Multiresidue Method for Determination of 74 Pesticides under Organic and Conventional Olive Farm Soil by QuEChERS and GC-MS/MSTQD

3 Abstract

The analytical multiresidue method, has been developed and validated for 4 quantification of trace levels of 74 pesticide residues belong to different groups of 5 pesticides in organic and conventional Olive farm soil samples (Old, medial and 6 new olive farms which is 25, 15 and 5 years respectively). Soil samples collected 7 from Al-Jouf Province, Saudi Arabia, and extracted by Quick, Easy, Cheap, 8 Effective, Rugged, and Safe,)QuEChERS(and analyzed by Gas Chromatography 9 Mass Spectrometry Triple Quadrupole (GC-MS/MSTQD). The method reveals that 10 experimental results were highly satisfactory in respect of various analytical 11 parameters such as linearity, recovery and precision especially with the tested soil 12 samples which is complex matrixes, preparation is a critical step, and one that is 13 usually expensive, time-consuming, and labor intensive. The limit of detection 14 (LOD) and limit of quantification (LOQ) for the analyzed pesticides were in the 15 range of 1.01-13.91 μ g kg⁻¹ and 3.02 - 29.15 μ g kg⁻¹, respectively. Pesticide 16 recoveries form spiked soil samples with different pesticides ranged from 65.5 to 17 111.7 %. The proposed method featured good sensitivity, pesticide quantification 18 limits were low enough, and the precision, expressed as relative standard deviation, 19 ranged from 0.29 to 13.32%. Pesticide residues was detected by applying the 20 modified QuEChERS and GCMSMSTQD method levels was ranged from 43.00 to 21 2.00 µg kg⁻¹ for 18 different pesticides, 1.99 to 1.00 µg/kg⁻¹ for 16 different 22 pesticides, 0.99 to 0.50 μ g/kg⁻¹ for 12 different pesticides and lower than 0.50 μ g 23 kg⁻¹ for 28 different pesticide residues. The proposed QuEChERS and GC-24 MS/MSTQD method applied successfully for the residues extraction and 25 determination the 74 pesticides. 26

27 Keywords

Multiresidue, Pesticide residues, Organic farming, Conventional farming, olive farm soil, QuEChERS and GC-MS/MSTQD.

31 Introduction

Pesticides are widely used in agriculture to protect crops, control the insects, and 32 improve efficiency of food production. Due to the wide range of pesticides used in 33 agriculture, the development of fast and simple multi-residue methods that 34 simultaneously determine a wide range of different pesticides is essential. One of 35 the most widely used multi-residue methodologies is the Quick, Easy, Cheap, 36 Effective, Rugged, and Safe (QuEChERS) approach. This offers many advantages 37 including speed, cost, ease of use, good performance characteristics and wide 38 applicability range (Pszczolińska, and Michel, 2016). 39

Due to the low concentration levels of soil pollutants such as pesticides and other pollutants, sample preparation step is needed to determine the type and quantity of different pollutant present (Caldas, et al., 2011; Wang, et al., 2012 and AOAC, 20117) and to avoid interferences and improve the sensitivity of the method. To extract contaminants from soil samples, a technique strong enough to extract bound pesticide residues in short time is necessary (Pinto et., al 2011 and Rashid et al., 2010).

47

The QuEChERS approach is based on a salting-out extraction with a solvent (mainly acetonitrile, ACN) followed by a dispersive solid phase extraction (d-SPE). QuEChERS method is very flexible, modifiable, and is growing in popularity due to all the benefits described by its effectiveness is dependent on the analytic properties, matrix composition, equipment, and analytical technique availability (Pinto, et al., 2010; Caldas, et al., 2011; Wang et al., 2012).

54

Soil samples are complex matrixes; therefore, soil sample preparation is a critical 55 step, and one that is usually expensive, time-consuming, and labor intensive. The 56 (QuEChERS) method, originally developed for the determination of pesticides in 57 fruits and vegetables, recently modified and adopted for the analysis of pesticides in 58 soil (Pszczolińska, and Michel, 2016, Brondi et al., 2011 and Fernandes, et al., 59 2013). El-Saeid, et al., (2015) studied the levels of pesticide residues in two types of 60 farmland soils, sandy and clay soils following different farming practices 61 conventional and organic were taken from different depths 10 and 20cm. Samples 62 were prepared for extraction and were extracted using aceton: hexane mixture 1:1 63

and cleanup was performed using florisil column. Clean extracts weresubjected to 64 residues determination of 86 pesticides belong to different chemical and action 65 groups using hyphenated GC-MS. Recovery, linearity and limit of detection (LOD) 66 experimental were performed. In case of sandy conventional farmland soil, the 67 detected organochlorines pesticides were (seven), while the organophosphorus 68 insecticides included four pesticides. For herbicides two compounds were detected 69 i.e. linuron and Amitraz. As for the frequency of the detected pesticide residues, it 70 was found that the most frequent compounds were endosulfan I, chlorpyrifos-71 methyl, P,P-DDE, amitraz, fenthion, P,P-DDD, linuron, dimethoate, lindane, 72 dieldrin, O,P-DDD, pirimiphos-methyl, alfa-BHC and aldrin. Also, it was observed 73 that the detected pesticide residues were lindane, P,P-DDE, O,P-DDD,P,P-DDD, 74 mirex, dieldrin and aldrin as a OCPs. It is clear that the highest amounts of OCP 75 groups residues distribution especially at 20 cm followed by 10 cm (0.273 and 76 0.235 ppm.), while the numbers of detection pesticide residues at 20 cm depth more 77 than 10cm were 23 and 15 numbers, respectively. 78

In this study, modified QuEChERS techniques used for the extraction and clean-up
procedure followed by GCMSTQD for the analysis of several pesticide residues in
soil samples collected form Olive cultivated under conventional and organic
farming.

83 Material and Methods

84 Standards and Reagents

Pesticides internal, calibration and injection standards with declared 99.9% purity, 85 were purchased from Accu Standard, 153 Inc., New Haven, CT, USA as individual 86 or mixture standards at a concentration of 100-200µg/mL. All internal standards are 87 ¹³C 12-labelled, the use of ¹³C-labelled compound is preferable because the analysis 88 can be quantified without clean-up. (Maestroni et al., 2000; Maestroni 2002). All 89 solvents (Methanol, dichloromethane and acetonitrile) used for the extraction and 90 analysis procedures of pesticides were residue-analysis grade 99.9 % purity and 91 obtained from Fisher Scientific (Fair Lawn, NJ, USA). QuEChERS kits was 92 purchased from Phenomenex, Madrid Avenue, Torrance, CA, USA. 93

94

96 Samples preparation and Extraction

First, weigh 10 g soil sample ($\geq 70\%$ H₂O content) into a 50 mL centrifuge tube. 97 Alternatively, weigh 3 g air-dried soil sample into a 50 mL tube and add 7 mL H₂O, 98 vortex briefly, and allow to hydrate for 30 minutes. Then, add 10 mL of acetonitrile 99 to each sample. Shake (manually or mechanically) or vortex samples for 5 minutes 100 to extract pesticides. (In this study a Spex SamplePrep Geno/Grinder 2010 operated 101 at 1500 rpm was used). After that, add the contents of an ECQUEU750CT-MP 102 (citrate salts) Mylar pouch to each centrifuge tube. Immediately shake samples for 103 at least 2 minutes and centrifuge for 5 minutes at \geq 3500 rcf. 104

105

106 Sample Cleanup

107 Transfer a 1 mL aliquot of supernatant to a 2 mL CUMPSC18CT (MgSO4, PSA, 108 C18) dSPE tube. Vortex samples for 0.5–1 min. Centrifuge for 2 min at high rcf 109 (e.g. \geq 5000). Filter purified supernatant through a 0.2 µm syringe filter directly into 110 a sample vial. Finally, the samples were analyzed by GC-MS/MSTQD.

111

112 Analysis by GCMSMSTSQ 8000/SRM

All measurements have been carried out using the latest Thermo Scientific[™] TSQ 113 8000[™] triple quadrupole GC-MS/MS system equipped with the Thermo 114 ScientificTM TRACETM 1310 GC with SSL Instant ConnectTM SSL module and 115 Thermo Scientific[™] TriPlus[™] RSH auto sampler. Injection mode was spiltless, 116 Splitless Time 1.0 min GC Column TR[™] 5 MS, 30 m × 0.25 mm × 0.25 µm, 117 carrier gas He (99.999 %, flow rate 1.2 mL/min, constant flow, temperature 118 program 100 °C, 1 min; 10 °C/min to 160 °C, 4 min and 10 °C/min to 250 °C, 2 119 min, transfer line temperature 280 °C, total analysis time 22.4 min, TriPlus RSH 120 Autosampler Injection volume 1 µL. Ionization mode EI, 70 eV, Ion source 121 temperature 250 °C, scan mode SRM using timed SRM SRM transition setup 122 automatically build-up by AutoSRM software. Transitions conditions are shown in 123 (Table 1). 124

127 Table 1: GCMSMSTQD 8000 SRM Instrumental conditions

GC Trace Ultra C	onditions	TSQ Quantum MS/MS Conditions			
Column	TR-Pesticide 30 m ×	Operating mode	Selected Reaction Monitoring		
	$0.25 \text{ mm} \times 0.25 \mu\text{m}$		(SRM)		
Injector	Splitless	Ionization mode	EI		
Injected volume	1 μL	Electron energy	70 eV		
Injector			A Van V		
temperature	225 °C	Emission current	50 μΑ		
Carrier gas	Helium, 1.2mL/min	Q1/Q3 resolution	0.7 u (FWHM)		
Oven program	80 °C hold 1 min 15	Collision gas	Argon		
	°C/min to 160 °C hold				
	1 min 2.2 °C/min to				
	230 °C hold 1 min 5				
	°C/min to 290 °C hold				
	5 min Run Time 57.15				
	min				
Transfer line	280 °C	Collision gas	1 mTorr		
temperature		pressure			
		Polarity	Positive		

129 Method performance

130 Accuracy and precision of the method: 4 replicates of blank water sample spiked

131 with the pesticide standards. Limit of detection: Instrument Detection Limit (IDL),

132 Sample Detection Limit (SDL), Method Detection Limit, accuracy and precision

133 **QAQC Strategies**

134

135 Quality control samples was prepared and analyzed duplicate sample, blank and

spiked, and/ or Certified Reference material CRM was prepared for this purpose

and processed with each batch (5-10 samples) of sample. ASE and GCMS or
 GCMSMS TSQ 8000 method limit of detection (LOD) and Limit of Quantification

(LQD), repeatability, reproducibility, accuracy and precession also were determined

- 140 for each compound in the groups of PAHs and Pesticides.
- 141

142 **Results and Discussion**

143 **QuEChERS and GC MS/MSTQD for analysis of 74 pesticides.**

Simple and rapid method based on QuEChERS extraction and GCMSMSTQD for determination of 74 of different groups of pesticides in soil samples. Retention time, LOD, LOQ, recovery % and target mass of SRM scanning mode was determined as showmen in table (1). The results clearly reflect the developed QuEChERS method offers an efficient, cost effective, and easy sample preparation procedure for the determination 74 in soil samples.

Recovery % ranged from 65.5 to 111.7 %., the limit of detection (LOD) and limit of quantification (LOQ) for the analyzed pesticides were in the range of 1.01-13.35 μ g kg⁻¹ and 3.02 - 29.15 μ g kg⁻¹, respectively. The proposed method featured good sensitivity, pesticide quantification limits were low enough, and the precision,

expressed as relative standard deviation, ranged from 0.29 to 13.3%.

The calibration curves were linear over wide concentration ranges with correlation coefficients (r2) 0.5092 to 0.9899 for all tested pesticides. In addition, the SRM chromatograms demonstrated high selectivity with no significant interferences observed and an excellent signal/noise ratio (> 5:1) for all tested pesticides as showmen in (Figure 1). Table (2) Parameters of retention time, LOD, LOQ, recovery % and target mass of SRM scanningmode.

Name	RT	Mass	Product mass	Collision Energy	LOQ	LOD	r ²	Recovery %	SD
Biphenyl	14.82	152	126	23	20.12	6.71	0.7134	108.60	6.32
Methacrifos	17.8	240	180	10	15.20	5.07	0.8379	98.21	6.46
Chloroneb	18.09	206	191	10	19.67	6.56	0.9522	100.42	12.08
Tecnazene	20.86	261	203	13	11.57	3.86	0.9848	104.02	4.98
Propachlor	20.97	120	77	19	8.14	2.71	0.9899	104.94	4.77
Cycloate	21.44	154	83	8	8.00	2.67	0.9905	111.73	3.76
Ethalfluralin	22.01	276	202	15	10.35	3.45	0.9848	113.32	9.52
Trifluralin	22.38	306	160	23	13.92	4.64	0.9760	106.95	7.46
Benfluralin	22.47	292	160	20	11.62	3.87	0.9816	111.04	4.67
Sulfotep	22.59	202	146	10	10.94	3.65	0.9806	110.87	10.89
Diallate	22.78	234	150	18	8.82	2.94	0.9650	86.56	7.30
Alph-BCH	23.04	181	145	13	21.32	10.44	0.8433	104.37	7.45
НСВ	23.33	249	214	14	18.70	6.23	0.9382	103.88	0.35
Atrazine	23.94	200	122	10	11.84	3.95	0.9643	108.07	6.52
Terbufos	24.42	231	129	23	15.79	5.26	0.9570	96.64	8.69
Profluraline	24.48	318	199	17	13.67	4.56	0.9688	110.12	7.76
Fenofos	24.56	137	109	6	11.17	3.72	0.9813	110.32	4.49
Diazinone	24.81	137	84	12	21.73	13.91	0.9465	109.28	5.83
Fluchloralin	24.94	264	160	15	16.10	5.37	0.9535	106.12	5.52
Disulfoton	24.99	153	97	12	12.19	4.06	0.9729	87.14	6.75
Tefluthrin	25.14	177	127	15	4.33	1.44	0.9963	100.77	10.39
Triallate	25.28	270	186	18	18.68	6.23	0.9094	89.40	5.74
Endosulfan ether	25.73	272	237	10	24.04	13.35	0.9725	101.44	3.00
Pentachloroaniline	25.92	263	192	20	17.41	5.80	0.9365	102.47	0.29
Alachlor	26.31	146	118	8	17.41	5.80	0.9284	104.52	8.23
Vinclozolin	26.38	285	212	12	15.78	5.26	0.9633	75.14	1.30
Cypermethrin	26.45	163	91	11	15.09	5.03	0.9574	103.94	9.13
Heptachlor	26.62	100	65	12	21.00	11.33	0.8841	102.38	2.75
Acetochlor	26.72	174	146	12	15.56	5.19	0.9497	105.31	7.41

Fenchlorfos	26.84	285	240	23	9.91	3.30	0.9462	77.09	1.62
Primiphos methyl	27.22	290	125	20	17.45	10.82	0.5092	103.68	9.61
Pentachlorothioanisole	27.43	296	246	32	7.59	2.53	0.9922	93.27	1.54
Dichlofluanid	27.48	123	77	16	16.27	5.42	0.9311	69.56	12.45
Aldrin	27.66	263	191	35	22.69	12.23	0.9175	109.07	3.96
Chloropyrifos	27.81	314	258	12	25.88	11.96	0.9256	79.07	7.31
Triadimefon	27.9	208	181	10	12.62	4.21	0.9673	99.28	4.66
Primiphos - ethyl	28.35	318	166	12	5.35	1.78	0.9957	78.98	6.84
Isopropalin	28.44	280	238	8	16.73	5.58	0.9363	87.18	5.81
Isodrin	28.53	261	191	28	23.51	7.84	0.9895	74.27	3.63
Pendimethalin	28.72	252	162	10	23.72	10.24	0.5688	108.86	2.438
Heptachlor epoxide	28.81	353	263	13	21.48	8.49	0.7901	87.79	4.15
Tolyfluanid	28.88	240	137	10	23.91	7.97	0.8218	84.75	4.82
Quinalphos	29.04	298	156	8	8.32	2.77	0.9896	81.76	2.40
Procymidone	29.22	283	67	28	10.94	3.65	0.9655	97.83	1.65
Chlordane- cis	29.45	272	237	12	22.64	10.55	0.6677	95.03	1.24
o, p DDE	29.54	246	176	32	8.96	2.99	0.9908	107.02	2.23
Tetrachlorviphos	29.66	333	109	17	10.77	3.59	0.9805	82.67	8.85
Endosulfan 1	29.79	195	125	19	23.87	10.29	0.9873	96.46	5.35
Chlordane - trans	29.84	272	237	13	14.96	4.99	0.9394	103.58	2.93
Nonachlor- trans	29.95	409	302	22	8.88	2.96	0.9077	108.47	7.16
Pretilachlor	30.24	162	132	18	20.69	6.90	0.9806	82.81	7.75
p, p DDE	30.33	318	248	22	12.72	4.24	0.9478	110.46	8.60
Dieldrin	30.47	279	243	10	15.98	5.33	0.9486	105.50	7.11
o, p DDD	30.57	235	165	22	16.98	5.66	0.9048	97.09	3.34
Endrin	31.04	279	243	8	21.84	10.61	0.9529	105.27	7.74
Chlorobenzilate	31.09	139	111	12	15.03	5.01	0.8409	65.504	2.99
Endosulfan 2	31.26	241	206	10	18.86	6.29	0.9163	89.98	3.90
p, p DDD	31.38	235	165	24	8.43	2.81	0.9876	97.47	11.72
o, p DDT	31.46	235	165	21	10.00	1.61	0.9952	99.12	2.89
Nonachlor - cis	31.54	272	237	10	29.15	11.72	0.7072	111.22	5.03
Endrin - aldehyde	31.73	345	243	17	28.85	9.62	0.6997	104.519	7.11
Carfetrazone ethyl	31.93	340	312	10	16.56	5.52	0.9348	101.10	11.16

Methoxychlor olefin	31.99	308	223	30	20.34	6.78	0.8750	103.19	12.33
Endosulfan sulfate	32.28	274	239	12	19.86	12.29	0.6006	92.73	8.71
o, p Methoxychlor	32.49	227	121	12	19.95	6.65	0.7266	91.57	11.92
Resmethrin 1	32.57	123	81	8	15.18	5.06	0.8423	106.47	10.01
Resmethrin 2	32.67	123	81	8	21.08	7.03	0.7226	100.20	8.12
Nitralin	32.9	274	216	6	21.50	8.50	0.7610	109.44	13.07
Bifenthrin	33.31	181	166	10	12.43	4.14	0.9562	106.05	13.32
Bromopropylate	33.39	183	155	12	25.79	8.60	0.7425	75.06	12.44
Endrin ketone	33.44	215	279	8	19.64	10.55	0.6018	85.30	10.80
Methoxychlor	33.55	227	115	50	23.68	12.56	0.6608	88.07	10.38
Tetradifon	34.1	159	111	20	3.02	1.01	0.9861	102.30	10.86
Leptofos	34.35	171	77	18	20.12	6.71	0.7134	108.60	2.48
Mirex	34.7	272	237	15	15.20	5.07	0.8379	90.21	4.35

Pesticide residues was detected by applying the modified QuEChERS method named, Chloroneb, Tecnazene, Propachlor, Cycloate, Ethalfluralin, Trifluralin, Beluralin, Sulfotep, Diallate, Alpha BCH, HCB, Atrazine, Terbufos, Profluralin, Fenofos, Diazinon and Fluchloralin and its residue levels ranged from 43.00 to 2.00 μ g/kg⁻¹ in organic and conventional olive farm soil (Fig. 2) extracted by QuEChERS and analyzed by GCMSMSTQD.

190

Meanwhile, the detected pesticide residues levels (Fig. 3) of Endosulfan ether, Pentachloroaniline, Alachlor, Vinclozolin, Cypermethrin, Heptachlor, Acetochlor, Fenchlorfos, Primiphos methyl, Petachlorothioanisole, Dichlofluanid, Aldrin, Chlropyrifos, Triadimefon, Primiphos ethyl ranged from 1.99 to 1.00 μ g/kg⁻¹ in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

197

Also, Isopropalin, Isodrin, Pendimethalin, Heptachlor epoxide, Tolyfluanid, Quinalphos, Procymidone, cis-Chlorodan, o,p-DDE, Tetrachlorviphos, Endosulfan I, and hlordane-trans was detected in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD and ranged from 0.99 to $0.50 \mu g/kg^{-1}$ (Fig. 4).

203

Pesticide residues named, Chlordane-trans, Nonachlor-trans, Pretialchlor, p,p-DDE, Dieldrin, o,p-DDD, Endrin, Chlorobenzilate, Endosulfan II, p,p-DDD, o,p-DDT, Nonachlor-cis, Endrin aldehyde, Carfetrazone ethyl, Methoxychlor olefin, Endosulfan sulfate, o,p Methoxychlor, Resmethrin 1, Resmethrin 2, Nitralin, Bifenthrin, Bromopropylate, Endrin_ketone, Methoxychlor, Tetradifon, Leptofos, and Mirex was ranged as low as $0.50 \,\mu g/kg^{-1}$.

- 210
- 211

Fig. (2) Pesticide Residues levels (μ g kg⁻¹ ranged from 43 to 2 ppb in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

- 216
- 217
- Fig. (3) Pesticide Residues levels ($\mu g kg^{-1}$) ranged from 2 to 1 ppb in organic and conventional
- 219 olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

Fig. (4) Pesticide Residues levels ($\mu g k g^{-1}$) ranged from 0.5 to 1 ppb in organic and conventional olive farm soil extracted by QuEChERS and analyzed by GCMSMSTQD.

224

225 **Conclusions**

226

The QuEChERS method is becoming increasingly more popular as a new and 227 robust procedure. QuEChERS-GC/MS/MS multi-residue method described here is a 228 simple, rapid and accurate approach suitable for the monitoring of 74 pesticide 229 residues in old, medial and new olive farms which is 25, 15 and 5 years olive farm 230 soil samples. The proposed methods have been validated lowing a reliable 231 determination of the selected compounds with high recoveries. The limit of 232 detection (LOD) and limit of quantification (LOQ) for the analyzed pesticides were 233 in the range of 1.01-13.91 μ g kg⁻¹ and 3.02 - 29.15 μ g kg⁻¹, respectively. Pesticide 234 recoveries form soil samples spiked with pesticides ranged from 65.504 to 111.73 235 %. The proposed method featured good sensitivity, pesticide quantification limits 236 were low enough, and the precision, expressed as relative standard deviation, 237 ranged from 0.29 to 13.32%. Pesticide residues was detected by applying the 238 modified QuEChERS and GCMSMSTQD method levels was ranged from 43.00 to 239 2.00 μ g kg⁻¹ for 18 different pesticides, 1.99 to 1.00 μ g kg⁻¹ for 16 different 240 pesticides, 0.99 to 0.50 µg kg⁻¹ for 12 different pesticides and lower than 0.50 µg 241

kg⁻¹ for 28 different pesticide residues. QuEChERS provides high quality results with a high sample throughput. Additionally, there is low solvent and glassware consumption, with low work and cost of analysis per sample.

245 246

247 **References**

- AOAC Method. Official Methods of Analysis 2007.01, Pesticide Residues in Foods by
 Acetonitrile Extraction and Partitioning with Magnesium Sulfate. 2007, 18th: Available
 from: <u>http://www.weber.hu/PDFs/QuEChERS/</u> AOAC_2007_01.pdf, accessed December
 2012.
- Caldas S.S., Bolzan C.M., Cerqueira M.B., Tomasini D., Furlong E.B., Fagundes C., and Primel
 E.G., Evaluation of a Modified QuEChERS Extraction of Multiple Classes of Pesticides
 from a Rice Paddy Soil by LC-APCI-MS/MS. J. Agric. Food Chem., 2011, 59, 1191811926.
- El-Saeid, Mohamed H., Mohamed T. Selim, Sherif B. Abdel Ghani. (2015) Monitoring of
 pesticide residues in organic and conventional farmland soils using GC-MS. *Wulfenia J*, *Vol 22, No. 2;Feb 2015, 271-283.*
- Khan, S. U. 1982. Studies on bound ¹⁴C-prometryn residues in soil and plants. Chemosphere, 11(8):771-795.
- Khan, S. U. 1995. Bound pesticides residues in food products. AgriScience. December
 1994/.January 1995.
- Maestroni, B. 2002. Preparation of Samples and Estimation of Uncertainty of Sample
 Processing. In Lectures/Uncertainty of sample processing. Training Workshop on
 Introduction to QC/QA measures in Pesticide Analytical Laboratories, Training and
 Reference Center for Food and Pesticide Control, Seibersdorf, Vienna, Austria, June 17 July 26.
- Maestroni, B., A. Ghods, M. El-Bidaoui, N. Rathor, O. P. Jarju, T. Ton and A. Ambrus. 2000.
 Testing the efficiencyand uncertainty of sample processing using ¹⁴C-labelled
 Chlorpyrifos, Part I. In:Fajgelj A, Ambrus A (eds) Principles of method validation. Royal
 Society of Chemistry, Cambridge, p 49-58.
- Pinto C.G., Laespada M.E.F., Martín S.H., Ferreira A.M.C., Pavón J.L.P., and Cordero B.M.,
 Simplified QuEChERS approach for the extraction of chlorinated compounds from soil
 samples. Talanta, 2010, 81, 385-391.
- Pinto C.G., Martín S.H., Pavón J.L.P., and Cordero B.M., A simplified Quick, Easy, Cheap,
 Effective, Rugged and Safe approach for the determination of trihalomethanes and

- benzene, toluene, ethylbenzene and xylenes in soil matrices by fast gas chromatography
 with mass spectrometry detection. Anal. Chim. Acta, 2011, 689,129-136.
- Powley ,C. R. 2004. Extraction efficiency considerations for present and future agrochemical
 residue methods. 5th European Pesticide Residues Workshop (EPRW), Pesticides in Food
 and Drink. Book of Abstracts: 43. June 13-16 2004; Stockholm, Sweden.
- Pszczolińska, K, and Michel, Monika (2016). The QuEChERS Approach for the Determination
 of Pesticide Residues in Soil Samples: An Overview. Journal of AOAC International,
 99, (6), 1403-1414(12). DOI: <u>https://doi.org/10.5740/jaoacint.16-0274</u>
- Rashid A., Nawaz S., Barker H., Ahmad I., and Ashraf M., Development of a simple extraction
 and clean-up procedure for determination of organochlorine pesticides in soil using gas
 chromatography-tandem mass spectrometry. J. Chromatogr. A, 2010, 1217, 2933-2939.
- Wang Y.H., Du L.W., Zhou X.M., Tan H.H., Bai L.Y., Zeng D.Q., and Tian H., QuEChERS
 extraction for high performance liquid chromatographic determination of pyrazosulfuronethyl in soils. J. Chem. Soc. Pak., 2012, 34, 28-32.
- Brondi S.H.G., de Macedo A.N., Vicente G.H.L., and Nogueira A.R.A., Evaluation of the
 QuEChERS method and gas chromatography-mass spectrometry for the analysis pesticide
 residues in water and sediment. Bull. Environ. Contam. Toxicol., 2011, 86, 18-22.
- Fernandes V.C., Domingues V.F., Mateus N., and Delerue-Matos C., Multiresidue pesticides
 analysis in soils using modified QuEChERS with disposable pipette extraction and
 dispersive solid-phase extraction. J. Sep. Sci., 2013, 36, 376-382.