Driginal Research Article Minerals, vitamins and Amino acids compositions of Melanthera biflora ABSTRACT

4 The minerals, vitamins and Amino acids composition of Melanthera biflora leaves were investigated using standard methods. The result shows that 5 of the eleven vitamins detected; only vitamin C was found in moderately high 6 samount (99.37mg/100g), while the rest were found in insignificant amount. 7 Ten minerals element were detected, including iron (14.63) copper (2.32). 8 Cobalt (0.04) manganese (5.13), calcium (93.52) magnesium (126.17), 9 potassium (71.39) sodium (32.37), phosphorus 36.50, selenium (0.006) all in 10 mg/100g. the leaves had a high content of the essentials amino acids (47.5%) 11 12 and moderate levels of non-essential amino acid (45.94%), sulphur -containing amino acids (5.69%) and aromatic amino acids (10.49%). It is very rich in 13 Leucine (11.32%) and contains all the essentials amino acids except 14 tryptophan. This result shows that the leaves contain an appreciable amount of 15 nutrients, vitamins and minerals that could be included in diets to supplement 16 our daily dietary allowance. 17

18 Keywords: minerals, vitamins, amino acids, essentials

20 INTRODUCTION

Green leafy vegetables occupy an important place among the food crops as they provide adequate amount of vitamins and minerals for human consumption. They are also rich source of carotene, ascorbic riboflavin, folic acids, among others. They also contain many minerals like calcium, iron and phosphorus (Fasujy, 2006).

Plants constitute an important source of natural products which differ widely in terms of structure and biological properties. They have played a remarkable role in food industries, local consumption as well as in the orthodox medicine of various countries.

Generally vegetables species abound in the world. Green leafy vegetables 30 constitute an indispensable constituent of human diet in Africa and in West 31 Africa in particular (Osagie and Offiong 1988). Nigeria is blessed with great 32 natural tropical rain forest that is characterized with viable soil where 33 vegetables of high nutritional value are grown. Most of these vegetables are not 34 well known hence not consumed as their nutritional composition are not 35 known. The present study therefore is aimed at evaluating the mineral, 36 vitamins and amino acid compositions of Melanthera biflora, a tropical leafy 37 vegetables found in south eastern Nigeria. 38

39 *Melanthera biflora* is a perennial herbaceous plant which belong to the 40 family of sterecae. Its common name is beach daisy. It is known among the

Igbos as "Akwuwa" and "akwuba" among the Efiks in Cross Rivers State of
Nigeria. It produces luxiorous edible leaves which is used in making soup

43 MATERIALS AND METHODS

44 Sample Collection

The leaves of *Melenthera Biflora* were harvested fresh from "Ude" plantation in okon, Aku, in Ohafia Local Government of Abia State and was later identified by a taxonomist in the herbarium of the department of plant science. University of Port Harcourt Dr. Edwin Nwosu.

49 Sample Preparation

The harvested vegetable leaves were destalked, washed with cold running tap dried in an oven at 60°c for 24 hours, after the drying the leaves were grounded into a fine power using a mortar and a pestle and sieved to pass through a 40mesh sieve an stored in an air-tight container under refrigerated temperature for further use.

55 **Determination of Mineral Composition**

The sample was investigated for elemental composition by using atomic absorption spectrophotometer (AAS), Bulk Scientific model AVG 210. Appropriate working standard solution was prepared for each element. The calibration curve were obtained for concentration versus absorbance. The data were statistically analyzed by fitting of straight line by least square method. All elements were determined in the leaf under this investigation procedure.

Laboratory procedures for the preparation and determination of macro and
micronutrients were used as outlined by Shah et al. (2009) for plant samples.

64 Vitamin Determination

65 Vitamins were determined by the Meyer Spectrophotometric method of
66 Morton (1942) as described by the Association of Vitamin Chemists AOAC
67 (2006).

68 AMINO ACID EXTRACTION

Modified AOAC Method 982 30, 2006 was followed in the extraction ofthe sample for the ammo acid analysis.

The dried and pulverized sample was made to be free of water byensuring constant weight for a period of time in the laboratory.

The sample of 10.0g was weighed into the 250ml conical flask capacity. The sample was defatted by extracting the fat content of the sample with 30ml of the petroleum spirit three with soxhlet that was equipped with thimble. The sample was hydrolyzed three times for complete hydrolysis to be achieved.

The amino acid content of the sample was recovered by extracting with 30ml of the dichloro methane three times before concentrating to 1.0ml. The concentrated extract was derivatized for volatility that is suitable for gas chromatography analysis.

RESULT AND DISCUSSION

Minerals	Amount	% Composition
	(mg/100g)	_
Iron	14.67	3.829
Copper	2.322	0.608
Cobalt	0.041	0.011
Manganese	5.125	1.342
Calcium	93.516	24.481
Magnesium	16.17	33.029
Potassium	71.39	18.690
Sodium	32.373	8.476
Phosphorus	36.50	9.555
Selenium	0.006	0.0016
Total	381.999	

Table 1 Mineral composition of Melanthera biflora leaves

85	Table 2	Compar	ison of	mine	ral	compos	ition	of I	Melan	ithera
86		biflora	leaves	with	the	WHO	reco	mmen	ded	daily
87		allowan	ce							

Minerals	Melantera biflora	RDA	
	(mg/100g)		
Iron	14.627	15 mg	
Copper	2.322	2 mg	
Cobalt	0.041	Less than 20 mg	
Manganese	5.125	5 mg	
Calcium	93.516	1000 mg	
Magnesium	126.171	350 mg	
Potassium	71.39	3500 mg	
Sodium	32.373	2400 mg	
Phosphorus	36.50	1000 mg	
Selenium	0.006	35 µg	

End Note: Percentages are based on the weight of the compounds per the
 total extract of its family.

Vitamins	Amount (mg/100g)	% Composition	
Vitamin B ₃	150.3	0.324	
Vitamin B ₅	0.003	0.065	
Vitamin B ₆	0.0072	0.016	
Vitamin C	46107	99.37	
Vitamin A	0.0038	0.0082	
Vitamin B ₁	0.0035	0.0075	
Vitamin B ₂	0.0085	0.0018	
Vitamin D	0.0038	0.0082	
Vitamin E	0.0085	0.0085	
Vitamin B9 (folic acid)	0.0077	0.0017	
Vitamin K	0.012	0.026	
Vitamin B ₁₂	0.0015	0.0032	

Table 3 The vitamin composition of Melanthera biflora leaves 93

94

Comparison of vitamin from leaves of Melanthera biflora Table 4 95 96

with WHO recommended daily allowance

Vitamins	Melanthera biflora	RDA
	(mg/100g)	
Vitamin B ₃	0.324	20 mg
Vitamin B ₄	0.065	1.2 mg
Vitamin B ₆	0.16	1-2 mg
Vitamin C	99.37	75 mg
Vitamin A	0.0082	600 mg
Vitamin B ₁	0.0075	1.4 mg
Vitamin B ₂	0.0018	1.5 mg
Vitamin D	0.0082	10 µg
Vitamin E	0.0085	8-10 mg
Vitamin B ₉ (folate)	0.0017	40 µg
Vitamin K	0.026	50-100 mg
Vitamin B ₁₂	0.0032	1-2 µg

⁹⁷

98

99

Amino acid	Amount (x 10¹)	% Composition
	(mg/100g)	
Glycine	0.239	3.40
Alanine	0.390	5.55
Serine	0.233	3.32
Proline	0.275	3.92
Valine	0.382	5.44
Threonine	0.410	5.84
Isoleucine	0.414	5.90
Leucine	0.795	11.32
Aspartate	0.936	13.33
Lysine	0.370	5.27
Methionine	0.087	1.25
Glutamate	1.007	14.34
Phenylalanine	0.411	5.85
Histidine	0.187	2.66
Arginine	0.465	6.62
Tyrosine	0.320	4.56
Cystine	0.101	1.44
Total	70.22	

101Table 5Amino acid composition of Melanthera biflora leaves

102

103Table 6Comparison of essential amino acid and composition of104Melanthera biflora with World Health Organization105Recommend daily amount for essential amino acid

Amino acid	Melanthera	mg/kg	mg/70 kg	mg/100 kg
	biflora	boiled		
Histidine	18.7	10	700	1,000
Isoleucine	41.4	20	1,400	2,000
Leucine	79.5	39	2,730	3,900
Lysine	37.0	30	2,100	3,000
Methionine	0.86	45 (total)	1,050	1,500
phenylalanine	41	25 (total)	1,750	2,500
Threonine	41	15	1,050	1,500
Tryptophan	-	4	280	400
Valine	38.2	26	1,820	2600
Cysteine	1-0.07	-	-	-

106

108	Table 7 Comparison of chemical scores of Melenthera biflora leaves with
109	WHO reference protein pattern

Amino acid	Reference patter	n mg/g protein am	ino acid scor	e. (%)
	Human milk (%)	Whole egg mg/g	А	В
Glycine	22 <u>+</u> 2	2.89	82.3	15.45
Alanine	46 <u>+</u> 2	5.49	71.00	13.88
Serine	61 <u>+</u> 4	6.07	38.4	5.44
Proline	95 <u>+</u> 5	2.92	94.2	4.13
Valine	51 <u>+</u> 2	6.02	63.5	10.67
Threonine	44 <u>+</u> 1	3.41	120.6	13.27
Isoleucine	53 <u>+</u> 3	50.00	8.3	11.13
Leucine	104 <u>+</u> 3	6.80	116.9	10.88
Aspartate	86 <u>+</u> 9	6.09	155.7	15.5
Lysine	71 <u>+</u> 6	4.64	34.6	2.64
Methionine	61 <u>+</u> 09	8.01	34.6	2.64
Glutamate	190 <u>+</u> 8	10.89	93.2	7.55
Phenylalanine	37 <u>+</u> 1	4.94	83.2	15.8
Histidine	23 <u>+</u> 2	1.67	111.9	11.57
Arginine	36 <u>+</u> 3	4.54	102.4	18.39
Tyrosine	46 <u>+</u> 2	3.21	97.7	9.91
Cystine	20 <u>+</u> 2.6	1.88	53.7	7.2

110

- 111 **A** = *Melanthera biflora* compared with human milk
- **B** = *Melanthera biflora* compared fowl egg protein pattern
- 113 **DISCUSSION**

114 The leaves of *Melanthera biflora* had higher calcium, sodium and 115 magnesium than *A. hybridus* (Oguntona, 1998), but lower potassium content. 116 From the above result, we can infer that *Melanthera biflora* are sources of 117 soluble minerals, which help in the maintenance of acid-base balance of the 118 body tissues. These minerals help complete the absorption of vitamins, 119 proteins, fats and carbohydrates of the food (Islam et al., 2004). Calcium and

iron are important elements needed by the cells and tissue of the bodies, 120 especially as they form component of enzymes and electron transducers (Olaiya 121 and Adebisi, 2009). Calcium is required for bone and teeth formation and in 122 123 the proper functioning of the nervous system. The high calcium concentration in *Melanthera biflora* suggests that it could be more advantageous to the body 124 in the functions associated with the mineral. It has been suggested that 125 commonly consumed leafy vegetables are superior sources of calcium 126 compared to milk (Oke, 1966). Deficiency of calcium can lead to malformation 127 of bones and shells. Magnesium and potassium are needed for maintaining the 128 acid – base balance in the body; magnesium is an obligate cofactor for DNA 129 synthesis, while potassium is required for muscle and nerves functions. 130 Melanthera biflora is rich in magnesium, and so, can be used to supplement 131 low magnesium based stable foods such as cassava. It is therefore 132 recommended for hypertensive patients, since magnesium has a hypotensive 133 effect. Iron content of Melanthera biflora was higher than those of T. 134 occidentalis and A. hybridus (Olaiyi and Adebisi, 2009), and would be beneficial 135 for anaemic patients. Therefore Melanthera biflora can serve as an excellent 136 source of minerals for human nutrition. 137

138 Vitamin composition of Melanthera biflora leaves

The *Melanthera biflora* is rich in ascorbic acid, which is higher than the
concentration previously reported for some other stable vegetables such *T*. *occidentalis*, *T. triangular*, C. *argentea*, S. *nodiflorium*, *B. alba*, S. *acthiopica*, *A*.

caudatus, A. hybridus, C. pepo and Amaratus Spinosus (Olaiva and Adebisi, 142 2009). The body cannot synthesis ascorbic acid, so it must be obtained entirely 143 through diet, in this connection, Melanthera biflora should serve as a good 144 source of the water soluble vitamin. Ascorbic acid is essential for the healthy 145 formation of bones and teeth. It is a powerful antioxidant (Szeto et al., 2002) 146 whose deficiency results in scurvy with swellings of the joints and gums, 147 loosening of the teeth and haemorrhages of the skin and mucus membrane. 148 Niacin, thiamine and riboflavin play important roles in nutrient metabolism, 149 Melanthera biflora is also a good source of these micronutrients. 150

151 Amino acid composition of the leaves of Melanthera biflora

Melanthera biflora leaf contain higher total essential amino acid (47.5%) 152 than total non-essential amino acid (45.94%) but has higher total aromatic 153 amino acid (10.44%) than total sulphur containing amino acid (5.56%). 154 Melanthera biflora is rich in essential amino acids, leucine, isoleucine, valine, 155 phenylalanine, lysine, histidine and threonine and can meet the minimum 156 157 daily requirements for them (FAO/WHO/UNU, 1991). The dominant essential 158 amino acid is leucine (11.32%) and is higher than that of G. latifolium (2.25)and Vernonia amydalina 1.66 (Afolabi 2007). In comparison to the egg protein 159 and human milk protein reference, the green leafy vegetable score higher than 160 those previously reported for G latifolium and v.amydalina (Afolabi 2007). 161

162

Conclusion

165	This result that reveals that the leaves contain an appreciable amount of
166	nutrients, Vitamin, Amino acid and mineral elements that should be include in
167	diets to supplement our daily allowance needed by the body. So it is my
168	believed that these results will help to stimulate the consumption or utilization
169	of this leafy vegetable as a good source of nutrients, need for healthy growths.
170	REFERENCES
171 172	Afolabi, F. and Afolabi, O.J. Phytochemical Constituents that produce definite physiological action on the human body. <i>Greener Journals</i> 3:16-17.
173	
174 175 176	AOAC International (2006). Official Methods of Analysis of the AOAC (W. Horwitiz,Editor). 18th edition. AOAC International: Washington DC, USA.
177 178 179 180	 FAO/WHO/UNU (1991). Energy and protein requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Technical Report Series 724. ISSN: 0512-3054. <u>Http://www.fao.org/docrep/003/aa040e/AA040E01.htm</u>
181 182 183 184 185	Fasuyi, A.O (2006). Nutritional Potentials of bone some tropical vegetable meals. Chemical Characterization and functional properties. <i>African Journal of Biotechnology</i> , 5(1):49-53.
186 187 188 189 190	Oguntona, T. (1998). Green leafy vegetables. In A.U. Osagie and O.U. Eka (Eds.),Nutritional quality of plant foods (pp. 120-133). Nigeria: Post Harvest Research Unit, Department of Biochemistry, University of Benin, Benin City.
190 191 192 193 194	Oke, O.L. (1996). Chemical studies on the commonly used leafy vegetables in Nigeria. Journal of the West African Science Association, 11: 42-48.
195 195 196 197 198	Olaiya, C. and Adebisi, J. (2009). Phytoevaluation of the nutritional values of ten green leafy vegetables in South-Western Nigeria. The Internet Journal of Nutrition and Wellness,9(2): 7458.

Osagie, A.U. and Offiong U.E. (1998) Nutritional quality of plant food. Amik
 press. Post-harvest Unit. University of Benin, Benin City Nigeria.

Szeto, Y.T., Tomlinson, B. and Benzie, F.F. (2002). Total antioxidant and
 ascorbic acid contents of fresh fruits and vegetables: implications of
 dietary planning and food preservation. British Journal of Nutrition, 87:
 55-59.

206