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Abstract7
A multi-state k-out-of-n: G system is a multi-state system whose multi-valued success is greater than or equal to a8
certain value j (lying between 1 (the lowest non-zero output level) and M (the highest output level)) whenever at9
least km components are in state m or above for all m such that 1 ≤ m ≤ j. This paper is devoted to the analysis of a10
commodity-supply system that serves as a standard gold example of a non-repairable multi-state k-out-of-n: G11
system with independent non-identical components. We express each instance of the multi-state system output as12
an explicit function of the multi-valued inputs of the system. The ultimate outcome of our analysis is a Multi-13
Valued Karnaugh Map (MVKM), which serves as a natural, unique, and complete representation of the multi-state14
system. To construct this MVKM, we use “binary” entities to relate each of the instances of the output to the multi-15
valued inputs. These binary entities are represented via an eight-variable Conventional Karnaugh Map (CKM) that16
is adapted to a map representing four variables that are four-valued each. Despite the relatively large size of the17
maps used, they are still very convenient, thanks to their regular structure. No attempt was made to draw loops on18
the maps or to seek minimal formulas. The maps just served as handy tools for combinatorial representation and19
for collectively implementing the operations of ANDing, ORing, and complementation. Our symbolic analysis20
yields results that agree numerically with those obtained earlier.21
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A binary k-out-of-n: G system is uniquely defined as a dichotomous system that is successful if and only if at least26
k out of its n components are successful [1-23], By contrast, a multi-state k-out-of-n: G system does not possess a27
unique definition [24-43]. The definition adopted herein is that this system is a multi-state system (MSS) whose28
multi-valued success is greater than or equal to a certain value j (lying between 1 (the lowest non-zero output level)29
and M (the highest output level)) whenever at least km components are in state m or above for all m such that 1 ≤ m30
≤ j [34, 40-43].31

In this paper, we a study a standard multi-state system, which was proposed and studied by Tian et al. [34], and32
further studied by Fadhel et al. [44], Mo et al. [40], Rushdi [41], Rushdi & Al-Amoudi [42, 43]. The system33
(shown in Fig. 1) is a supply system of a certain commodity (e.g., oil, water, energy, transportation traffic, or34
communication traffic, etc.) that employs four pipelines to transport the given commodity from the given source to35
three sink nodes called stations. Both the system and each pipeline have four states, which are defined as shown in36
Table 1. The states of the system are defined according to whether the demands of up to a certain station can be37
met.  We use { } {0≤ ≤ 3 } to denote a binary indicator that the system can meet the commodity demand up to38
the station number , i.e., for all stations (1 ≤ ≤ ). The states of each pipeline are defined according to39
which station/stations can be reached by the commodity supply via this pipeline. Therefore, pipeline number is40
represented by a multi-valued variable , which has four values or instances { }, (1 ≤ ≤ 4 , 0 ≤ ≤ 3).41
The instance { } is a binary indicator that the commodity can reach up to station through pipeline .42

We have recently reported several solutions of the aforementioned problem, and our present paper offers yet43
another solution of this problem. In our earlier solutions, we employed purely-algebraic methods of multi-valued44
logic, in which we handled multi-valued variables either directly [41] or through some binary encoding [42, 43],45
with various map versions used occasionally for verification. In this paper, however, we deliberately avoid the46
mathematically-demanding algebraic manipulations in [41-43] by employing the Karnaugh map [45-50] as the sole47
vehicle for our manipulations. There is a long history of utilization of the Karnaugh map as a probability map (or48
reliability map) in the binary case [51-59]. There are also some notable applications of the Karnaugh map as a49
multi-value map [60-61]. Our work herein combines the probability and multi-value notions by adapting the map50
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to multi-valued reliability calculations. We modify a regular form of the binary eight-variable Karnaugh map (of51
28 = 256 cells) [62-64] for use as a map of 256 = 44 cells representing four variables that are four-valued each.52

The organization of the remainder of this paper is as follows. Section 2 retrieves from Rushdi [41] a mathematical53
description of the example multi-state k-out-of-n system. Section 3 implements a purely-map analysis of the54
system. Section 4 shows that our numerical results exactly agree with those obtained by earlier authors. Section 555
discusses certain advantages of using the map, while Section 6 concludes the paper.56

2. Mathematical Description of the Example Multi-State k-out-of-n System57
58

In this Section, we summarize from Rushdi [41] a mathematical description of the example multi-state k-out-of-n59
system . We use {1 ≤ ≤ 3} to depict the success of station (the indicator that the commodity demand of60
station is met). The successes of the three stations are given by61 = (4; {4}; {0}, {0}, {0}, {0} )= {0} {0} {0} {0}, (1a)62 = (4; {2, 3, 4}; {2} ∨ {3}, {2} ∨ {3}, {2} ∨ {3}, {2} ∨ {3})= ( {2} ∨ {3})( {2} ∨ {3}) ∨ ( {2} ∨ {3})( {2} ∨ {3}) ∨ ( {2} ∨ {3})( {2} ∨ {3})∨ ( {2} ∨ {3})( {2} ∨ {3})∨ ( {2} ∨ {3})( {2} ∨ {3}) ∨ ( {2} ∨ {3})( {2} ∨ {3}), (1b)63

64 = (4; {3, 4}; {3}, {3}, {3}, {3} )= {3} {3} {3} ∨ {3} {3} {3} ∨ {3} {3} {3} ∨ {3} {3} {3} .            (1c)65
66

The notation ( ; ; ) denotes a symmetric switching function (SSF), which is defined as [1, 4, 20, 41-43, 46-67
48, 65-68]:68
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69 = ( ; ; ) = ( ; { , , … , }; , , … , ), (2)70

and is specified via its number of inputs , its characteristic set71 = { , , … , } ⊆ = {0, 1, 2, … , }, { ≤ }, (3)72

and its inputs = [ , , … , ]T. This function has the value 1 if and only if73 ∑ = , (4)74

for all integers such that 0 ≤ ≤ , and has the value 0, otherwise.75
76

The four instances of the system output variable S are related to station successes by [41]77 {0} = S , (5a)78 {1} = S , (5b)79 {2} = S , (5c)80 {3} = . (5d)81

82

3. Karnaugh-map Construction and Analysis83
This Section describes how the current problem is solved through the construction of a series of Karnaugh maps. Each84
of Figs. 2-11 is a  Karnaugh map of four four-valued inputs , , and . This map is considerably large as it85
has 44 = 256 cells, and is simply an adaptation of a map of eight binary variables that has the same number of cells86
(28 = 256), introduced earlier in [62-64]. Each of the maps in Figs. 2-10 has binary outputs belonging to {0, 1},87
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while the map in Fig. 11 alone has four-valued entries belonging to {0, 1, 2, 3}. In Figs. 2-10, every 1-entry is88
written explicitly, while all 0-entered cells are left blank (as usual).89

The maps in Figs. 2-4 represent the two-valued station successes , and , as given by equations (1). These90
maps are filled-in collectively (and not in a cell-by-cell fashion), as we explain now. Equation (1a) sets to 191
(positively asserts) unless any of the four inputs , , or is negatively asserted (equated to 0). Excluding92{ = 0} in Fig. 2 amounts to setting to 0 all cells in the first four columns of the map in Fig. 2, while avoiding93{ = 0} assigns 0 to every cell in the first four rows of this map. Avoiding { = 0} requires that 0 be entered in94
every cell in the first column of every group of four consecutive columns in Fig. 2, while rejecting { = 0} does95
the same for every cell in the first row of every group of four consecutive rows in Fig. 2. For illustrative purposes,96
we highlight in yellow the blank (implicitly 0-entered) cells comprising { = 0} in Fig. 2.97

Equation (1b) sets to 1 (positively asserts) for six terms, the first of which is ( {2} ∨ {3})( {2} ∨ {3}).98
The four columns covered by this term are highlighted in yellow in Fig. 3. Equation (1c) sets to 1 (positively99
asserts) for four terms, the first of which is {3} {3} {3}. The four cells covered by this term are100
highlighted in yellow in Fig. 4. Figures 5-7 are obtained by collective cell-wise complementation of the maps in101
Figs. 3, 4, and 2, respectively. Figures 7-10 express the four instances of the system output via equations (5).102
Figures 8-10 use collective cell-wise ANDing of maps in the appropriate earlier figures. Figure 11 is a map of103
multi-valued entries, which represents the multi-valued output .  This map combines the results of the binary-104
entered maps in Figs. 7-10, which represent the four binary instances {0}, {1}, {2}, and {3} of . Either the105
four maps in Figs. 7-10, or (equivalently) the individual map in Fig. 11 can be read immediately to express the106
expectation of each instance (its probability of being equal to 1) as follows.107

108{0} = 1 − {0} {0} {0} {0} . (6a)109{ {1}} = { {1}} {1} { {1}} ( { {2}} + { {3}}) +110{1} {1} ( { {2}} + { {3}}) { {1}} +111
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{ {1}} (E{ {2}} + { {3}}) { {1}} { {1}} +112

( { {2}} + { {3}}) {1} { {1}} { {1}} +113 {1} { {1}} { {1}} { {1}} (6b)114
115{ {3}} = { {3}} {3} { {3}} ( { {2}} + { {1}}) +116{3} {3} ( { {2}} + { {1}}) { {3}} +117{ {3}} (E{ {2}} + { {1}}) { {3}} { {3}} +118

( { {2}} + { {1}}) {3} { {3}} { {3}} +119 {3} { {3}} { {3}} { {3}}. (6c)120{2} = 1 − {0} + {1} + {3} . (6e)121

122

4. Comparison with Previous Work123
The problem handled herein was solved via various techniques by Tian et al. [34], Mo. et al. [40], Rushdi [41], and124
Rushdi & Al-Amoudi [42, 43]. In all cases, the results were tested by the following input matrix, in which the sum125
of entries in each row is 1, since such entries are the probabilities of mutually exclusive and exhaustive events.126
127

{ { { }}} = . .. . . .. .. .. . . .. . (1≤ ≤ 4 , 0 ≤ ≤ 3) (7)128

129
Table 2 compares our results for this specific input with the results of the earlier teams of authors. The six sets of130
results are essentially the same, despite the existence of minor differences in precision.131
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5. Discussion132
The ultimate outcome of our analysis is the Multi-Valued Karnaugh Map (MVKM) of Fig. 11, which serves as a133
natural, unique, and complete representation of the multi-state system. One can obtain many useful insights and134
deduce certain (not-so-obvious) facts from this map.135

 The map reveals the nature of the four binary instances {0}, {1}, {2}, and {3} of , when these instances136
are viewed as individual binary reliability systems. The instance {0} acts like a coherent binary failure137
while the instance {3} behaves like a coherent binary success. Both {1} and {2} have a general non-138
coherent behavior, which somewhat mimics that of a -to- -out-of- : G system [65, 66], or a double-139
threshold system [67, 68]. It is interesting to note that the instances {0}, {1}, and {2} are non-coherent in140
a binary sense, though each of the station successes , and is coherent in the same sense. By contrast,141
the overall system output is coherent in a multi-state sense.142

 The map offers a convenient pictorial mechanism for decomposing its output function into various sub-143
functions, thereby constructing a multi-valued expansion tree or decision diagram for this function [1-4, 19-144
23, 41, 65-71].145

 The map is a tool to visualize each of the properties of causality, monotonicity, and relevancy, which when146
combined together amount to labelling the present multi-state system as a coherent one [43].147

 The map demonstrates total symmetry of the system function with respect to its four arguments , ,148
and . Total symmetry means that the map entries are invariant to interchanging any two of the four149
arguments [46].150

 The map in Fig. 11 is a valuable resource for computing a plethora of Importance Measures [72-96] for the151
current multi-state system. Importance Measures are used to assess the criticality of individual components152
within the system, identify system weaknesses, and rank components so as to prioritize potential reliability153
improvements A crucial map feature in this respect is the capability of the map to perform “Boolean154
differentiation” or “Boolean differencing” through appropriate map folding [87-100].155
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 Tedious algebraic manipulations were needed in [41-43] to prove that156 ≤ , (8)157

Equation (8) is a useful result, since it facilitates the derivation of an algebraic expression for {3}.158
However, inspection of Figs. 2-4 reveals not only (8) but also the more powerful result159 ≤ , (9)160

Direct inspection of Figs. 2-4 also attests that is neither comparable to nor comparable to . Figures161
7-10 confirm that the four instances {0}, {1}, {2}, and {3} of form an orthonormal set, thereby162
allowing a consistent construction of the MVKM in Fig. 11.163

164

5. Conclusions165
This paper demonstrated how MSS reliability can be handled solely via Karnaugh maps of multi-valued inputs, and166
of binary or multi-valued entries. A classical MSS problem was manually analyzed by maps that resemble eight-167
variable Karnaugh maps. Despite the relatively large size of the maps used, they were very convenient, indeed. No168
attempt was made to draw loops on the maps or to seek minimal formulas. The maps just served as handy tools for169
combinatorial representation and for collective implementation of the operations of ANDing, ORing, and170
complementation. Results obtained are satisfactory as they exactly replicate earlier results obtained by various171
automated and manual means.172
173
174
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372

373
374
375

376
Table 1. Defintion of the four-valued input variable , which detemines the status of 377

pipeline ( ≤ ≤ ), and the four-valued output variable , which detemines the overall system status. 378

379

380

381

382

Value of Meaning
0 Pipeline cannot transmit the commodity to any station.
1 Pipeline can transmit the commodity up to station 1.
2 Pipeline can transmit the commodity up to station 2.
3 Pipeline can transmit the commodity up to station 3.

Value of Meaning
0 The system cannot meet the commodity demand of any station.
1 The system can meet the commodity demand of up to station 1.
2 The system can meet the commodity demand of up to station 2.
3 The system can meet the commodity demand of up to station 3.
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383

384

385

Table 2. Comparison of the present results with those in earlier work.386

Tian
et al.
[34]

Mo et al.
[40]

Rushdi
[41]

Rushdi &
Al-Amoudi

[42, 43]
Present Results

E{S(0)} 0.1508 0.150838 0.150837750000 0.150837750000000 0.150837750000
E{S(1)} 0.0023 0.002282 0.002282548128 0.002282548128000 0.002282548128
E{S(2)} 0.0892 0.089181 0.089180866436 0.089180866435691 0.089180866436
E{S(3)} 0.7577 0.757699 0.757698835436 0.757698835436309 0.757698835436
Total 1.0000 1.000000 1.000000000000 1.000000000000000 1.000000000000

387

388



20

389
390
391

Fig. 1. A commodity-supply system that is modeled as a multi-state k-out-of-n: G system (Adapted from392
Tian et al. (2008)).393

394
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Fig .2. A Karnaugh map (of four four-valued inputs) representing the success of station 1.
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Fig .3. A Karnaugh map (of four four-valued inputs) representing the success of station 2.
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