
3-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS

Abstract. In this paper, we mainly give two conclusions. The first conclusion
is self-similar solutions of the compressible Euler equations in three dimensions.

We find a new system, which is simplified by using the plane wave transform
and self-similar transform. Next,we give the exact solution by using the Cardan
formula. The second conclusions is that we find this equations have limit

behavior.

1. Introduction

Now, we are discussion about the following 3-dimensional compressible isentropic
Euler equations

ρt +∇ρ · v + ρ∇ · v = 0, (1.1)

(ρv)t +

i=3∑
i=1

(ρviv)xi +∇(p(ρ)) = 0, (1.2)

where ∇ denotes the gradient respect to the space coordinates x = (x1, x2, x3),
ρ = ρ(t, x) denotes the density of the gas, vector v = (v1, v2, v3) = v(t, x) is the
velocity of the gas, and p(ρ) denotes pressure.

In this article we only considering the equations under the polytropic pressure
laws (θ − laws) with θ ≥ 1:

p(ρ) =
c20ρ0

θ
(
ρ

ρ0
)θ, (1.3)

here c0 is the sound speed at density ρ0. Many subsequent results extend with little
or no change to θ < 1 or to general pressure laws.

The compressible Euler equations have drawn great interest since the vital physi-
cal importance and many mathematical challenges(see Lions [1]). Yuen [2] obtained
the analytically self-similar solutions with elliptic symmetry and drift phenomenon
for the compressible Euler and Navier-Stokes equations in Rn (n ≥ 2) by the sepa-
ration method.

Therefore its solutions are very meaningful in mathematical physics. Sideris
[3] found that the smooth solutions to the three-dimensional Euler equations for
a polytropic idea fluid must blow up in a finite time under some assumptions on
the initial data. Godin [4] derived the asymptotic behavior of the lifespan of the
smooth solution to three-dimensional spherically symmetric flows of ideal ploytropic

2010 Mathematics Subject Classification. 76N99; 35Q31; 35Q31.

Key words and phrases. Compressible; exact solution; self-similar solution.

1

UNDER PEER REVIEW



2

gases with variable entropy, when the initial data is just perturbed from a constant
state by smooth compactly supported functions. On the other hand, it is interesting
that Grassin [5] showed that there exist global smooth solutions for ideal plolytropic
fluids if the initial data can force the particles to spread out. In reference [6], the
authors proved the global existence of the smooth solutions to the Cauchy problem
for two-dimensional flow of Chaplygin gases under the assumption that the initial
data is close to a constant stste and the vorticity of the initial velocity vanishes.

Recently, Li and Wang [7] studied the blow up phenomena of solutions for the
multi-dimensional compressible Euler equations by constructing some special ex-
plicit solutions with spherical symmetry. Yuen [8] succeeded in constructing some
non-spherically symmetric solutions for the 1-dimensions compressible Euler equa-
tions by perturbing the linear fluid velocity with a drifting term. By this perturba-
tions, Yuen [9] derived a new class of blow up or global solutions with elementary
functions to the 3-dimensional compressible or incompressible Euler and Navier-
Stokes equations. Meanwhile Yeung and Yuen [10] constructed some self-similar
blow-up solutions for the Navier-Stokes-Poisson equations with density-dependent
viscosity and with pressure by the separation method. Most recently.

In this paper, we mainly give the proof of explicit exact solutions and limit
behavior for the compressible Euler equations in three dimensions.This method is
different from the study of above reference literature. Because the new system
can be solved directly by using the plane wave transform and the Cardan formu-
la.Finally,giving the proof of limit behavior.

The paper is organized as follows. In Section 2, we give some definitions and
lemma. The Section 3 is devoted to simplify the system, and give the explicit self-
similar solution of 3-dimensional Eluer equation. In Section 4, give a simple proof
of the limit behavior.

2. PRELIMINARIES

Now, we first give same simpler definitions and lemma, which will be used in
Section 3.

Definition 2.1. (Plane wave) We say that a solution (u, ρ) of Eluer equations
(1.1)-(1.2) in the 3 + 1 variables x = (x1, x2, x3) ∈ R3, t ∈ R+ having the form

v(x, t) = f(y1x− σ1t), x = (x1, x2, x3) ∈ R3, t ∈ R+,

ρ(x, t) = g(y2x− σ2t), x = (x1, x2, x3) ∈ R3, t ∈ R+,

is called a plane wave, where yi ∈ R3, i = 1, 2.

Definition 2.2. (Self-similar solution) We say that a solution (u, ρ) of Eluer e-
quations (1.1)-(1.2) in the 3 + 1 variables x = (x1, x2, x3) ∈ R3, t ∈ R+ having the
form

v =
1

tβ
u(
x

tα
) =

1

tβ
u(y),

ρ = w(
x

tα
1

tγ
) =

1

tγ
w(y),

is called a self-similar solution, where y ∈ R3, α, β are constants.

Lemma 2.3. (The Cardan formula) The general cubic equation over the field of
complex numbers

x3 + px+ q = 0.
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Any cubic equation can be reduced to the above form, the roots of the equation has
the form:

x =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
.

3. MAIN RESULTS

In this part, we firstly get an equivalent system by using self-similar transform,
and also find an explicit solutions of the new system.

Definition 3.1. We define a C∞ function π as follows

π(ρ) = c20 ·


(
ρ
ρ0

)γ−1
−1

γ−1 , γ > 1,

log
(
ρ
ρ0

)
, γ = 1,

where ρ ∈ (0,∞), γ ∈ [1,∞).
Utilize the self-similar transform to Euler equations (1.1)-(1.2), we have a new

system as following.

Theorem 3.2. Let β = 0, α = 1 and arbitrary γ. Then the Euler equations (1.1)-
(1.2) can be simplified to the self-similar form

γw + y · ∇w − u · ∇w − wdivu = 0, (3.1)

(y · ∇)u− u · ∇Tu− πw∇w = 0, (3.2)

where y ∈ R3.

Proof. We seek the self-similar solutions by lemma 2.2, we can get

− γ

tγ+1
w − α

tα+γ+1

3∑
i=1

wyixi +
1

tα+β+γ

3∑
i=1

wyiui +
1

tα+β+γ
wdivu = 0

That is

− γw − αy · ∇w +
1

tα+β−1
∇w · u+

1

tα+β−1
wdivu = 0. (3.3)

Suppose α+ β − 1 = 0, that is to say

α+ β = 1, (3.4)

we have

γw + αy · ∇w − u · ∇w − wdivu = 0. (3.5)

Similarly, we have

− β

tβ+1
u− α

tα+β+1

3∑
i=1

uyixi +
1

tα+2β
u · ∇Tu+

πρ
tα+γ

∇w = 0.

According to the definition
π(ρ) = π(w),

we have
β

tβ+1
u+

α

tβ+1
(y · ∇)u− 1

tα+2β
u · ∇Tu− 1

tα+γ
πwt

γ∇w = 0.

That is

βu+ α(y · ∇)u− 1

tα+β−1
u · (∇)Tu− 1

tα−β−1
πw∇w = 0. (3.6)
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Next we let α+ β − 1 = 0 and α− β − 1 = 0. Then

β = 0, α = 1. (3.7)

Substituting (3.7) into (3.3) and (3.6) respectively, and (3.1)-(3.2) follows. �

Next, we will solve the new system (3.1)-(3.2) by using the plane wave transform
and the Cardan formula.

Theorem 3.3. Let γ = 1, θ = 2. Then the new system (3.1)-(3.2) has the following
exact solution

w =
3

√√√√√−( z3

27
+

∑3
i=1 a

2
iM

4

)
±

√√√√( z3

27
+

∑3
i=1 a

2
iM

4

)2

− 4z6

729
, (3.8)

u =
−2M

(N − z)2 (a1, a2, a3), (3.9)

where M = c · c20 · Q−1
0 with constant c, z =

∑3
i=1 aiyi with constant ai, and

N = w + z2

9w + 2z
3 .

Proof. We seek the plane wave of (3.1)-(3.2) with the following forms

w = Q(z), (3.10)

u = v(z), (3.11)

where z = a1y1 + a2y2 + a3y3, y = (y1, y2, y3). Then

∇w = wy = (w(y1), w(y2), w(y3)) = wz(a1, a2, a3). (3.12)

Substituting (3.10)-(3.12) into (3.1)-(3.2), we have

γQ+ (a1y1 + a2y2 + a3y3)Qz − (a1v1 + a2v2 + a3v3)Qz

−Q · (a1v1z + a2v2z + a3v3z) = 0

and

vz · (a1y1 + a2y2 + a3y3)− (a1v1 + a2v2 + a3v3) · v2

− c20 · w1−θ
0 ·Qθ−2 · (a1, a2, a3) = 0,

where

πw = c20(
w

w0
)θ−2 1

w0
= c20w

1−θ
0 wθ−2 = c20Q

1−θ
0 Qθ−2.

That is

γ ·Q+ z ·Qz − (a1v1 + a2v2 + a3v3) ·Qz
−Q · (a1v1z + a2v2z + a3v3z) = 0, (3.13)

z · vz − (a1v1 + a2v2 + a3v3) · vz
− c20 ·Q1−θ

0 ·Qθ−2 ·Qz(a1, a2, a3) = 0. (3.14)

Let θ = 2, we have

[z − (a1v1 + a2v2 + a3v3)]Qz + [γ − (a1v1z + a2v2z + a3v3z)]Q = 0,

[z − (a1v1 + a2v2 + a3v3)]vz − c20 ·Q−1
0 ·Qz(a1, a2, a3) = 0.
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It follows that

Qz −
γ − (a1v1z + a2v2z + a3v3z)

(a1v1 + a2v2 + a3v3)− z
Q = 0, (3.15)

vz +
c20 ·Q−1

0 · (a1, a2, a3)

(a1v1 + a2v2 + a3v3)− z
Qz = 0. (3.16)

According to (3.15), we get

Q = C · e−
∫ (a1v1z+a2v2z+a3v3z)−γ

(a1v1+a2v2+a3v3)−z dz
.

Let γ = 1, we have

Q = c · 1

[(a1v1 + a2v2 + a3v3)− z]
. (3.17)

According to (3.16), we know that

vz +
c20 ·Q−1

0 · (a1, a2, a3)

(a1v1 + a2v2 + a3v3)− z
Qz = 0,

vz +
c20 ·Q−1

0 · (a1, a2, a3)

(a1v1 + a2v2 + a3v3)− z
· 1− (a1v1z + a2v2z + a3v3z)

(a1v1 + a2v2 + a3v3)− z
Q = 0,

vz =
c · c20 ·Q−1

0 · (a1, a2, a3)[(a1v1z + a2v2z + a3v3z)− 1]

[(a1v1 + a2v2 + a3v3)− z]3
.

Thus

v = c · c20 ·Q−1
0 · (a1, a2, a3) · 1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
. (3.18)

That is

v1 = c · c20 ·Q−1
0 · a1 ·

1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
,

v2 = c · c20 ·Q−1
0 · a2 ·

1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
,

v3 = c · c20 ·Q−1
0 · a3 ·

1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
.

So we have

v1 · a1 = c · c20 ·Q−1
0 · a2

1 ·
1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
,

v2 · a2 = c · c20 ·Q−1
0 · a2

2 ·
1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
,

v3 · a3 = c · c20 ·Q−1
0 · a2

3 ·
1

−2 · [(a1v1 + a2v2 + a3v3)− z]2
.

Now, we assume that M = c · c20 ·Q−1
0 and ũ = a1v1 + a2v2 + a3v3, we have

ũ = −M(a2
1 + a2

2 + a2
3)

2(ũ− z)2
.

That is to say

2ũ3 − 4zũ2 + 2z2ũ+M(a2
1 + a2

2 + a2
3) = 0. (3.19)

According to the idea of the Cardan formula, we suppose

ũ = t+
2z

3
(3.20)
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and substitute (3.20) into (3.19), we have

t3 − z2

3
t+

2z3

27
+
M(a2

1 + a2
2 + a2

3)

2
= 0. (3.21)

According to the the idea of Cardan formula again, we suppose

t = w +
z2

9w
(3.22)

and substitute (3.22) into (3.21), we have

w3 +
z6

729w3
+

2z3

27
+
M(a2

1 + a2
2 + a2

3)

2
= 0. (3.23)

That is

(w3)2 + [
2z3

27
+
M(a2

1 + a2
2 + a2

3)

2
]w3 +

z6

729
= 0.

Thus

w3 = −
(
z3

27
+
M(a2

1 + a2
2 + a2

3)

4

)
±
√

(
z3

27
+
M(a2

1 + a2
2 + a2

3)

4
)2 − 4z6

729
.

In view of (3.22), we get

t =
3

√
−
(
z3

27
+
M(a2

1 + a2
2 + a2

3)

4

)
±
√

(
z3

27
+
M(a2

1 + a2
2 + a2

3)

4
)2 − 4z6

729

+
z2

9
3

√
−
(
z3

27 +
M(a21+a22+a23)

4

)
±
√

( z
3

27 +
M(a21+a22+a23)

4 )2 − 4z6

729

.

Due to (3.20), we get

ũ =
3

√√√√−( z3

27
+
M(a2

1 + a2
2 + a2

3)

4

)
±

√(
z3

27
+
M(a2

1 + a2
2 + a2

3)

4

)2

− 4z6

729

+
z2

9
3

√
−
(
z3

27 +
M(a21+a22+a23)

4

)
±
√(

z3

27 +
M(a21+a22+a23)

4

)2

− 4z6

729

+
2z

3
.

we can get

a1v1 + a2v2 + a3v3

=
3

√√√√−( z3

27
+
M(a2

1 + a2
2 + a2

3)

4

)
±

√(
z3

27
+
M(a2

1 + a2
2 + a2

3)

4

)2

− 4z6

729

+
z2

9
3

√
−
(
z3

27 +
M(a21+a22+a23)

4

)
±
√(

z3

27 +
M(a21+a22+a23)

4

)2

− 4z6

729

+
2z

3
, (3.24)

Substituting (3.24) into (3.18) and concludes the Theorem 3.3. �

Remark 3.4. The solution (3.8)-(3.9) are explicit, in view of (1.1)-(1.2), we can
get the explicit and exact self-similar solution of 3-dimensional Eluer equations.

UNDER PEER REVIEW



Corollary 3.5. Let γ = 1, θ = 2. Then the new system (3.1)-(3.2) has the
following special exact solution

w =
3

√
−(

z3

729b3
+
M

36b
)±

√
(
z3

729b3
+
M

36b
)2 − 4z6

813b6
,

u =

(
w +

z2

81b2w
+

2z

9b

)
ê,

where ê = (1, 1, 1), M = c ·c20 ·Q−1
0 with constant c, z = b(y1 +y2 +y3) with constant

b.

Proof. Now we substitute (3.24) into (3.18). Let v1 = v2 = v3 = u0, then we can
find that

a1 = a2 = a3.

Let ai = b, i = 1, 2, 3. Then

Q = c · 1

3bu0 − z
, (3.25)

u0 = M · b · 1

−2(3bu0 − z)2
. (3.26)

It follows (3.26) that

18b2 · u3
0 − 12b · z · u2

0 + 2 · z2u0 +Mb = 0. (3.27)

According to the idea of the Cardan formula, we suppose

u0 = t+
2z

9b
. (3.28)

Substituting (3.28) into (3.27), we have

t3 − z2

27b2
t+

2z3

729b3
+
M

18b
= 0. (3.29)

According to the idea of the Cardan formula again, we suppose

t = w +
z2

81b2w
, (3.30)

and substitute it into (3.29), we have

w3 +
z6

813b6w3
+

2z3

729b3
+
M

18b
= 0,

that is to say

(w3)2 + (
2z3

729b3
+
M

18b
)w3 +

z6

813b6
= 0.

Thus

w3 = −(
z3

729b3
+
M

36b
)±

√
(
z3

729b3
+
M

36b
)2 − 4z6

813b6
. (3.31)

Because (3.30), we have

t =
3

√
−(

z3

729b3
+
M

36b
)±

√
(
z3

729b3
+
M

36b
)2 − 4z6

813b6

+
z2

81b2 3

√
−( z3

729b3 + M
36b )±

√
( z3

729b3 + M
36b )

2 − 4z6

813b6

. (3.32)
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In view of (3.32), we have

u0 =
3

√
−(

z3

729b3
+
M

36b
)±

√
(
z3

729b3
+
M

36b
)2 − 4z6

813b6

+
z2

81b2 3

√
−( z3

729b3 + M
36b )±

√
( z3

729b3 + M
36b )

2 − 4z6

813b6

+
2z

9b
. (3.33)

�

4. LIMIT BEHAVIOR

In this section, we mainly discuss the limit behavior of (1.1)-(1.2). In other words
, we discuss whether the weak solution of (1.1)-(1.2) tend to the one of (4.3)-(4.4)
when γ −→ 1.

Now, we lable equations (1.1)-(1.2) as follows

ρ∗t +∇ · (ρ∗v∗) = 0 (4.1)

(ρ∗v∗)t +

d∑
i=1

(ρ∗v∗i v
∗)xi +∇(P (ρ∗)) = 0 (4.2)

When γ −→ 1 , the limit equation is

ρt +∇ · (ρv) = 0 (4.3)

(ρv)t +

d∑
i=1

(ρviv)xi +∇(c20ρ) = 0 (4.4)

when equation(4.1), (4.3)and(4.2),(4.4)respectively to do bad,we can get

(ρ∗t − ρt) +∇ · (ρ∗v∗)−∇ · (ρv) = 0 (4.5)

(ρ∗v∗)t − (ρv)t +

d∑
i=1

(ρ∗v∗i v
∗)xi −

d∑
i=1

(ρviv)xi (4.6)

+∇(P (ρ∗))−∇(c20ρ) = 0

Theorem 4.1. Let ΩT = Ω× [0, T ],here 0 ≤ T < +∞ and Ω ⊂ R3.If (v∗, ρ∗) and
(v, ρ) is the weak solution of (4.1)-(4.2)and(4.3)-(4.4), satisfy the same boundery
conditions, respectively.Then when γ → 1

‖ ρ∗ − ρ ‖L2 (Ωτ )+ ‖ v∗ − v ‖L2 (Ωτ )→ 0

Proof. let v∗ − v = ṽ,ρ∗ − ρ = ρ̃, it follows (4.5),(4.6)that

ρ̃t +∇ · (ρ̃v) +∇ · (ρ∗ṽ) = 0 (4.7)

(ρ∗ṽ + vρ̃)t +∇ρ∗v∗ṽ + ρ∗∇v∗ṽ +∇ρ∗ṽv +∇ρ̃ · v2 + ρ∗∇ṽv (4.8)

+v · ρ̃∇v + (ρ̃v + ρ∗ṽ)∇ · v∗ + ρv∇ · ṽ + c20ρ
1−γ
0 ρ∗(γ−1) · ∇ρ∗ − c20∇ρ = 0

Multiply (4.7) by ρ̃, we have

ρ̃ρ̃t + ρ̃(∇ρ̃ · v + ρ̃∇ · v) + ρ̃(∇ρ∗ · ṽ + ρ∗∇ · ṽ) = 0 (4.9)
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integrating over Ω, we have

1

2

d

dt

∫
Ω

|ρ̃|2 +
1

2

∫
Ω

∇|ρ̃|2 · v +

∫
Ω

ρ̃2∇ · v + (4.10)∫
Ω

ρ̃∇ρ∗ · ṽ +

∫
Ω

ρ̃ρ∗∇ · ṽ = 0

Similarly, multiplying (4.8)by −∆(ρ∗ṽ + ρ̃v), and integrating over Ω, we can get∫
Ω

(ρ∗ṽ + vρ̃)t[−∆(ρ∗ṽ + ρ̃v)] +

∫
Ω

∇ρ∗v∗ṽ[−∆(ρ∗ṽ + ρ̃v)] + (4.11)∫
Ω

ρ∗∇v∗ṽ[−∆(ρ∗ṽ + ρ̃v)] +

∫
Ω

∇ρ∗ṽv[−∆(ρ∗ṽ + ρ̃v)] +∫
Ω

∇ρ̃ · v2[−∆(ρ∗ṽ + ρ̃v)] +

∫
Ω

ρ∗∇ṽv[−∆(ρ∗ṽ + ρ̃v)] +∫
Ω

v · ρ̃∇v[−∆(ρ∗ṽ + ρ̃v)] +

∫
Ω

(ρ̃v + ρ∗ṽ)∇ · v∗[−∆(ρ∗ṽ + ρ̃v)] +∫
Ω

ρv∇ · ṽ[−∆(ρ∗ṽ + ρ̃v)] +

∫
Ω

c20ρ
1−γ
0 ρ∗(γ−1) · ∇ρ∗[−∆(ρ∗ṽ + ρ̃v)]

−
∫

Ω

c20∇ρ[−∆(ρ∗ṽ + ρ̃v)] = 0

Due to

−
∫

Ω

(ρ∗ṽ + vρ̃)t[∆(ρ∗ṽ + ρ̃v)] =∫
Ω

∇(ρ∗ṽ + vρ̃)t · ∇(ρ∗ṽ + ρ̃v)−
∫
∂Ω

(ρ∗ṽ + vρ̃)t · ∇(ρ∗ṽ + ρ̃v) · n = (4.12)

1

2

d

dt

∫
Ω

|∇(ρ∗ṽ + vρ̃)|2 −
∫
∂Ω

(ρ∗ṽ + vρ̃)t · ∇(ρ∗ṽ + ρ̃v) · n

Integraling over[0, τ ]with respect to t,where τ ∈ [0, τ ],we can get

1

2

d

dt

∫ τ

0

∫
Ωτ

(|∇(ρ∗ṽ + vρ̃)|2 + |ρ̃|2) + c20

∫
Ωτ

∇ρ[∆(ρ∗ṽ + ρ̃v)] +

1

2

∫
Ωτ

∇|ρ̃|2 · v +

∫
Ωτ

ρ̃∇ρ∗ · ṽ +

∫
Ωτ

ρ̃ρ∇ · ṽ +

1

2

∫
Ωτ

∇|(ρ̃v + ρ∗ṽ)|2 · 4v∗

= −(

∫
Ωτ

|∇(ρ̃v + ρ∗ṽ)|2∇ · v∗ +

∫
Ωτ

|ρ̃|2∇ · v∗) +∫
Ωτ

∇(ρ∗v∗)ṽ[∆(ρ∗ṽ + ρ̃v)] +

∫
Ωτ

∇(ρ∗ṽ)v[∆(ρ∗ṽ + ρ̃v)]∫
Ωτ

∇(ρ̃v)v[∆(ρ∗ṽ + ρ̃v)] +

∫
Ωτ

ρv∇ · ṽ[∆(ρ∗ṽ + ρ̃v)] +

c20

∫
Ωτ

ρ∗(γ−1)ρ1−γ
0 · ∇ρ∗[∆(ρ∗ṽ + ρ̃v)] +

(

∫
∂Ωτ

(ρ∗ṽ + vρ̃)t · ∇(ρ∗ṽ + ρ̃v) · n+

∫
∂Ωτ

(ρ̃v + ρ∗ṽ)∇ · v∗ · ∇(ρ̃v + ρ∗ṽ) · n)
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Suppose

G(τ) =

∫ τ

0

∫
Ω

|∇(ρ∗ṽ + vρ̃)|2 + |ρ̃|2

because

ρ∗(γ−1)ρ1−γ
0 ≤ ρ∗γ(γ−1)

γ
+
γ − 1

γ
ρ−γ0

(there p is γ, q is γ
γ−1 , and γ ≥ 1) we have

G(T ) =

∫ T

0

∫
Ω

(|∇(ρ∗ṽ + vρ̃)|2 + |ρ̃|2) ≤ C γ − 1

γ
ε−γ0 (eCT − 1)

thus∫ T

0

∫
Ω

(|ṽ|2 + |ρ̃|2) ≤
∫ T

0

∫
Ω

(|∇(ρ∗ṽ + vρ̃)|2 + |ρ̃|2) ≤ C γ − 1

γ
ε−γ0 (eCT − 1)

Therefore, we obtain that

‖ ρ∗ − ρ ‖L2(ΩT ) + ‖ v∗ − v ‖L2(ΩT )→ 0

�
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