A note on corrections in approximation of the modified
error function

Abstract

This article deals with the evaluation of some integrals involving error-, exponential- and algebraic
functions with an objective to derive explicit expressions for the second and third order correction
terms in the approximation of the modified error function, playing important role in the study of
Stefan problem. The results obtained here appear to be new and resolve the lack of desired
monotonicity property in the results presented by Ceretania et al.(1).Results derived here seem
to be useful for the researchers working with Stefan problems.
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1 Introduction

The modified error function was first introduced by Cho and Sunderlard (4) while they were looking
for a solution of a Stefen problem, though it was used broadly for solving diffusion problem (5; 6; 7; 8;
9; 10; 11) even before its formal introduction was given by mentioned authors. Initially, the authors in
(1) have presented some approximations for the modified error function. The approximate analytical
solution of the nonlinear boundary value problem

[{1+0y@)}y'(@)] +2zy(x) =1 (1.1)

with boundary condition
y(0) =0, y(o0) =1 (1.2)

was derived by expressing the solution as a power series expansion in powers of the parameter ¢
present in the equation with coefficients ¢,, defined on R as

D5(x) = i ¢n(z)8", x> 0. (1.3)

n=0
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An approximation ¥ ,,, of the modified error function ®;5(x), which is the m-th partial sum, is given by
Usm(x) =D ¢n(x)d", ©>0, m e No. (1.4)
n=0

The authors in (1) obtained first and second order correction ¢ (x) and ¢2(x) involved in the approximations
Us1(z) and so(z) of the modified error function for 6 > —1. But it is observed that ¥s1(x)
appears to be better approximation than ¥;2(x), which is not desirable. The reason could not be
addressed completely. Although the two corrections ¢o(x) and ¢:(x) was presented as explicit
analytical function, the second order correction ¢2(x) could not be derived explicitly, rather it is
obtained in terms of integrals involving products of exponential and error function. The authors
suggested that the numerical implementation of the integrals present in ¢2(x) might introduce non-
negligible perturbations. During numerical experiment it is found that the order of magnitude of
¢2(z) was greater than that of ¢:1(x), which raises uncertainty over the convergence of the series
(1.3). To avoid this undesirable property, the authors in this paper have derived explicit expression
of ¢2(x) involving exponential and error function. Furthermore, the explicit expression of the next
order correction ¢3(z) has been obtained by the evaluation of some integrals involving error function
and exponential function and by derivation of some recurrence relation, which is not available in
the literature yet. With these expressions it is observed that the order of magnitude of the corrections
decreases from order to order, which resolves the apparent problem of monotonicity of the successive
correction terms that is necessary for the convergence of the series in (1.3). Hence, the inconsonance
which arised in (1) can be dispelled.

2 Approximate Solution

Use of expansion (1.4) in Eq.(1.1) with boundary condition (1.2) suggests that the leading order
correction ¢o(x) is solution to the equation [1]

00 (x) +2 2 do(z) =0 (2.1)
with
$0(0) =0, do(o0) = 1. (2.2)
The higher order corrections ¢, (z), n € N are solutions to the equation
On(@) + 22 ¢p(z) = An_1(x) (2.3)
with
¢n(0) =0, ¢n(o0) =0. (2.4)
Here, A,,_1(z) is given as
Apa(@) = =Y {dk1(@) bk (@) + dr1(2) Dk (@)} (2.5)
k=1

The value of the corrections ¢, (x) (n € N) in the expansion (1.3) can be calculated by using two fold
integration given as

on(z) = /O et /0 t e Ay_1(s) ds dt + o1 erf(z). (2.6)

Here, c,,,1 is the integration constant and erf(x) is error function defined as(3)

erf(z) = %/0 e Cdt 2> 0. 2.7)
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Now the solution of Eq.(2.1) with boundary condition (2.2) is given by
¢o(z) = erf(z). (2.8)

With the use of ¢o(x), we can calculate Ap(x) and ¢1(z) from (2.5) and (2.6) respectively as

4 67z2 2
Aofw) = == {\/% zerf(z) — e } (2.9)
1 —z2 2 —222
91() = 5 {2 —ovme P rerf(z) —merf(z)? — 2 e } + ey erf(a). (2.10)
™
Using the boundary condition (2.4) we have
e =22 (2.11)
Using this value of ¢;,; in (2.10) one gets
b1 (x) = % [{w erf(z) + 2} erfe(z) — 2 Vr z e erf(z) — 2% (2.12)

Here erfc(z) = 1 — erf(x) is the complimentary error function(3). To obtain the expression for ¢2(z)
we present the following definition and theorems.

Theorem 1. The integral involving exponential and error function can be represented as

z 1 1
/\y _ _ -1
/0 erfly)dy = —2,/ = { (fm, f) S-tan (ﬁ)} (2.13)
Here T'(z,a) is Owen T-function defined as(3)
a eXP{ 7722(1 +t) }
1 2

Proof. Differentiating (2.14) w.r.t z and using the transformation z ¢t = v/2 7, we get
2
o) _f/ cop{ 2L,
2
= /f exp( — = exp( 2y dr (2.15)

= gr Xp( )erf(\/i)

Further substitution of a z = /2 y followed by integration with respect to y over [0, z] provides

z 2
y _ Voo N1
/0 exp( - ;)erf(y)dy =—2a ﬁ{T( . ,a) 27Ttan (a)}. (2.16)
Choice of a® = % gives the result presented in the statement of the theorem. O

Lemma 1.

T 1) = {1~ erf(%f}.

102



Proof. We use the following property of Owen T-function (2)

T(z,1) == G(2)(1 - G(2))

N | —

_ 1 [(F -2
where G(z) = —= f_ooe z dt.
Now the substitution = = ¢’ converts G(z) into the following form.

7
G(z) = % /\/5 67t’2dt/

1 /0 —t'2 . /% —t'2 /]
= — e dt + e " dt
ﬁ |: — oo 0
1 z
= 3 {1 +erf(ﬁ)}
Substituting the value of G(z) in (2.17) one can obtain the relation stated in the lemma.
Lemma 2.
/ e_zzerf(x)dx = ﬁerf(m)Q.
o 4
Proof. For A =1 in Theorem 1 we have
/O e erf(z)dr = —2\/77{T(\/§x, 1) — %tan_l(l)}.
Using the result obtained in Lemma 1 the statement in this lemma can be proved.

Definition 1. We define the notation I,,, ., x(x) as follows
Ly (z) = / e’“Qt"erf(t)mdt.
0

Lemma 3. From Definition-1 it can be observed that

o Ly (50)

bn+1 I’m«n, b

/' e M trerf(bt) ™ dt =
0

where b € R is constant.

Proof. Substitution of bt = ¢’ in the integral mentioned in the Lemma converts it into

bn+1

= ! I A (bz).

bn+1 77%’%@

1 br a2
/ e 2 tMerf(t)™ dt’
0

Theorem 2. The integral I, »,»(x) given in (2.18) satisfies the recurrence relation

n—1
2\

Ima (@) = — e 2 L erf(z)™ 4

m
Imn— —— Il —1.n—
2\ , 2,A($)+)\ﬁ Ln—1a+1(x)

(2.17)

(2.18)

(2.19)

(2.20)
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where A > 0, m > 0, n > 1. It may be observed that

Too(x) = % erf(x) (2.21)

1071 )\(x) = 1 ( —Aa? - 1) (222)
1 1

Lioa(z) = 72\/7{T V2iz, ) - —tan (ﬁ)} (2.23)

Lm0 () = m erf(z) ™Y, (2.24)

Proof.

_ ‘ “At2,n m
Imna(z) = /e t"erf(t)™ dt
0

_ ,%[t"*erf(f)*ﬂ/%e*“zdt] +21/\[/0m;t( " terf(t)™ )/jt( )dtdt)

Y
= _ie**mgx’“lerf(;p)m + 0 / e M 2erf(t) ™ dt
0

m —(A+1)t2 n—1 m—1
— erf(t dt
)\\/7? ®
1 —xz2 n-1 m n—1 m
= —— f Loyn— ——Im—1n— .
axe ¢ ert(@)” + =Tz (@) + Wtk 1a+1(2)

Results in (2.21), (2.22) are obtained by straightforward integration using the Definition-1 while the
result in (2.23) can be established by using Theorem-1.

Now,
Imoa(z) = / el’f(t)me_tz dt
0

— \/7? /(L d m+1

= YmD) ) @ (erf(t)™ ") at

_ ﬁ m—+1

= mtD) erf(z) .
This completes the proof. O

Theorem 3. Using Definition-1 we have the following recurrence relation for A = 0
zn 2m

—— eff m™— 71771— n .
n+1 erf(x) Vr(n+1) tnt11(2)

Proof. We use the formula for integration by parts to get

Im,n,O(x) = (225)

Imno(z) = / t"erf(t)™ dt
0
it z 2m ® 1 42 1
= 7erftm’77/ erf(t)™ t"dt
w1 O T Ay ), SO e
n+1
= erf(z)™ 2m

———Im-1n .
n+1 Vr(n+1) 1n+1,1(2)
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O

Theorem 4. The explicit expression for the second order correction ¢2(z) in the approximation of
modefied error function ®s(x) can be obtained as

b2(v) = == [ -2 erf(x)2{7r erfe(x) — 2} — 42" {7r (2% = 3) erf(z) + m — 2}
+vr e a{erf(z){r (9 - 20%)erf(w) - 4m + 8} — 4} (2.26)
+{7T (3v3—18) + 8}erf(m) —3V3merf(v3z) - 2\/7?67?@2:13 +4m — 8] .

Proof. From (2.5) one can get,

M) = —{260) ¢ (@) + 61(2) 66 (2) + do(x) o7 (@) } (2.27)
Explicit expressions for ¢o(x), ¢1(x) given in (2.8) and (2.12) have been used to obtained
Avw) = [ o (o - 2) erf(a) + 7 - 2

2.28
+ﬁ62$2x{erf(x){7r(x2 —3erf(z) + T —2} + 1} — Sﬁx] ( )

Using the integral representation of ¢, (z) in (2.6) for n = 2, one can obtain the explicit z-dependence
of ¢2 with the help of Lemma-2 and Theorem-2 as

d2(z) = % [ — 4e”” {7? (z® = 3)erf(z) + 7 — 2} —2y/mx
—ﬁeszx{ﬂ (22* — 9) erf(z)* + 4(r — 2)erf(z) + 4} (2.29)

+e3x2{ — 2m erf(z)*(m erfe(z) — 2) — 3v/3r erf (V3z) + 4m — SH
+c2,1 erf(x).

Use of the boundary condition (2.4) for n = 2, properties of error- and complementary error-functions
provides the integration constant

373 —8r +8
C2.1 = (4% (230)

Relations in (2.29) and (2.30) simultaneously recover the statement of Theorem-4. O
The result obtained here appears to be new.
To derive third order correction term ¢3(z), we recall (2.5) to obtain
As(z) = —{czﬁ’l () + 2¢0(2)ps(x) + ¢ (x)$2() + b1 (x)$7 () + po(w)ds (w)}- (2.31)

Use of explicit expression for ¢;(z), i = 0, 1, 2 into the above expression yields a large expression in
2 which has been split into five parts as

As(x) =) Asi(2) (2.32)

where

—242

_ 322
Agq(z) = —¢ (82> +6vV3+m—28+ 22) — 18:5/2 (m — 2z — Ze 4’ (72*+4), (233

72 ™

105



.2 _9p2
—x e 2z

Asa(z) = [WS—/;{W (82 + 6v/3 + 7 — 36) + 20} —12e 2 9y (22 - 2) 2.3
% (1322 — 32) ] erf(z), '
Az z(z) = [ﬁ;j% (r—2) (2 =3) — e’j”2 (102* — 5127 + 48) ]erf(m)2, (2.35)
Aga(x) = S (40" - 362% 4 59) erf(a)’?, (2.36)
Aas(e) = —35 = [ VB merf (v3x) — 2m + 4. (2.37)
Accordingly, we write ¢3(z) as
5
¢3(z) =D ¢a(x) + 1 erf(x) (2.38)
k=1
where . ,
¢3k(x) = / et / e Az i (s) ds dt. (2.39)
0 0

Using Definition-1 and the values of A, (x), k = 1,2,...,5 given in (2.33)-(2.37) we can express the
integrals [ e’ Ao (s) ds, k=1,2,...,5 as follows.

b2 8 1 20
/0 e AQJ(S) ds = —p 10,2,1(15) — P (6\/§+ T — 28 4+ ?) 1070,1(1‘/)
18 14 8
—— (7 —=2) Ioa,2(t) — =5 To2,3(t) — =5 Lo,0,3(2), (2.40)
T2 us s
ty 8 1 20 12
[ e taatsrds = 5 hao@)+ (Sp6VE+m-30)+ 23) hao) - 15 (m-2) haa(t)
0 T2 T2 T2 ™
24 26 64
+—(m=2) Lioa(t) — —5 Nis2(t) + —5 Tia.2(1), (2.41)
m T2 mT2
b2 6 18 10
[ et tatds = Sr-2) Bao®) - 5= Bol®) - T Bt
0 T2 T2 ™
51 48
+— 1272,1(1‘/) - — Ig,oﬁl(t), (242)
™ ™
L 2 18 59
A ds = —1I t) — — I t — I t 2.43
/0 e 2,4(s) ds Jr 3,5,0(t) NG 3,3,0(t) + NG 3,1,0(), ( )
b2 6 3
/ e A2,5(S) ds = T(TF — 2) [0’1,0(15) — 4 ]1}1,0(\/§t). (2.44)
0 T2 T2

We now derive the explicit expressions of I,,, ,,x(t) for various values of m, n, A\ appearing in (2.40)-
(2.44) by the use of Lemma-2, Lemma-3, Theorem-2 and Theorem-3. Then using the obtained results
and the definition of ¢3 ,(z) given in (2.39) one can find the expressions of ¢3 x(z), k = 1,2,...,51in
terms of I, x(z) as

¢3,1($) =

9 /m 7 4 9 /m
3 (5 - 1)10,0,3(37) + ﬁfo,m(x) + pfo,m(m) — E(E — 1)10,0,1(37)
12 10  3v3 1 31
+{ =273 — —o3 — o — ﬁ>h,0,1(x} - oyl (V30) (2.45)
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13 3V3 15 10 6
$a2(z) = 677210’1’4(:6)+;(T+5_ - T )1071,2( )“'*1032( )+ ;(1_7)11,1,2( )
3 2 51 13 3
+7r3/2 (1 - 7>]0’073(x) - WII,(M(@") + QTT/QILQ,S =y ( )Io 0,1(x)
1 3v3 5 1 1 010 3v3 18 1
— - = —-)I — (= 4+ 2224 o)
+ﬁ( o 27r T2 4) 10,1 (2) + \/;<7r2 + . o + 2) 1,2,1()
2 9 /m 35
ol @+ =5 (5 1) oa @) + o103 (V30), (2.46)
5 12 w 3 w 31
¢3,3($) = 3 [0,1,4(415’) + 52 (1 — 5)[0,0,3(43) =y (1 - 5)]072,3(43) — WII,O,?)(JJ)

5 27 T 6 s 18
+m11,2,3($) + F(l - 5)11,1,2(1’) — ﬁ(l - 5)11,3,2(39) - ?12,1,2(56)

5 12 T 27 s
+;12,3,2($) ey (1 - *)10,0,1(1’) - W(l — 5)12,0,1(@

2
18 T 3 T 5
+m (1 - 5)[2,2,1(55) v (1 - 5)[2,4,1(55) - ﬁfzs,o,l(x)
44
+537 10,1 (V32), (2.47)
19 1 91 10
¢3a(x) = —@10,1,4(1’) + Qfo 3,4(z) + Wfl,o,s(x) — mhgﬁ(ﬂﬂ)
1 111 11 1
—&-73/2 11,4,3( ) + 712 1 2( ) - ?[2,3,2(1’) + ;12,5,2(‘77)
59 9 1
20 29 -~ L
S\f 3,0,1(x) + T 3,2,1() o/ 3,4,1(x) + 3/ 3,6,1()
127
—Tgoarz 10,1 (V32), (2.48)
3 6 s 1
¢35(r) = _ﬁlo,l,él(m) - W(l - 5)10,2,1(17)-1— o Tl (\fl’)
1
— 573 11,2,1(V32). (2.49)

We again derive the expressions for I,,, » x(x) for different m, n, X present in (2.45)-(2.49) by using
Lemma-2, Lemma-3, Theorem-2 and Theorem-3 to obtain the explicit expressions for ¢3 1 (z), k =
2,...,5 given by

b3a(z) = —Wlﬁ [63 e 1216 72" — 6231 — 279 + 27{67r (\/5 - 4) +ay 20} x
erf(z)? 4 324 /3 erf (\/?:x) — 162 /3 werf (\/§az> + 6{31\/5 werf (\/§x)
+81(r — 2) berl(x) + 744v/3x T (\/6:5, %) ] , (2.50)
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P32(z) =

¢33(z) =

#3,4()

#3,5()

Wlﬂg[m{w (6\/§+7r728) +20+e*212{ - (4x2+6\/§+7r728) 720}
_ﬁera:{w (49[;2 L 6V3 b — 30) + 20}erf(w)} 4 54(m — 2)7 x
{ -6 (e‘QQ62 + 1) erf(z) + 3 erf(z)® + 4v/3 erf (\/533) } + 77{117(1 _ e

_234\/7;6_2@2@ erf(z) + 140\/57({24 T (\/éa:, %)

+3 erf(z) erf (\/§m> - 2}} , (2.51)

1 _ 22 _og?
Foyyr {27(71‘ — 2){71’6 z(9— 2332) erf(z)® — 4y/me > (mz —4) erf(z)
™ —322 —422 z?
+8y/ erf(x) — 23 3 erf (\/gx) —2e x4+ /e — 120/7e” x erf(z)
45 — 9we>” (102® — 31) erf(x)Z} + ﬁ{45 — 457°erf(x)?

+176v3r {12 7 (\/ém, %) +erf(x) erf (V) - 1}}] (2.52)

1

{e*“zg (333 — 362) — 5dy/me >z (20 — 19) erf()

21672
Y (42" — 402° + 91) erf(z)® — 932~ (43v4 — 44z + 111) erf(x)?
1
_{25477\/??{48 T (\/éx, ﬁ) + 3erf(x) erf (\/:Ex) - 4} + 333}] 7 (2.53)

1 {9\/77674962 + 9673:21'{\/5 m erf (\/gx) —2m + 4} + ﬁ{\/gﬂ -9

1275/2
~12V3r T (\/éa:, ) - 3erf(ac){\/§ T erf (ﬁx) ~3r 4 G}H . (2.54)

1
V3

Use of (2.50-2.54) in (2.38) and the boundary condition in (2.4) for n = 3, gives

{(19\/5 — 42)72 + (224 — 90V/3)7 — 120} . (2.55)

o1
BT o3

Substituting the derived expressions of ¢s . (z), k = 1,2, ..., 5 and the value of c3,; in (2.38) we obtain
the explicit expression for the third order correction ¢s(x) involving error-, complementary error- and
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$o(x)

bo(x) $1(x)
1(x)
ror 0.02}
08} . . . . -
1 2 3 4 5
-0.02F
06
-0.04F
041
-0.06F
02}
-0.08F
. — X -0.10F
1 2 3 4 5
$2(x) $3(x)
$2(x) ¢3(x)
0.04f
0.01F
0.03F
0.02F . . . . N
1 2 3 4 5

0.01F
-0.01F

. . . L Lo
1 2 3 4 5
_0.01F -0.02f

Figure 1: ¢,,(z) forn = 0,1, 2,3 of Eq.(1.4).

Owen T-functions as

bo(w) = L= we™ {8 —2) + 2n(a® — 4) erf(2) }

6W2 412

e—2m2

T 43

+27r{6 +3V3 —42® +6 (2 - 3) erfC(x)}]

[20 + 7r2{1 +6(a> — 3) erf(z) + (22 — 1522 + 30) erf(x)Q}

T (0204 72 + 74 6V5 30} erf(a) + 9(r — 2)(25" - 9) ef(x)

7% (4" — 442 4+ 111) erf(z)® — 18(4 — 27 + V3w erf(\/§x))]

24;3 [120 + 7?{90\/5 —104 4+ (127 + 17V3 + 6)} + 6377 erf(\/§x)] erfc(z)

_1 2 2, 1 3_ 16 4
2 {20+ 6(V3 + 2)m + 137°} erfc(z)® + 1 (Tm+6) erfe(z)” — o7 erfe()

+

+£{(117r —18) erfe(v3z) — 1287 T <\/6x, %) } (2.56)

This explicit expression for ¢3(z) seems to be new, not available in literature.
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3 Discussion

The main goal of this report is the derivation of the explicit expressions for the second and third
order corrections in the approximation of the modified error function which satisfies Eq.(1.1). Results
presented here have been derived through the evaluation of integrals involving error-, exponential-
and algebraic functions. The plots of successive corrections ¢;(z), 0 < ¢ < 3 show that the order
of magnitude is decreasing term by term with | % | < 1. Itindicates that the series in (1.3)
seems to converge for § < 2. Most of the results obtained here appear to be new and resolve the
uneasiness appearing in [1]. The results derived here may be useful for the researchers working in
the field of Stefan problems. The limitation of this approximation scheme is that the derivation of the
explicit expression for the next order corrections (¢:(x), ¢ > 4) involves intricate calculations due to
the presence of integrals containing Owen T-functions which are not even manageable with the help
of symbolic computations in a straightforward way. Hence alternative approximation scheme for the

modified error function ®;(x) with higher order accuracy is desirable.
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