<u>Original Research Article</u> Relevance of Chrysanthellum americanum (L.) Vatke extracts in rat liver protection

ABSTRACT

Aims: to assess the relevance of *Chrysanthellum americanum* (L.) Vatke extracts in rat liver protection.

Study design: Polyphenolic extract of Chrysanthellum americanum- in vivo liver protection*in vivo* liver intoxication- liver necrosis parameters analysis, histopathology analysis, *in vivo* and *in vitro* antioxidant assay.

Place and Duration of Study: Laboratory of Biochemistry and Applied Chemistry (LABIOCA), also in Laboratory of Department of Medicine and Traditional Pharmacopoeia (MEPHATRA-PH) of Institute for Research in Health Sciences (IRSS/CNRST) of Burkina Faso between July 2011 and August 2012.

Background: *Chrysanthellum americanum* L. (Vatke) is a medicinal plant well known for its flavonoids and saponins richness, but also for its strong antioxidant potential and use traditionally for liver disease treatment.

Methodology: *In vivo*, anti hepatotoxicity effects of *Chrysanthellum americanum* were evaluated using CCl₄ as hepatotoxic agent. Also, acute toxicities were determinated using standards methods, serum parameters of liver injury using Cypress Diagnostics kits and histopathology analysis using Mayer's haematoxylin- eosin-phloxine coloration method. For in vitro tests, malondialdehyde and thiobarbituric acid method were used in lipid peroxidation assessment and the ABTS method in Trolox Equivalent Antioxidant Capacity assessing.

Results: Result showed that the crude extract of C. americericum has a very low oral toxicity and high toxicity (LD50= 175 mg / kg of body weight) by intraperitoneal. Histopathology photo indicates a reductive number of necrosis cells induced by CCl4. This beneficial action was approved by reduction of serum transaminases and malonedialdehyde (22.68 \pm 0.68 mmol MDA/ g of liver weight) rates. In antioxidant capacities, this plant extract presented a result of 35.01 \pm 0.26 % and 42.01 \pm 0.26 mg TE/ g respectively in LPO and TEAC.

Conclusion: Given our results, our research confirms that Chrysanthellum americanum extracts have *in vivo* physiological impact and benefits in traditional medicine for specific care of liver diseases.

Keywords: Hepatotoxicity; Medicinal plant; antioxidant; toxicity; Burkina Faso

1. INTRODUCTION

Diet and good digestion are very important factors for good health but also for life good mood [1]. For this, gastroenterology diseases purpose a negative impact on the functioning of body vital organs but also on the psychology of the human being.

The liver is one of the main gastroenteric organs that has several functions of which the main ones are detoxification, synthesis (carbohydrates, lipids and proteins) and storage (vitamins A, D, E, K and glycogen) [2]^[3]. Being the liver a purifying organ, its diseases are very numerous by passing from alcoholic diseases to toxic diseases and inflammatory diseases as well[4]^[5].

The causes of liver pathologies are several (alcohol, toxins, hepatitis virus...). However, oxidative stress is a primary factor in the appearance of these diseases with pronounced psychological effects (anxiety)[6]. Oxidative stress defined as a state of imbalance between oxidants (toxic compounds) and antioxidant defense system (molecular and enzyme) of an organism is involved in several diseases especially in metabolic diseases[7]^[8].

In Burkina Faso, as in most low-income countries, poverty equated with lack of hygiene keeps many people in a state of fairly high stress. In this context, the populations are subject to food and alcoholic poisoning but also viral hepatitis which have the liver as potential target.

In European countries liver diseases remain a problem[9]. Also, for WHO, hepatitis will have to be eliminated by 2030. Research to fight against liver diseases have seen many encouraging results but there are still dissatisfactions. One thing is also the high cost of treatments available for low income populations, so medicinal plants are their alternative.

Since ancient times, in African, Chinese and Ayurvedic medicines, plants have been a very important source of natural chemical compounds with enormous therapeutic potentials. Looking for remedies to establish health, researchers are turning more and more to these medicinal plants[10]^[11]. *Chrysanthellum americanum* (L.) Vatke is a plant used in Burkina Faso traditional medicine for its extracts antioxidant power but also well-known in herbal medicine research area.

Chrysanthellum americanum is a small erect or less prone herbaceous plant with very few leaves and yellow flowers belonging to *Asteraceae* family[12].

This plant extracts are known to possess antioxidant, P-vitamin and antilithiasis remarkable properties [13]. Most of therapeutical properties of *C. americanum* extracts are attributed to saponins (Chrysantheline A & B) and to flavonoids (luteolin 7-O-glucoside, eriodictyol 7-O-glucoside, isookanin 7-O-glucoside or flavonomarein, okanin 4'-O-glucoside or marein, maritimetin 6-O-glucoside or maritimein) of which they are consisted [14] [15]. Polyphenolic compounds are well known for their antioxidant capabilities, their capacity to improve hepatoprotection [16] [17] [18] [19].

C. americanum is a medicinal plant that its extracts are endowed with very good antioxidant capacity, but also a good candidate for treatment of pathologies related to oxidative stress^[20].

Liver pathologies are disorder or diseases exacerbated by oxidative stress and affect the psychology of the patient. Thus, this present study aims to evaluate impact of polyphenolic extract of *Chrysanthellum americanum* (L.) Vatke on carbon tetrachloride hepatotoxicity on rat model.

2. MATERIAL AND METHODS

2.1 Plant material and extraction

Chrysanthellum americanum (L.) Vatke whole species was collected during August 2014 in Loumlila, 15 Km north of Ouagadougou, the capital of Burkina Faso. The plant was identified by Prof. Millogo- Rasolodimby from plants Biology Department of the University of Ouagadougou. A voucher specimen (ID-10474) was deposited at the Herbarium of the University of Ouagadougou.

Chrysanthellum americanum (L.) Vatke whole-plant was dried at room temperature and ground to fine powder. Seventy-five gram of this powder was macerated during 48 hours with mechanical stirring using 750 mL of aqueous ethanol (80% v/v) at laboratory conditions. After, extract solutions were concentrated under reduced pressure in a rotary evaporator (BÜCHI, Rotavopor R-200, Switzeland) at approximately 40°C, frozen and lyophilized using a lyophilizer (Telstar-Cryodos 50, Spain). The aqueous ethanol extract (Crude extract) obtained was fractionated by solvents of increasing polarity (dichloromethane, ethyl acetate, butanol and water residual). Crude extract and butanol fraction (polyphenols extract) were weighted before packed in waterproof plastic flasks and stored at 4°C until use. The yields of crude aqueous ethanol extract and polyphenols extract were 8.00% and 6.22% respectively.

2.2 Animals

Thirty female and male Wistar rats weighting respectively 238.40 ± 18.70 g and 310 ± 48.60 g and mice from Naval Medical and Research Institute (NMRI) (31.83 ± 4.77 g) at the start of the experiment were used. The animals were housed in a temperature and light-controlled room ($22 \degree C$, a 12 h cycle starting at 08:00 h) and were fed and allowed to drink water and libitum. Rats and mice were treated in accordance with the guidelines of animal bioethics from the Act on Animal Experimentation and Animal Health and Welfare Act from Romania and all procedures were in compliance with the European Council Directive of 24 November 1986 (86/609/EEC). "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee".

2.3 Chemicals

To carry out our activities, we used analytical grade solvents and various classic reagents. Ethyl acetate and 2-thiobarbituric acid were purchased from Sigma Aldrich chemie (Steinheim, Germany); potassium persulfate, 2,2'-azinobis (3 ethylbenzothiazoline-6-sulphonate) ABTS and trichloroacetic acid were supplied by Fluka chemie (Buchs, Switzerland); dichloromethane, ferric dichloride, Carbon tetrachloride, ethanol were sourced from Probalo (Paris, France); butanol was sourced from sds (Peyin, France).

2.4 In vivo experiments

2.4.1. Toxicities evaluations

The mice were randomized into groups of 6 mice (3 males and 3 females) including a control group for the crude extract of *C. americanum*. Each animal was identified by a different mark (head, back, right flank, left flank, tail and without mark). The animals were fasted for 12 hours, then the weight of each rat was taken, and they received a given dose of extract per group. The animals entrance of the extracts was oral or intraperitoneal[21]. The number of deaths per group was determined after 2h, 24h, 48h, 72h and the animals weree kept under observation for a week.

50% lethal dose (LD_{50}) determination and its confidence limits is what was described by Ouedraogo[22]. It consists of directly carrying Log Probit paper the percentage of mortality according to the log of the dose. Before going to the tests, pre-tests were carried out on group of three (03) animals allowing to locate the lethal dose 50%.

2.4.2. Anti hepatotoxicity activity of *C. americanum* phenolic extract

The anti hepatotoxicity activity of *C. americanum* was evaluated according to the protocol described by Sanogo[23].

2.4.2.1 Experiment design

Rats were randomized into four (04) groups of six (6) animals:

Group I: normal control group, animals received distilled water (10 mL / kg of body weight per day) for 7 days *per os* and the 7th day received olive oil 2mL / kg of body weight intraperitoneally 1 hour after water administration;

Group II: negative control group, animals received distilled water (10 mL / kg of body weight per day) for 7 days *per os*; the 7th day received 2mL / kg of CCl₄ (50% dissolved in olive oil) intraperitoneally 1 hour after the administration of the water;

Group III: positive control group, animals have treated with silymarin (50 mg / kg of body weight) for 7 days *per os* then the 7th day received 2 mL / kg of CCl₄ (50% dissolved in olive oil) intraperitoneally 1 hour after administration of silymarin.

Group IV: test group, animals have treated with *C. americanum* phenolic extract (100 mg / kg of body weight) for 7 days *per os* then the 7th day received 2 mL/kg of CCl₄ (50% dissolved in olive oil) intraperitoneally 1 hour after administration of the extract.

2.4.2.2 Anti hepatotoxicity evaluation

On day 8th, animals were sacrificed after being anesthetized with ketamine (150 mg / kg body weight).

2.4.2.2.1 Biochemical analysis

Transaminases assay: The animals' blood was collected in dry tubes, centrifuged at 3000 rpm for 5 minutes and the sera were taken to evaluate enzymatic parameters of hepatic necrosis: Aspartate Amino Transferase (AST) and Alanine Amino Transferase (ALT) using kits (Cypress Diagnostics).

Lipid peroxidation evaluation: Animals liver pieces from treated animals were removed, ground in (10% w/v) Tris-HCI buffer (50Mm, pH 7.40), centrifuged at 6000 rpm for 10 minutes, and Supernatants were used to evaluate lipid peroxidation[24].

2.4.2.2.2 Histopathology analysis

Small fragments (approximately 0.2 x 0.2 cm) of liver were removed and fixed in formalin solution 10%[25]. They were dehydrated in solutions of increasing concentration of ethanol (70 to 100%) for 2 hours in each concentration. They were cleaned then in 2 xylene baths, infiltrated into 2 paraffin baths, and transferred to paraffin-filled molds. The sections of livers prepared by rotary microtome (Leitz 1512) were placed on clean slides and stained with Mayer's haematoxylin solution for 15 min, washed with water and alcohol 80% and mounted in eosin-phloxine solution. Finally, these assemblages of tissue slides were examined under an optical microscope.

2.5 In vitro experiments

2.5.1 Trolox Equivalent Antioxidant Capacity (TEAC)

ABTS radical cation decolorization assay was used to evaluate crude and phenolic extracts TEAC according to Guenné [20] with some modifications. ABTS radical cation (ABTS⁺) was produced by reacting aqueous ABTS stock solution (7 mM) with 2.45 mM potassium persulfate. The mixture was put down in dark at room temperature during 16 h before use. This mixture was diluted with ethanol to give an absorbance of 0.70 ± 0.02 units at 734 nm using microtitre plates UV/visible light spectrophotometer (Epoch 251465, Biotek Instruments, U.S.A.) reader. 50 μ L of diluted sample (1 g/mL in methanol) were added with 200 μ L of fresh ABTS⁺ solution and the absorbance was taken 15 min exactly after initial mixing. Trolox was used to produce the calibration curve (R² = 0.99) and the antioxidant capacity of extracts were expressed as mg Trolox Equivalent per g of extract.

2.5.2 Liver lipid peroxidation inhibition

Crude and phenolic extracts lipid peroxidation (LPO) inhibitory activities were determined according to the 2-thiobarbituric acid method[26]. Ferrous dichloride (FeCl₂) and H_2O_2 were used to induce rat liver homogenate fats peroxidation. In this method 0.2 mL of extracts (1.5 mg mL⁻¹) was mixed with 1.0 mL of 1% liver homogenate in Tris-HCl buffer, then 50 µL of FeCl₂ (0.5 mM) and 50 µL of H_2O_2 (0.5 mM) were added. The mixture was incubated at 37°C for 60 min, then 1.0 mL of trichloroacetic acid (15%) and 1.0 mL of 2-thiobarbituric acid (0.67%) were added and the mixture was heated up in boiled water for 15 min. The absorbance was recorded at 532 nm using spectrophotometer. Quercetin was used as the positive controls.

Tables should be explanatory enough to be understandable without any text reference. Double spacing should be maintained throughout the table, including table headings and footnotes. Table headings should be placed above the table. Footnotes should be placed below the table with superscript lowercase letters.

3. STATISTICAL ANALYSIS

All results were expressed as mean \pm standard deviations (SD). Tukey's test (oneway ANOVA) was used to determine level of significance of all results obtained on XLSTAT 7.1. Results were regarded as significant at p< 0.05.

4. RESULTS AND DISCUSSION

4.1. Extract toxicities

Through oral administration, the plant crude extract showed a lethal dose of 50% (LD_{50}) greater than 3000 mg / kg of body weight because on groups of six (06) mice no mortality was observed after seventy-two hours (72 h) observation following extracts administration. Through intraperitoneal administration, *C. americanum* hydro-ethanolic extract toxicities values were presented in the following table (table 1).

Table 1: C. americanum toxicity by intraperitoneal voice

	Death numbers							
Plant	Doses	Mice numbers used	2Н	24H	48H	72H	% of of death at 72 H	
C. americanum	75 mg/kg	06	00	00	00	00	00	
	150 mg/kg	06	00	01	01	00	33,33	
	200 mg/kg	06	00	02	01	01	66,66	
	250 mg/kg	06	00	03	01	01	83,33	
	400 mg/kg	06	00	04	02	00	100	

The Log Probit paper plot of mortalities percentages based on log of dose determined *C. americanum* LD₅₀ of 175 mg / kg of body weight. The line obtained has good validity because LD₅₀ / DL₁ (2.18) is substantially equal to DL₉₉ / LD₅₀ (2.28) (with LD₁ = 80 mg / kg of body weight and DL₉₉ = 400 mg / kg of body weight). The safety index of the extract is DL₉₉ / DL₁ = 4.98 <5.

4.2. Liver protection

Enzymatic parameters of liver damage

The table 2 showed transaminases and lipids peroxidations values.

 Table 2: Liver necrosis blood parameters

Samples	Liver weight/100 g body weight	ALAT (UI/L)	ASAT (UI/L)	lipid Peroxidation (mmol MDA/g of liver)
Control	2.67± 0.18 ^a	14.63± 5.71 ^a	20.20± 1.51 ^a	14.29± 0.23 ^a
Negative control	3.95± 0.14 ^d	61.96 ±13.50 [°]	98.16± 16.15 °	27.73± 4.13 °
Positive control	3.29± 0.21 ^{b,c}	26.80 ±14.79 ^{a,b}	49.41± 5.25 ^{a, b}	22.92±0.88 ^{b,c}
C. americanum	3.36± 0.32 ^{b,c}	58.67 ±12.62 ^b	60.46± 7.55 ^{b,c}	22.68±0.68 ^{b,c}
	6 101 7 1 1 1			

ALAT: Alanine Amino-Transferase; ASAT: Aspartate Amino-Transferase; MDA: MalonDiAldehyde. The results presented in the table columns with the letters a- d are significantly different at P <0.05.

C. americanum extract has a protective effect against the oxidative aggression of carbon tetrachloride on rat livers. This effect was inferior to the beneficial effect of sylimarin, which is

the reference compound used in hepatic poisoning.

Histopathology: The presence of necrotic cells due to CCl_4 (hepatotoxic agent) action and these necrosis reduction by the sylimarin or *C. americanum* polyphenolic extract actions are represented by the photo 1.

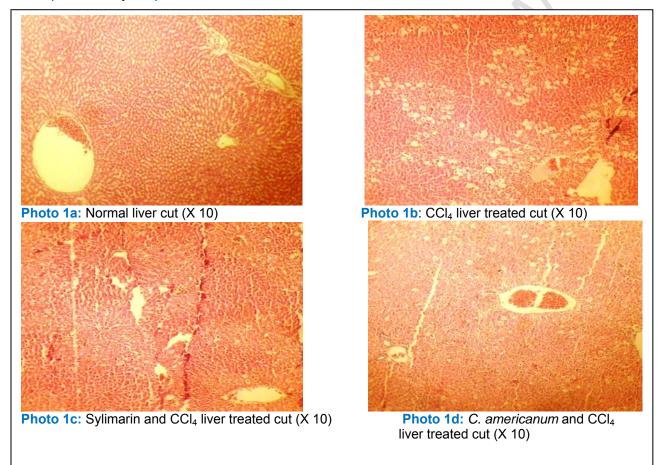
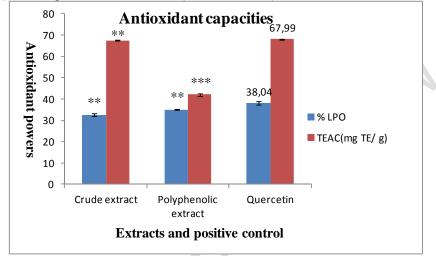


Photo 1: Livers histopathology's analysis using photonic Microscope

Carbon tetrachloride has caused hepatic necrosis (Photo 1 b) compared to normal liver (Photo 1a). Sylimarin significantly prevented the hepatic necrosis establishment (Photo 1c). This action was also borrowed by *C. americanum* (Photo 1d) extract but it remains less important than that of sylimarin.

4.3 In vitro antioxidant capacities


4.3.1 Trolox Equivalent Antioxidant Capacity

The radical cation $ABTS^{\circ^+}$ reducing power of the crude extract, polyphenol extract and quercetin are shown in Figure 1. This figure shows that the best reducing power was

obtained with quercetin (67. 99 \pm 0.79 mg TE/ g) followed to the crude extract (67.53 \pm 0.05 mg ET/ g) and the polyphenolic extract (42.01 \pm 0.26 mg ET/ g).

4.3.2 Lipid peroxidation inhibition

Lipid peroxidation inhibition percentages of crude extract, polyphenolic extract and quercetin are shown in Figure 1. The best inhibition percentage was obtained with quercetin and the lowest percentage with crude extract ($32.60 \pm 0.53\%$).

Figure 1: Crude and polyphenolic extracts *in vitro* antioxidants powers. The values are mean ± S.E.M. (n=3 per test). **p < 0.001 vs. quercetin and ***p<0.0001 vs. quercetin.

4.4. Discussion

The polyphenolic extract had low antioxidant capacity in TEAC but a high capacity in lipid peroxidation compared to the crude extract of *Chrysanthellum americanum*. Our previous studies have shown that this butanol fraction was richer in total phenolic (85.65 ± 1.77 against 79.09 \pm 0.80 GAE / 100 mg of extract), in flavonoids (24.03 ± 0.88 against 13.54 \pm 0.44 QE) compared to the crude extract[27]. Flavonoids are well known for their electron receptor hence their capacity to break the chain of free radical oxidation process[28].

It is well known and documented that a single dose of CCI_4 administration to a rat produces centrilobular necrosis and fatty degeneration of the liver. This action begins with an activation of CCI_4 and a production of CCI_3 radical compound according to the following

equation[29]'[30]'[31]: $CCl_4 + e^- \rightarrow CCl_4^{-*} \rightarrow CCl_3^{+} + Cl^-$

In our study, this condition was obtained and represented with the photo 1a with necrosis cells. The richness of *C. americanum* polyphenolic extract[14] in phenolic compounds would have the advantage of protecting the liver of rats from the oxidizing action of CCI_3 . These polyphenols would inhibit CCI_4 activation or reduce the CCI_3 radical to non-free radical compounds.

The result observed in photo 1d (reduction of necrosis cells number) is explained by this plant *in vitro* antioxidant activity ($42.01 \pm 0.26 \text{ mg ET}$ / g and $32.60 \pm 0.53\%$ inhibition of lipid peroxidation) but also by the plant extract *in vivo* activities by reducing the blood level of transaminases and malonedialdehyde ($22.68 \pm 0.68 \text{ mmol MDA}$ / g of liver weight) produced by CCl₄ injection action.

Some authors have cited *Chrysanthellum americanum* extract for the treatment of kidney calculi, cholelithiasis but also as a food additive because of its richness in protein[13]^[32][33]^[18].

In addition to primary usage of this plant extract in health care with metabolic origin, Mevy group[34] found that essential oils of this plant (caryophyllene oxide, hexa-2,4-dienol, β -caryophyllene, α -pinene and verbenol) had antifungal potentials.

Our study showed that the hydroalcoholic extract of *C. americericum* has a very low oral toxicity[35] and a high intraperitoneal toxicity ($LD_{50\%}$ = 175 mg / kg of body weight). This intraperitoneal toxicity can be explained by the saponosides (Chrysantheline A & B) presence in the plant extracts. Fortunately, this plant is used traditionally by decoction and drink. Nevertheless, precautions are to be taken for people who would present lesions in their digestive tract.

The polyphenolic extract of *C. americanum* has a protective effect against intoxication through its antioxidant potential and has a beneficial effect on health. Also, the traditional use of this plant extract orally has virtually no toxicity.

4. CONCLUSION

Our literature review on Chrysanthellum americanum showed that this species has flavonoids and saponins high content and antioxidant strong capacity.

This research has made a screening of *Chrysanthellum americanum* polyphenol extract effect on rats anti hepatotoxicity using CCl₄ as hepatotoxicity agent.

The polyphenolic extract of C. americanum significantly prevented the oxidative aggression of carbon tetrachloride on rat liver. This beneficial action was manifested by the considerable necrotic cells number reduction and the decrease of transaminases and malonedialdehyde serum levels. Our preview surveys near traditional phytotherapists of Burkina Faso central region had shown that this plant is used traditionally by decoction and per orally. This present study found also that this plant extract had a very low oral acute toxicity.

In short, our research confirms the benefits of *Chrysanthellum americanum* extracts used in traditional medicine for specific care of liver diseases.

ETHICAL APPROVAL

<u>"All authors hereby declare that "Principles of laboratory animal care" (NIH publication No.</u> 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee"

REFERENCES

- [1] M. Pasalar, M. M. Zarshenas, and K. B. Lankarani, "Good Digestion is a Key Element for Healthy Hearts: An Appealing Concept from Avicenna's Viewpoint," *Med. Hypothesis, Discov. Innov. Interdiscip. Sci. J.*, vol. 1, no. 1, 2014.
- [2] R. Gebhardt, "METABOLIC ZONATION OF THE LIVER: REGULATION AND IMPLICATIONS FOR LIVER FUNCTION," 1992.
- [3] D. L. Schmucker, "Liver Function and Phase I Drug Metabolism in the Elderly," *Drugs Aging*, vol. 18, no. 11, pp. 837–851, 2001.
- [4] C. A. Matteoni, Z. M. Younossi, T. Gramlich, N. Boparai, Yao Chang Liu, and A. J. McCullough, "Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity," *Gastroenterology*, 1999.
- [5] R. Wiesner *et al.*, "Model for end-stage liver disease (MELD) and allocation of donor livers," *Gastroenterology*, vol. 124, no. 1, pp. 91–96, Jan. 2003.
- [6] E. A. Mayer and S. V Naliboff, Bruce D, Naliboff, Lin Chang, Santosh V. Coutinho Chang, Lin Coutinho, "Stress and the Gastrointestinal Tract V. Stress and irritable bowel syndrome," *Am J Physiol Gastrointest Liver Physiol*, vol. 280, pp. G519–G524,

2001.

- [7] M. Giugliano et al., "Humans : Role of Oxidative Stress Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans Role of Oxidative Stress," 2013.
- [8] A. Ciobica, M. Padurariu, I. Dobrin, ... C. S.-P., and undefined 2011, "Oxidative stress in schizophrenia-focusing on the main markers," *hrcak.srce.hr*.
- [9] M. Blachier, H. Leleu, M. Peck-Radosavljevic, D.-C. Valla, and F. Roudot-Thoraval, "The burden of liver disease in Europe: A review of available epidemiological data."
- [10] S. T. Nelson-Harrison *et al.*, "Ethnobotanical research into the 21st century," *Adv. Phytomedicine*, vol. 1, pp. 283–307, Jan. 2002.
- [11] J. B. Calixto, "Twenty-five years of research on medicinal plants in Latin America: A personal view," *J. Ethnopharmacol.*, vol. 100, no. 1–2, pp. 131–134, Aug. 2005.
- [12] B. Oliver-Bever, *Medicinal plants in tropical West Africa*. Cambridge University Press, 1986.
- [13] D. Honore-Thorez, "[Description, identification and therapeutic use of Chrysanthellum "americanum": Chrysanthellum indicum DC. subsp afroamericanum B. L. Turner].," *J. Pharm. Belg.*, vol. 40, no. 5, pp. 323–31.
- [14] T. Brasseur, L. Angenot, J. Pincemail, and C. Deby, "Plantes médicinales et phytothérapie ACTION ANTIRADICALAIRE DE FLAVONOÏDES ET D'EXTRAITS DE CHRYSANTHELL UM INDICUM."
- [15] T. Gaspar, "Chrysanthellum americanum: Micropropagation and Flavonoid Production," Springer, Berlin, Heidelberg, 1994, pp. 113–122.
- [16] T. Adzet, J. Camarasa, and J. C. Laguna, "Hepatoprotective Activity of Polyphenolic Compounds from Cynara scolymus Against CCl₄ Toxicity in Isolated Rat Hepatocytes," *J. Nat. Prod.*, vol. 50, no. 4, pp. 612–617, Jul. 1987.
- [17] R. Harish and T. Shivanandappa, "Antioxidant activity and hepatoprotective potential of Phyllanthus niruri," *Food Chem.*, vol. 95, no. 2, pp. 180–185, Mar. 2006.
- [18] C. Pereira, R. C. Calhelha, L. Barros, and I. C. F. R. Ferreira, "Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu," *Ind. Crop. Prod.*, vol. 49, pp. 61–65, 2013.
- [19] M. Sobeh, M. F. Mahmoud, M. A. O. Abdelfattah, H. Cheng, A. M. El-Shazly, and M. Wink, "A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo," *J. Ethnopharmacol.*, 2018.
- [20] S. Guenne, N. Ouattara, A. Hilou, J. F. Millogo, and O. G. Nacoulma, "Antioxidant, enzyme inhibition activities and polyphenol contents of three Asteraceae species used in Burkina faso traditionally medicine," *Int. J. Pharm. Pharm. Sci.*, 2011.
- [21] L. Ouedraogo, y, Nacoulma, O, Guissou, IP, Guede Guina, "Évaluation in Vivo Et in Vitro De La Toxicité Des Extraits Aqueux D'Écorces De Tige Et De Racines De Mitragyna Inermis (Willd).O.Ktz (Rubiaceae)," *Pharm. Mée!. Trad. Afr*, vol. 1, no. 10, pp. 13–29, 2001.
- [22] L. C. Miller and M. L. Tainter, "Estimation of the ED50 and Its Error by Means of Logarithmic-Probit Graph Paper.," *Exp. Biol. Med.*, vol. 57, no. 2, pp. 261–264, Nov. 1944.
- [23] R. Sanogo, M. P. Germanò, V. D'Angelo, M. Guglielmo, and R. De Pasquale, "Antihepatotoxic Properties of Entada africana (Mimosaceae)," 1998.
- [24] S. Ibrahim Alqasoumi, "Ameliorative effect of 10-gingerol on drug induced hepatotoxicity in albino rats," *J. Med. Plants Res.*, vol. 6, no. 9, pp. 1548–1555, 2012.
- [25] M. Abdel-Kader, S. A.- Alexandria, and undefined 2008, "Evaluation of the Hepatoprotective Effect of Ethanolic Extracts of Solanum nigrum, Cassia fistula, Balanites aegyptiaca and Carthamus tinctorius Against," *Fac. PHARMACY*
- [26] G. Samson *et al.*, "Screening of antioxidant, anti-acetylcholinesterase and antifungal activities and HPLC-MS identification of the bioactive phenolics of Eclipta alba (L.)

Hassk.," Int. J. Phytomedicine, vol. 4, no. 4, pp. 469-476, Mar. 2013.

- [27] S. Guenne, A. Hilou, N. Ouattara, and O. G. Nacoulma, "Anti-bacterial activity and phytochemical composition of extracts of three medicinal Asteraceae species from Burkina Faso," *Asian J. Pharm. Clin. Res.*, 2012.
- [28] C. A. Rice-Evans, N. J. Miller, and G. Paganga, "Structure-antioxidant activity relationships of flavonoids and phenolic acids," *Free Radic. Biol. Med.*, vol. 20, no. 7, pp. 933–956, Jan. 1996.
- [29] J. Mönig, D. Bahnemann, and K. D. Asmus, "One electron reduction of CCl4in oxygenated aqueous solutions: A CCl3O2•-free radical mediated formation of Cl-and CO2," Chem. Biol. Interact., 1983.
- [30] T. F. Slater, "Free-radical mechanisms in tissue injury," 1984.
- [31] J. Yang, Y. Li, F. Wang, and C. Wu, "Hepatoprotective effects of apple polyphenols on CCl4-induced acute liver damage in mice," *J. Agric. Food Chem.*, 2010.
- [32] P. M. Dubernard, "A study of the effect of Chrysanthellum americanum on renal calculi," *Phyther. Res.*, vol. 2, no. 4, pp. 210–210, Dec. 1988.
- [33] A. Lengani, L. F. Lompo, I. P. Guissou, and J. B. Nikiema, "M??decine traditionnelle et maladies des reins au Burkina Faso," *Nephrol. Ther.*, 2010.
- [34] J. P. Mevy, J. M. Bessiere, and M. Dherbomez, "Composition, Antimicrobial and Antioxidant Activities of the Volatile Oil of *Chrysanthellum americanum* (Linn.) Vatke.," *J. Essent. Oil Bear. Plants*, vol. 15, no. 3, pp. 489–496, Jan. 2012.
- [35] A. H. Yaro, Anuka, Salawu, and M. G. Magaji, "BEHAVIOURAL EFFECTS OF METHANOL EXTRACT OF CHRYSANTHELLUM INDICUM IN MICE AND RATS," 2007.

ABBREVIATIONS

ABTS: 2,2'-azinobis (3 ethylbenzothiazoline-6-sulphonate ALT: Alanine Amino Transferase AST: Aspartate Amino Transferase *C. americericum*: *Chrysanthellum americericum* CCI₃: Carbon trichloride radical CCI₄: Carbon tetrachloride FeCl₂: Ferrous dichloride GAE: Gallic acid Equivalent HCI: Hydrochloric acid IRSS/CNRST: Institute for Research in Health Sciences LD: Lethal Dose LD₅₀: Lethal Dose of 50% LPO: Lipid Peroxidation MDA: malonedialdehyde MEPHATRA-PH: Department of Medicine and Traditional Pharmacopoeia NMRI: Naval Medical and Research Institute SD: standard deviations TE: Trolox Equivalent TEAC: Trolox Equivalent Antioxidant Capacity WHO: World Health Organization