts of Calotropis 

spp. The methods used in characterizing the nanomaterials are also considered. The emerging or 

potential applications of these nanomaterials in clinical diagnostics, therapy (Azzazy et al., 2012; 
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Chen et al., 2012; Daria et al., 2012; Fortina et al., 2007; Lagunho and Baptista, 2012; Sahoo et 

al., 2007; Salata et al., 2004; Seil and Webster, 2012;Wagner et al., 2006; Youns et al., 2011; 

zhang et al., 2008), photovoltaics (Yoon et al., 2010), food storage (Costa et al., 2011), textiles 

(Perelshtein et al., 2008) as well as in environmental technology (Li et al., 2008) is highlighted. 

Nanomaterials could be synthesized using various physical and chemical methods (CaO, 2004; 

Sepeur, 2008) but, biosynthesis is more preferred because of its non-toxicity and environment-

friendly, and could be used to produce large quantities of nanoparticles that are free of 

contamination with well defined size and morphology (Hutchinson, 2008).Plant extracts ability 

to reduce metal ions has been known since 1900’ but, the nature of the reducing agents involved 

was not well understood (Mittal et al., 2013). Within the last 30 years,  phytosynthesis of 

nanoparticles has attracted considerable attention (Ankanwar, 2010; Armendariz et al., 2004; 

Beattie and Haverkamp, 2011; Gran and Li, 2012; Gardea-Torresdey et al., 2003; Gericke and 

Pinches, 2006; Haverkamp and Marshall, 2009; Iravani, 2011; Kandasamy et al., 2012; Kumar 

and Yadav, 2009; Marshall et al., 2007; Park et al., 2011; Parsons et al., 2007). 

When compared to whole plant, the use of plant extracts for synthesis of nanoparticles is simpler 

(Mittal et al., 2013). Plant extract-mediated synthesis is becoming a focus a attention (Ali et al., 

2011; Ankamwar, 2010; Babu abd Prabu, 2011; Benerjee, 2011; Bankar et al., 2010; Bar et al., 

2009; Baskaralingam et al., 2012; Castro et al., 2011; Chandran et al., 2006; Daisy and Sapriye, 

2012; Dubey et al., 2009; Kaler et al., 2011; Kesharwani et al., 2009; Lee et al., 2011; Singh et 

al., 2010;Song et al., 2009). The synthesis processes using plant extracts are readily scalable and 

may be less expensive (Iravani, 2011) compared to microbial processes of synthesis (Dhillon et 

al., 2012; Li et al., 2011; Wangpipat et al., 2011; Sastry et al., 2003) and whole plants 

(Armrndariz et al., 2004; Beattie and Haverkamp, 2011; Haverkamp and Marshall, 2009; Kumar 

and Yadav, 2009; Marshall et al., 2007). 

Plant extracts may act as reducing or stabilizing agent or both, in the synthesis of nanoparticles 

(Kumar and Yadav, 2009). The source of the plant extract is known to influence the 

characteristics of the nanoparticles synthesized (Kumar and Yadav, 2009). Plant extract-

mediated synthesis of nanoparticles is a single-step process involving mixing of the aqueous 

extract of the plant with an aqueous solution of the metal salt of interest (Mittal et al., 2013). The 

reaction occurs at room temperature and is completed in a matter of minutes. Since there are 
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various components of the extract involved in the bioreduction, the process tends to be relatively 

complex (Mittal et al., 2013). 

Metallic nanoparticles are the most flexible of the nanoparticles due to the synthetic control of 

their shape, size, composition, structure, assembly and encapsulation, as well as tunability of 

their optical properties. Metallic nanoparticles have been used in vivo and in vitro in diagnostics 

(Vio Vet., 2017; Baptista et al., 2011; Azzazy and Mansoor, 2009; Radwan and Azzazy, 2009) 

and drug delivery (Ahmad et al., 2010; Adeyemi and Sulaiman, 2015). The wide application of 

metallic nanoparticles is due to their large surface area per unit mass, unique thermal, optical and 

electrical properties.  

There are only two species of Calotropis (family: Asclepiadaceae) plant widely distributed across 

Africa, Asia and South America (Mascolo et al., 1988). The plant is erect, tall, large, branched 

and perennial with milky latex throughout. The different parts of the plant are used in traditional 

medicine for the treatment of painful muscular spasm, dysentery, fever, rheumatism, asthma and 

as an expectorant and purgative. A large quantity of latex can be easily collected from its green 

parts (Irvine, 1961). Local people use it successfully to combat some cutaneous fungal 

infections. The abundance of latex (containing alkaloids) in the green parts of the plant 

reinforces the idea that it produced and accumulated latex as a defence strategy against 

organisms such as virus, fungi and insects (Lahrsini et al., 1997). The presence of plant defence 

related proteins such as hevein, an alpha-amylase inhibitor has been described to occur in the 

latex secretion of other plants (Wititsuwannakul et al., 1998).  

2.0 Characterization of nanoparticles of Calotropis spp 

Nanoparticles are generally characterized by their size, shape, surface area and dispersity (Jiang 

et al., 2009). The characterization techniques employed for the metallic nanoparticles 

synthesized via the extracts of Calotropis ssp include ; Scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), ultraviolet-visible (UV-Visible) spectroscopy, X-ray 

diffraction(XRD), Fourier transform infra-red spectroscopy (FTIR), dynamic light scattering 

(DLS) and SAED (Ratil kumar Das et al., 2012; Alkammash, 2017; Prevani and Gayathramma, 

2015; Nipane et al., 2016). 
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UV-visible spectroscopy is a technique commonly used (Pal et al., 2007) where light of 

wavelength 300-800nm are used to characterize metallic nanoparticles of size 2-100nm 

(Feildheim and Foss, 2002). Absorption measurements in the wavelength ranges 400-450 (Hang 

and Yang, 2004) and 500-530nm (Shankar et al., 2004) have been used in characterizing silver 

and gold nanoparticles respectively. 

The dynamic light scattering (DLS) have been used in characterizing the surface charge and size 

distribution of the particles suspended in a liquid (Jiang et al., 2009).  

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used for 

characterizing the morphology of nanoparticles (Shaffer et al., 2009). TEM has higher resolution 

(1000-fold) than SEM (Eppler et al., 2000). FTIR spectroscopy is used for characterizing the 

surface chemistry of nanoparticles (Chitrani et al., 2006) where functional groups like carbonyl, 

hydroxyl and other chemical residues are attached to the surface.  

XRD is used for characterizing crystal structures of the nanoparticles and also for phase 

identification (Sun et al., 2000). The diffraction pattern generated when X-rays penetrate the 

nanoparticles is used to obtain structural information when compared with standards. Energy 

dispersion spectroscopy (EDS) is used to establish the composition of the synthesized metallic 

nanoparticles (Strasser et al., 2010). 

3.0 Synthetic methods of nanoparticles 

There are two major pathways for synthesizing nanoparticles. These are the “Top-down” and 

“Bottom-up” approach (Sepeur, 2008).  

In “Top-down” synthesis, nanoparticles are produced by size reduction from a suitable starting 

material (Meyers et al., 2006). The size reduction is achieved by various physical and chemical 

treatments (Fig.1) (Mittal et al., 2006). Top-down synthesis introduce imperfections in the 

surface structure of the product, which is a setback since the surface chemistry and other physical 

properties of nanoparticles are dependent on the surface structure (Thakkar et al., 2010)  

Bottom-up synthesis involves building the nanoparticles from smaller entities by joining atoms, 

molecules or particles (Mukherjee et al., 2001). The building blocks of the nanoparticles are 

formed first and assembled to produce the final particles (Thakkar et al., 2009) (Fig.2) (Mittal et 
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al., 2013). Bottom-up approach relies on chemical and biological methods of production. The 

biological method of synthesis based on micro-organisms have been widely reported (Dhillon et 

al., 2012;Gericke and Pinches, 2006; Kaler et al., 2011; Korbekandi et al., 2009; Li et al., 2011; 

Mohanpuria et al., 2008). Even though microbial synthesis is readily scalable, environment-

friendly and compatible with the use of product for medical applications but, the production of 

the micro-organisms is often more expensive than the production of plant extracts. Plant extract-

mediated synthesis have been widely reported (Gardea-Torresdey et al., 2003; Park et al., 2011; 

Haleemkhan et al., 2015). 

4.0 The use of extracts of Calotropis spp in metallic nanoparticles synthesis 

In the production of metallic nanoparticles using plant extracts, the extract is simply mixed with 

a solution of the metal salt at room temperature and the reaction is complete within minutes 

(Mittal et al., 2013). 

Nanoparticles of silver, gold and many other metals have been synthesized this way (Li et al., 

2011). The nature of the extract, its concentration, the concentration of the metal salt, the pH, the 

temperature and contact time are known to affect the rate of production of nanoparticles, their 

quantity and other characteristics (Dwivedi and Gopal, 2010).    

Babu and Prabu (2011) synthesized 35nm silver nanoparticles (AgNPs) using flower extract of 

C. procera. Baskaralingham et al. (2012) used a leaf extract of C. gigantean to produce AgNPs 

that showed antibacterial activity against vibrio alginolyticus (Baskaralingham et al., 2012). 

Alkammash (2017) reported the synthesis of AgNPs using leaf extract of C. procera. The 

nanoparticles were spherical and mostly aggregated with size ranges of 8-20nm. In a study 

reported by Pavani and Gayathramma (2015), they used flower extract of C. gigantean to 

synthesize AgNPs within 60 minutes. The AgNPs were polydispersed, crystalline and yeast-like 

with size ranges of 10-50nm. XRD confirmed the face-centred cubic structure of the AgNPs.  
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Fig. 1.Various approaches for making nanoparticles and cofactor dependent bioreduction (Mittal 

et al, 2013).  

The summary of the various reports of synthesis of metallic nanoparticles using the extracts of 

the two species of Calotropis (C. procera and C. gigantean) is given in (Table 1). 

Nipane et al. (2016) synthesized AgNPs using flower extract of C. procera. The particles were 

spherical, with size ranges of 20-35nm, and their surface showed selective adsorption of Fe2+ 

ions in aqueous medium which could be used in quantitative estimation of Fe2+ ions in 

environmental samples. 

Chandrasekar (2014) reported that AgNPs, synthesized from leaf extract of C. gigantean, 

showed mosquito larvicidal property against A. aegypti and A. stephensis.  
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Fig.2. Schematic of biosynthesis of nanoparticles  

In a study by Sivakumar et al. (2011), AgNPs of various sizes were synthesized using leaves 

extract of C. gigantean. Spherical AgNPs (Nipane et al., 2016) with average size of 55nm were 

synthesized from leaf extract of C. procera (Vinothkumar and Udayasoorian, 2015).  

Gold nanoparticles with  average size of 45nm have been synthesized using aqueous leaf extract 

of C. procera. FTIR indicated that phenolic phytochemicals were responsible for the reduction 

process as reported by Tamar and Gary (2013).  The AuNPs showed inhibitory effect on the 

growth of MCF-cell line with increase in concentration. In a microwave-mediated synthesis, 

Ratil Kumar Das et al. (2012) used latex of C. procera to produce crystalline and spherical, gold 

nanoparticles (AuNPs), stable at room temperature for a long period (6 months) with size ranges 

of 5-13nm. The surface of the AuNPs was coated by organic materials.  
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Table1. Summary of synthesis of metallic nanoparticles from Calotropis spp     

Plant/Part                     Nanoparticles    size/Application                 Reference 
C. procera flower  AgNPs    35nm            Babu & Prabu, 2011.  

C. gigantean leaf AgNPs     antibacterial activity.         Baskaralingham et al., 2012;  
                  Priyanka et al., 2015. 

C. procera latex AgNPs     Antibacterial activity.        Nadia Hussein Mohamed,  
                  2014.  

C. procera leaf AgNPs     8-20nm            Alkammash, 2017. 

C. gigantean flower AgNPs     10-50/Environmental         Pavani & Gayathramma,  
        decontamination.           2015. 

C. procera flower AgNPs     20-35nm            Nipane et al., 2016. 

C. gigantean leaf AgNPs     antilavicidal activity           Chandrasekar et al., 2014. 

C. gigantean latex AgNPs     antibacterial activity           Chandrasekar, 2015. 

C. gigantean leaf AgNPs               Sivakumar et al., 2011. 

C. procera leaf AgNPs     55nm            Nipane et al., 2016; Vinothkumar  
                  & Udayasoorian, 2015. 

C. procera leaf AuNPs     45nm/Inhibitory effect         
           on cancer cells.           Tamar & Gary, 2013.   

C. procera latex AuNPs     5-13nm            Patil Kumar das et al., 2012. 

C. procera leaf ZnONPs    15-25nm/Environmental        
           decontamination.           Gawade et al., 2017.   

C. procera leaf ZnONPs    30-35nm/antibacterial        Vidya et al., 2013; 

         activity.             Poovizhi & Krishnaveni,2015. 

C. gigantean leaf ZnONPs    Growth enhancement.          Sadhankumar & Lalit, 2017. 

C. gigantean latex ZnONPs    Cytotoxic effect.  Panda et al., 2017. 

C. procera leaf, root, ZnONPs    Antibacterial effect.  Salem & Schild, 2015. 

    Flower & latex          

C. gigantean leaf TiONPs    antiparasitic activity. Marimathu et al., 2013. 

C. procera leaf CuONPs    environmental   Dubey & Sherma, 2017. 

                   Decontamination.    
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C. gigantean leaf CuONPs    Counter electrode in  Sherma et al., 2015.  

        DSSCs.   

C. gigantean flower CuONPs    Cytotoxic effect.  Kumari et al., 2017. 

C. gigantean flower ZVIN        Environmental   Srivanthi et al., 2018. 

        decontamination.  

C. gigantean leaf FeONPs    3-6nm   Davendra et al., 2013.  

Gawade et al. (2017) used leaves of C. procera to produce spherical ZnO nanoparticles which 

associate to hexagonal wurtzite structure with sizes ranging from 15-25nm. The nanoparticles 

were utilized for the degradation of methyl orange. Vidya et al (2013) were able to produce ZnO 

nanoparticles with sizes of between 30-35nm. Poovizhi and Krishnaveni (2015) reported that 

ZnO nanoparticles exhibited high bactericidal efficacy against some bacterial strains (E. coli, 

P.aeruginosa, K. pneumonia and S. aureus). Antibacterial activity against similar strains was 

demonstrated using AgNPs synthesized from latex of C. gigantean (Chandrasekaran et al., 

2015). 

Activity against Gram Positive bacterial strains (S. subtilis and Streptococcus sp.) were reported 

(Priyanka et al., 2015) for AgNPs synthesized from leaf extract of C. gigantean. Nadia Hussein 

Mohamed et al. (2014) reported antifungal activity (against T. rubrum, C. albicans and A. 

terreus) of AgNPs synthesized from latex of C. procera.   

ZnONPs synthesized from leaf extract of C. gigantean were shown to significantly enhance 

growth of seedlings of Neem and Milkwood-pine trees when sprayed at nursery stage 

(Sadhankumar and Lalit, 2017). In a study by Panda et al (2017), ZnONPs synthesized from 

latex extract of C. gigantean showed cytotoxic effect by inducing oxidative stress and DNA 

damage in the root assay system of L. sativus. Biosynthesized AgNPs and ZnONPs from extract 

of C. procera showed potential inhibitory effect on two bacterial strains (V. cholera and E. coli) 

irrespective of the type of extract (leaf, flower, or fruit) used (Salem and Schild, 2015).   

The first reported TiO nanoparticles synthesis with excellent antiparasitic activity was by 

Marimathu et al. (2013), who tested the TiONPs against the larvae of R. micropulus and H. 

bispinosa.    
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CuO nanoparticles (CuONPs) have been synthesized, using leaf extract of C. procera, and 

showed high absorptive capacity for Cr(IV) and hence could serve as good alternative for Cr 

(IV) removal from aqueous solutions (Dubey and Sherma, 2017). In a similar synthesis using 

leaf extract of C. gigantean, Sherma et al. (2015) used the produced CuONPs as counter 

electrode in dye-sensitized solar cells (DSSCs) and found moderately high solar to electrical 

energy conversion efficiency 0f 3.4% with high current density of 8.13mA/cm2, open circuit 

voltage of 0.67V and fill factor (FF) of 0.62. Flower extract of C. gigantean was used to 

synthesize CuONPs in an in-vivo cytotoxic comparative study of the impact of synthesized 

AgNPs in comparison to commercially available ones on fish embryo (Kumari et al., 2017). 

They inferred that the biosynthesized AgNPs showed less toxicity than the commercial ones at 

optimum usage. Zero-valent iron nanoparticles (ZVFeNPs or ZVIN) were synthesized from 

flower extract of C. gigantean and showed high adsorptive capacity for aniline and methylene 

blue, hence have potential for use in treatment of contaminated water (Sravanthi et al., 2018). 

Iron oxide nanoparticles (FeONPs) of sizes 3-6nm were synthesized using aqueous leaf extract 

of C. gigantean as reported by Devendra et al (2013).                 

5.0 Applications of nanoparticles 

Nanoparticles synthesized from the two species of Calotropis have been widely applied for 

various uses. They have found use in water treatment (Sravanthi et al., 2018), in dye-sentisized 

solar cells (Sherma et al., 2015). TiO nanoparticles have shown excellent antiparasitic activity 

(Marimathu et al., 2013).   

Nanoparticles of silver, gold and ZnO have exhibited wide spectrum antibacterial activities 

(Salem and Schild, 2015; Priyanka et al., 2015; Poovizhi and Krishnaveni, 2015; 

Chandrasekaran et al., 2015; Baskaralingham et al., 2012) against some bacterial strains (E. coli, 

P.aeruginosa, K. pneumonia, S. aureus,  S. subtilis, Streptococcus sp., V. cholera and E. coli)  

Antiparasitic (Sivakumar et al., 2011) and antifungal (Nadia Hussein Mohamed et al., 2014) 

activities against T. rubrum, C. albicans and A. terreus was shown by AgNPs.  

ZnONPs have shown growth enhancement of seedlings (Sadhankumar and Lalit, 2017) and 

cytotoxic effect in the root system of some plants (Panda et al., 2017).   
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CuO have shown potential for use as heavy metals environmental decontaminant (Dubey and 

Sherma). ZVIN have potential use in treatment of contaminated water because of their high 

adsorptive for some organics (Sravanthi et al., 2018).   

CONCLUSION 

Plant extracts are used for synthesis of metallic nanoparticles. The synthesis is simple, rapid 

easily scaled up and the nanoparticles are environmental friendly. Metallic nanoparticles are used 

widely for various applications ranging from antimicrobial agents in water treatment; in targeted 

drug delivery; in clinical diagnostics; in solar cells; in environmental decontamination etc.   
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