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Gaussian Generalized Tetranacci Numbers

Abstract. In this paper, we define Gaussian generalized Tetranacci numbers and as special cases, we
investigate Gaussian Tetranacci and Gaussian Tetranacci-Lucas numbers with their properties.
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1. Introduction and Preliminaries

In this work, we define Gaussian generalized Tetranacci numbers and give properties of Gaussian
Tetranacci and Gaussian Tetranacci-Lucas numbers as special cases. First, we present some background
about generalized Tetranacci numbers and Gaussian numbers before defining Gaussian generalized Tetranacci
numbers.

There have been so many studies of the sequences of numbers in the literature which are defined recur-
sively. Two of these type of sequences are the sequences of Tetranacci and Tetranacci-Lucas which are special
case of generalized Tetranacci numbers. A generalized Tetranacci sequence {V, } >0 = {V45.(Vo, V1, V2, V3) }n>o

is defined by the fourth-order recurrence relations
(11) Vn = Vn—l + Vn—2 + Vn—3 + Vn—4;

with the initial values Vo = co, Vi = ¢1, Vo = c2, V3 = ¢3 not all being zero.

This sequence has been studied by many authors and more detail can be found in the extensive literature
dedicated to these sequences, see for example [12], [16], [17], [21], [28], [29].

The sequence {V, },>0 can be extended to negative subscripts by defining

Vin = Vo) = Vone2) = Venog) + Voo
1
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for n = 1,2,3,.... Therefore, recurrence (1.1) holds for all integer n.
The first few generalized Tetranacci numbers with positive subscript and negative subscript are given in

the following Table 1:

Table 1. A few Tetranacci numbers

n 0 1 2 3 4 )
Vo ¢ C1 C2 c3 cot+ci+eatc3  cogH 201+ 2¢o + 2¢3
V,n Chp C3 —C—C1 —(C 202 — C3 201 — C2 200 —C1 203 — 202 — 201 — 300

We consider two special cases of V,, : V,(0,1,1,2) = M, is the sequence of Tetranacci numbers (sequence
A000078 in [22]) and V,,(4,1,3,7) = R, is the sequence of Tetranacci-Lucas numbers (A073817 in [22]). In
other words, Tetranacci sequence {M,},>o and Tetranacci-Lucas sequence {R,},>¢ are defined by the

fourth-order recurrence relations

(1.2) My, = M,_1+ M,_o+ M,_3+ M,_4, My=0,My =1,My=1,M3=2
and

(1.3) R,=Ry_1+Ry_2+Ry_3+Ry_4, Ro=4,Ri=1,Ry;=3,R3 =7
respectively.

Next, we present the first few values of the Tetranacci and Tetranacci-Lucas numbers with positive and

negative subscripts in the following Table 2:

Table 2. A few Tetranacci and Tetranacci-Lucas Numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
M, 0 1 1 2 4 8 15 29 56 108 208 401 773 1490
M_, 0 0 O 1 -1 0 0 2 -3 1 0 4 -8 )
R, 4 1 3 7 15 26 51 99 191 367 708 1365 2631 5071
R, 4 -1 -1 -1 7 -6 -1 -1 15 =19 4 -1 31 =53

It is well known that for all integers n, usual Tetranaci and Tetranacci-Lucas numbers can be expressed
using Binet’s formulas
an+2 Bn+2 n+2 5n+2

Y
)

(@ Aa-a—9)  B-aB-NE-0)  O-a-BHo-0
(see for example [12] or [30])

M, =

or

5n—1

a—1 -1 —1 6—1
an71+ B Bn—l B 7n71++

1.4 M, = —
(1.4) " b —8 55 — 8 5y — 8 55 — 8

(see for example [5])
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and

Ry =a" 4+ 3" +4" + 4"

respectively, where o, 3, and & are the roots of the equation z* — 22 — 22 — z — 1 = 0. Moreover,
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— — — _ 2__ 1
v 1 2“+2\/4 w w
11 1 13
§d = —— —p— =y =2 =yt
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where

1/3 1/3
ooy B (S R (e [
o 54 108 54 108 '

Note that we have the following identities:

at+pB+y+6 = 1,
af+ay+ad+pBy+po+v0 = —1,

afy+aBd+ayd + pfyé = 1,
afyé = -—1.

We present an identity related with generalized Tetranacci numbers and Tetranacci numbers.

THEOREM 1.1. Formn > 0 and m > 0 the following identity holds:

(15) Vm+n = Mm72Vn+3 + (Mmfi% + Mm74 + Mm75)Vn+2 + (Mm73 + Mm74)Vn+1 + Mmf?)vn

Proof. We prove the identity by induction on m. If m = 0 then

Vi =M_ Vi3 +(M_3+M_g4+M_5)Vypo + (M_3+M_4)Vyp1 + M_3V,
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which is true because M o =0, M_3 =1, M_4 = —1, M_5 = 0. Assume that the equaliy holds for all

m < k. For m = k + 1, we have
Vikr1)4n = Vark +Vark—1 + Vigk—2 + Vagr-3

= (Mp—2Vinyz + (My—3+ Mg+ My_5)Vpyo + (My—3 + My_4)Viy1 + My_3V3,)
H(Mi—3Vnts + (My—a + Mi—5 + My—6) Vo2 + (My—a + My—5)Vay1 + Mi_4aVs)
+H(My—aViys + (Mg—s5 + Mi—¢ + My—7)Vyy2 + (Mg—5 + Mi—6)Vyr1 + My—5V3,)
+(My—5Vni3 + (Mg—6 + M7 + My—8) V2 + (My—6 + My—7)Viy1 + Mi—6Vn)

= (Mp—2+ My_34+ Myg_sg+ My_5)Vyoy3
+((My—3 + Mp—4 + My—5 + My_¢) + (My—a + My_5 + Mi_¢ + My_7)

+ (My—5 + My—6 + My—7 + My—3))Vyui2

+((My—3 + Mg—g + My—5 + My—¢) + (My—a + My—5 + My—¢ + My—7)) Vo1
+(My—3 + My 4 + My_5 + My_6)Vy

= My 1Viys+ (Mg—2+ M3+ Myg_4)Viio + (Mg—2 + My_3)Vyp1 + M2V,

= Mgsn—2Vats + (Mpg1)-3 + Mgr1)-a + Mr1)—5)Vato
(Mg 1)—3 + Mgg1)-a)Vat1 + Mg y1)-3Va.

By induction on m, this proves (3.8).
The previous Theorem gives the following results as particular examples: For n > 0 and m > 0, we have

(taking V,, = M,,)
My in = My oMy g3+ (M3 + Mg + My 5)Mpyo + (M3 + My —a) My y1 + My, 3M,
and (taking V,, = R,)
Ryin =Mpm_oRpys3+ (My—3+ Mp,—4 + Myy—5)Rpqo + (Mp—3 + My—4)Rpp1 + Mp,_3Ry,.
Next we present the Binet’s formula of the generalized Tetranacci sequence.
LEMMA 1.2. The Binet’s formula of the generalized Tetranacci sequence {V,,} is given as
Vi = My —3Vo + (M3 + Mp-a)Vi + (Mp—3 + My g + My, 5)Va + My V5.

Proof. Take n = 0 and then replace n with m in Theorem 1.1.
For another proof of the Lemma 1.2, see [21]. This Lemma is also a special case of a work on the nth

k-generalized Fibonacci number (which is also called k-step Fibonacci number) in [2, Theorem 2.2.].

COROLLARY 1.3. The Binet’s formula of the generalized Tetranacci sequence {V,,} is given as

Vn — Aan76 +B,Bn_6 +C,Yn76 +D,_Yn76
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where
4 = 50;_—18(‘/3@3 + (Vo +Vi + W)a? + (Vi + Va)a + Va)
b = 5%:18(%53 + (Vo + Vi +Va)B2 4+ (Vi + Vo) B + Va)
¢ = 577__18(Vw3+(%+vl + V)2 + (Vi + Va)y + Vo)
D = ﬁ(%73+(Vo+V1+V2)72+(V1+V2)7+V2)

Proof. The proof follows from Lemma 1.2 and (1.4).
In fact, Corollary 1.3 is a special case of a result in [2, Remark 2.3.].

o0
Next, we give the ordinary generating function > a,z™ of the sequence V.
n=0

(oo}
LEMMA 1.4. Suppose that fy,(x) = > a,a™ is the ordinary generating function of the generalized
=0

n
Tetranacci sequence {Vy,}n>0. Then fv, (x) is given by

7‘/()+(‘/17V0)$+(‘/27V17‘/0)5524’(‘/37‘/27‘/17‘/0)553
B l—z—a2—a3—2a? '

(1.6) fv, (x)
Proof. Using (1.1) and some calculation, we obtain
fv. (@) = afy, (2) = 2® fv, (@) = 2* fv,, (2) = Vo + (Vi = Vo) + (Vo — Vi — Vp)a®

which gives (1.6).
The previous Lemma gives the following results as particular examples: generating function of the

Tetranacci sequence M, is
x
2

x—a?—a3—at

oo
Far, (w) =D Mz = 1—
n=0
and generating function of the Tetranacci-Lucas sequence R,, is

4 -3z — 222 — 23

1—z—22—a%— 2%

fr, ()= Z R,x™ =
n=0

In literature, there have been so many studies of the sequences of Gaussian numbers. A Gaussian integer
z is a complex number whose real and imaginary parts are both integers, i.e., z = a 4+ ib, a,b € Z. These

numbers is denoted by Z[i]. The norm of a Gaussian integer a + ib, a,b € Z is its Euclidean norm, that is,

N(a+ib) = Va2 + b2 = \/(a +ib)(a — ib). For more information about this kind of integers, see the work
of Fraleigh [6].

If we use together sequences of integers defined recursively and Gaussian type integers, we obtain a new
sequences of complex numbers such as Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-
Lucas and Gaussian Jacobsthal numbers; Gaussian Padovan and Gaussian Pell-Padovan numbers; Gaussian
Tribonacci numbers.

In 1963, Horadam [13] introduced the concept of complex Fibonacci number called as the Gaussian

Fibonacci number. Pethe [19] defined the complex Tribonacci numbers at Gaussian integers, see also [8].
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There are other several studies dedicated to these sequences of Gaussian numbers such as the works in [1],

[3], [4], [8], [9], [10], [11], [13], [14], [15], [18], [23], [24], [25], [26], among others.
2. Gaussian Generalized Tetranacci Numbers
Gaussian generalized Tetranacci numbers {GV,, }n>0 = {GV,(GVy, GV1, GVa, GV3) },>0 are defined by
(2.1) GV, =GV1 + GVyo + GV_3 + GV, 4,
with the initial conditions
GVo=co+i(cs—ca—c1 —cp), GV1 =1 +ico, GVa = ¢ca + icy, GV = ¢35 + ica,
not all being zero. The sequences {GV,, },,>0 can be extended to negative subscripts by defining
GV_ = =GV_(_1) = GV_(n_2) = GV_(n_3) + GV_(5,_4)
for n =1,2,3,.... Therefore, recurrence (2.1) hold for all integer n. Note that for n > 0
(2.2) GV, =V, +iV,_1.

and

GV =V +iVopy

The first few generalized Gaussian Tetranacci numbers with positive subscript and negative subscript

are given in the following Table 3:

Table 3. A few generalized Gaussian Tetranacci numbers

n GV, GV_,

0 co+i(es—ca—c1—cp) co +i(cg —ca —c1 — )

1 c1 +ico (s —coa—c1 —co) +i(2¢2 — c3)
2 ca +icy 2¢o — 3 +1(2¢1 — ¢2)

3 c3 +icy 2¢1 — g +1(2¢ — 1)

4 cotcrtcatcegtics  2co— 1 +i(2c3 — 3co — 2¢1 — 2¢9)

We consider two special cases of GV,, : GV,,(0,1,1 + ¢,2 + i) = GM,, is the sequence of Gaussian
Tetranacci numbers and GV,,(4 — 14,1+ 44,3 44,7+ 3i) = GR,, is the sequence of Gaussian Tetranacci-Lucas
numbers. We formally define them as follows:

Gaussian Tetranacci numbers are defined by
(23) GM, =GM, 1+GM, s+ GM,_ 3+ GM,_4,
with the initial conditions

GMy=0,GM, =1,GMs =1+1i,GM3 =241
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and Gaussian Tetranacci-Lucas numbers are defined by

(2.4) GR,=GR,_1+GR,_>+GR,_3+GR,,_4

with the initial conditions

GRo=4—i,GRy =1+ 4i,GRy =3 +14,GR3 = 7 + 3i.

Note that for n >0

GM, =M, +iM,_1, GR, = R, +iR,_1

and

GM_p, = M_p, +iM_p_1,GR_p, = Ry +iR_p_1.

Next, we present the first few values of the Gaussian Tetranacci and Tetranacci-Lucas numbers with

positive and negative subscripts in the following Table 4:

Table 4. A few Gaussian Tetranacci and Tetranacci-Lucas Numbers

n 0 1 2 3 4 5 6 7 8
GM, 0 1 141 241 4+27 8+41 15+8 29+ 157 56429
GM_, 0 0 B} 1—1 -1 0 21 2-31 -3+

GR, 4—-i¢ 1447 341 7T+3t 154T7i 264150 51+26¢ 994517 191+ 99¢
GR_, 4—-i —-1—¢ —-1—¢ —-1+7 7—6: —6—1¢ —1—-4% —1+15: 15—-19:

The following Theorem presents the generating function of Gaussian generalized Tetranacci numbers.

THEOREM 2.1. The generating function of Gaussian generalized Tetranacci numbers is given as

GV + (GVi — GVy)z + (GVa — GV — GVy)a? + (GVs — GV — GV; — GVp)a®

2.
25)  fou, (@) —

Proof. Let
fav,(z) =) GVpa"
n=0

be generating function of Gaussian generalized Tetranacci numbers. Then using the definition of generalized

Gaussian Tetranacci numbers, and substracting = f (), 22 f(z), 2° f(x) and z* f(x) from f(z) we obtain (note
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the shift in the index n in the third line)
(1-z—a®—2° 2" fav, (2)

o0 o0 o0 o) o0
= Z GV,z" — = Z GV,z" — 2 Z GV,z" — 23 Z GVz" — 2t Z GV,z"
no—OO o:—O oon—O oon—O N n=0
= Z GV,z" — Z GV, z"t — Z GV, z"*t? — Z GV, z"*t3 — Z GV, a4
n=0 n=0 n=0 n=0 n=0

oo oo (oo} oo (oo}
= Z GV,z" — Z GV, _1x™ — Z GV, _az™ — Z GV, _3x™ — Z GV _qz"
n=0 n=1 n=2 n=3 n=4
= (GVo + GViz + GVax? + GViz?) — (GVox + GVi2?® 4+ GVax®) — (GVox? + GViz?) — GVpa?

+ > (GVo = GVyoy = GV — GV — GV _y)a™

n=4

= GVo+ (GV1 — GVy)z + (GVa — GV — GVp)z? + (GVs — GV — GV — GV a3

Rearranging above equation, we get

Vo + (GVh — GVo)z + (GVa — GVi — GVo)a? + (GV; — GV — GVi — GVo)a®
N l—2z—2%2—a3— a2t '

fev, (z)

The previous Theorem gives the following results as particular examples: the generating function of
Gaussian Tetranacci numbers is
x + iz?

2. =
(2.6) fom, (@) = ———5 5

and the generating function of Gaussian Tetranacci-Lucas numbers is

(2.7) fon (z) = —(1HD2° = 2+2)a® - 3-5)a+d—i

l—z—a?—a3—ot
The result (2.6) is already known, (see [24]).

We now present the Binet formula for the Gaussian generalized Tetranacci numbers.

THEOREM 2.2. The Binet formula for the Gaussian generalized Tetranacci numbers is
GV, = (A" 8+ BB" % + Cy" % + Dy"5) +i (A" + BB ° + Cy" 6 + Dy"9)
where A, B,C and D are as in Corollary (1.3).

Proof. The proof follows from Corollary (1.3) and GV,, =V, +iV,,_;.
The previous Theorem gives the following results as particular examples: the Binet formula for the

Gaussian Tetranacci numbers is

a2 ,@n+2 ant? 6n+2
oM. — [ @Pees T EaEEe | ;| @ e T e
n ,Yn+2 + §n+2 n n+2 n sn+2
+(7*&)(775)(v75) (6—a)(6—B)(6—7) (v—a)(v=B)(v=0) " (6—)(6—B)(6—)

and the Binet formula for the Gaussian Tetranacci-Lucas numbers is

GR, = (" +B" +~" +6") +1 (anil + "1 +ym 5n) .
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The following Theorem present some formulas of Gaussian generalized Tetranacci numbers.

THEOREM 2.3. Forn > 1 we have the following formulas:

(a): (Sum of the Gaussian generalized Tetranacci numbers)

> GV = %(Gvn+2 +2GV, + GV, — GV 4+ GV; — GV3)
k=1

(b): Y i GVars1 = 5(2GVany2 + GVay — GVap_1 — 2GVy — GVi — 3GV + GVs)
(€): Yop_y GVor = 2(2GVanq1 + GVap—1 — GVaya + GVy — GV 4 3GV, — 2GV3).

Proof.

(a): Using the recurrence relation

GVn = G‘/n—l + GVn—Q + GVn—B + G‘/n—4

GV =GV, — GVt —GVyo — GV 3

we obtain

GV = GVu—-GV3—-GVa—GVy
GVi = GV —GVy—GV3—GV;
GV, = GVe—-GVs—GVyi—GVs
GVs = GV =GV —GVs — GV,

GV, = GVz—GV; —GVs—GVs

GVpy = GVy—GVyi —GVipg— GVy_s
GVpy = GVpi1—GVy — GVyy — GVp_s
GVpiy = GVpio — GVisr — GVy — GV 4
GVpot = GViys— GViss — GViiy — GV,

GVn = Gvn+4 - GVn+3 - GVn+2 - G‘/n—&-l-

If we add the equations by side by, we get
o -
k=1

(GViga = GVigo = 2GVipq — GV + GVI = GV3)

(GVn+2 +2GV, + GV1 — GVo + GV — G‘/g)

wWl— Wl
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(b): When we use (2.1), we obtain the following equalities:
GV = GVio1+GVio+GVims+ GViy
GVy = GVs+GWVa+GVi+GVy
GVs = GVs+GVi+GVs+ GV,
GVs = GVi+GVe+GVs+ GV,

GVip = GVo+GVe+GVr+GVs

GVango = GVapi1 + GVap + GVap_1 + GVap—o.
If we rearrange the above equalities, we obtain
GVs = GVu—GVo—GVi — GV
GV = GVo—GVy—GV3—GV;
GV; = GVeg—GVg—GVs — GV,

GVy = GVip—GVe—GV7 —GVs

G‘/anl = G‘/Qn - G‘/2n72 - G‘/v2n73 - G‘/anél
GV‘Qn—i—l = G‘/v2n+2 - G‘/Qn - GV‘Qn—l - G‘/Qn—2~

Now, if we add the above equations by side by, we get

n 2n—1
Y GVarsr = GVanyz —GVa— Y GV —GVy
k=1 k=1

1

= GVapyo — GV — g(G‘/(anl)+4 — GVian—1)4+2 = 2GV(op_1)4+1 — GVo + GV1 — GV3) — GV
1

= G‘/QnJrQ - GVYQ - §<GVYQn+3 - C;1‘/2n+1 - 2G‘/2n - GVE) + G‘/l - G‘/LQ;) - GVO

- —%(—mvmg - GVanss — GVansr — 2GVan +2GVo + GVi +3GVa — GV3)

1
= §(3G‘/2n+2 — GVanys + GVopi1 + 2GVay, —2GVy — GVy — 3GVa + GV3)

and
3GVopto — GVopis + GVapy1 +2GVa, = 2GVayyo + (GVanto + GVaopg1 + GVay, — GVopg3) + GV,
= 2GVapia + GVap — GVay
So

> GVaksr = 5(2GVansa + GV, — GViny — 26V — GVi — 3GV; + GT3).
k=1
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(c): Since
n n 2n+1
ZGV%H + ZGV% = Z GV, — GV,
k=1 k=1 k=1
we have
- 1
Z GV = g(GVn+4 —GVpgo —2GV 1 — GVy + GVI — GV3)
k=1
1
= g(GVnH +2GV, + GV,,_1 — GV + GV, — GV3),
- 1
D GVarsr = S(2GVanyz + GVan — GVano1 — 26V — GVi = 3GVa + GVs)
k=1
n 2n—+1 n
Z GVa, = Z GVj, — ZGV2k+1 -GVi
k=1 k=1 k=1

1
= g(G‘/(2n+1)+4 — GViant1)+2 — 2GVignt1y)41 — GVo + GV — GV3)

_%(2G‘/2n+2 + GVop, — GVop_1 —2GVy) — GVi — 3GVa + GV3) — GV

%(GVM% = GVapys — 2GVanyo — GVo + GV1 — GV3) + %(—QGV%H - GVayp
+GVap—1 +2GVy + GVi + 3GV, — GV — 3GVY)

= %(G‘/Qn+5 = GVanis —2GVapyo — GVo + GVI — GV3 — 2G Va0 — GVay + GVop g

12GVy + GVi + 3GVa — GV3 — 3GVA)

1

= g(G‘/Zn-i-S - G‘/2n+3 - 4G‘/2n+2 - G‘/Zn + C;‘/271—1 + G‘/O - C;‘/1 + 3G‘/2 - QGVB)
1

= 5(20Vani1 + GVauo1 — GVanos + GVo — GVi + 3GVy — 2GV)

This completes the proof.

As special cases of above Theorem, we have the following two Corollaries. First one present some

formulas of Gaussian Tetranacci numbers.

COROLLARY 2.4. Forn > 1 we have the following formulas:

(a): (Sum of the Gaussian Tetranacci numbers)

S GM; = %(GMH+2 L 2GM, + GMy y — (1+1))
k=1

(b): Y ) GMapy1 = 5(2GMapyn + GMay — GMay_q — 2 — 2i)
(C): ZZ:l GMQk = %(QGM%H_I =+ GMgn_l — GMgn_Q -2 =+ Z)

Second Corollary gives some formulas of Gaussian Tetranacci-Lucas numbers.

COROLLARY 2.5. Forn > 1 we have the following formulas:
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(a): (Sum of the Gaussian Tetranacci-Lucas numbers)

ZGRk = GRn+2 + 2GR, + GRy_1 — 10 4 24)
(b): ZZ:l GR2k+1 = %(2GR2n+2 + GRQn - GRanl — 11 — 22)
(C): ZZ:l GRy, = %(2GR271+1 + GRoyp—1 — GRoypp—g — 2 — 8Z)

In fact, using the method of the proof of Theorem 2.3, we can prove the following formulas of generalized

Tetranacci numbers.

THEOREM 2.6. Forn > 1 we have the following formulas:

(a): (Sum of the generalized Tetranacci numbers)

> Vi=c(Vsa+ 2V + Vooy = Vo + Vi = V3)

k=1
(b) Zk 1 Vv2k+1 (2Vv2n+2 + Vv2n ‘/27171 - 2‘/O - ‘/1 - 3‘/2 + VB)
(€): Yopy Vaw = 5(2Vani1 4 Von—1 — Vap—a + Vo — Vi + 3V2 — 2V3).

As special cases of above Theorem, we have the following two Corollaries. First one present some

formulas of Tetranacci numbers.

COROLLARY 2.7. Forn > 1 we have the following formulas:

(a): (Sum of the Tetranacci numbers)
1
Z My, = g(Mn—&-Q +2M,, + My 1 — 1)
(b): >f Mopy1 = %(2M2n+2 + Moy, — Map_—1 —2)
(€): Yop_y Moy, = 3(2Mapiq + Map—1 — May—2 — 2).
Second Corollary gives some formulas of Tetranacci-Lucas numbers.

COROLLARY 2.8. Forn > 1 we have the following formulas:

(a): (Sum of the Tetranacci-Lucas numbers)

Z = Z(Rps2+ 2R, + Ry_1 — 10)
k=1

(b): ZZ:I R2k+1 = %(2R2n+2 + Rop — Rop—1 — 11)
(¢): >y Rk = %(2R2n+1 + Rap—1 — Ropn—2 — 2).

Note that if the sum starts with the zero then the constant in the formula may only change, for example

> Re=Ro+» Rp=4+ 5 (Buga + 2Ry + Ryt = 10) = 2 (Ruga + 2Ry + Ryt +2)
=1
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but
n n n 1
kZ_[)Mk:MO+kZ_1Mk:kZ_1Mk = g(M7z+2+2Mn+Mn—1*1)-

3. Some Identities Connecting Gaussian Tetranacci and Gaussian Tetranacci-Lucas Numbers

In this section, we obtain some identities of Gaussian Tetranacci numbers and Gaussian Tetranacci-Lucas
numbers.

First, we can give a few basic relations between {GM,,} and {GR,,} as

(3.1) GR, =—-GM,+3+6GM, 1 — GM,

(3.2) GR, = —-GM, 2 +5GM; 11 —2GM,, — GM, 1
and also

(3.3) GR, =4GM,+1 —3GM,, —2GM,,_1 — GM,,_5.

Note that the last three identities hold for all integers n. For example, to show (3.1), writing
GRn = aGMn+3 + bGMn+2 + CGMn+1 + dGMn

and solving the system of equations

GRy = aGM3z+bGM;y+ cGM; +dGM,
GRy = aGMy+bGM3z+ cGMs + dGM;
GRy; = aGMs+bGMs+ cGMs3+ dGM,
GR3; = aGMgs+bGMs+ cGMy+ dGMs;

we find that a = —1,b =0,c = 6,d = —1. Or using the relations GM,, = M,, + iM,,_1, GR, = R, + iR,
and identity R, = —M, 3 + 6M,,11 — M,, we obtain the identity (3.1). The others can be found similarly.
We will present some other identities between Gaussian Tetranacci and Gaussian Tetranacci-Lucas num-
bers with the help of generating functions.
The following lemma will help us to derive the generating functions of even and odd-indexed Gaussian

Tetranacci and Gaussian Tetranacci-Lucas sequences.

LEMMA 3.1 ([7]). Suppose that f(z) = > anx™ is the generating function of the sequence {an}n>o0-
n=0

Then the generating functions of the sequencesi{agn}nzo and {azn+1}n>0 are given as

Jfaz, (x) = Z a9, T" = BACVED) +2f(7\/5)
n=0

and

S F(VE) = F(=VT)
fa2n+1(x) = aopi12" =
,;) ’ NG

respectively.
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The next Theorem presents the generating functions of even and odd-indexed generalized Tetranacci

sequences.

THEOREM 3.2. The generating functions of the sequences Va,, and Van11 are given by

Vo + (=3Vo + Vo)a + (=2Vo 4+ Vi — 2Vo + Va)a® + (—2V3 4 V)a?

fVZn(:'B) $4+$3—3ZL’2—3ZL’+1
and
Fon (@) = Vi+ (=3Vi+Va)z+ (Vo — Vi + 2V — V)22 + (Vo + Vi + Vo — V3)2?
Vo 2+ a3 —322 -3z +1
respectively.

Proof. Both statements are consequences of Lemma 3.1 applied to (1.6) and some lengthy work.
From the previous Theorem we get the following results as particular examples: the generating functions
of the sequences My, and My, 11 are given by

_ 2+ f () = —z?—z+1
T oty a2 322 _3p 41 MW T a3 32 31

fM2n (SC)

and the generating functions of the sequences Rs, and Rg,11 are given by

23 — 622 —9x 4+ 4 f (2) 23+ 222 +4x + 1
x) = )
2t + 23 —322 3z 41 JHen xd 423 —322 -3z +1

fRQn (.’E) =

The next Theorem presents the generating functions of even and odd-indexed Gaussian generalized

Tetranacci sequences.

THEOREM 3.3. The generating functions of the sequences GVay, and GVayy1 are given by
_ GVo 4 (=3GVy + GVo)z 4 (—2GVpy + GV — 2GVo + GV3)a? + (—2GV, + GVi)a?

favs, = 2123 — 322 — 31 + 1
and
favan = GVa + (Z3GV: + C¥)ar + (O 74GV1 ;r QGVQQ — GV3)z? + (GVy + GVi + GV — GV3)a®
zd 423 - 322 -3z +1
respectively.

Proof. Both statements are consequences of Lemma 3.1 applied to (2.5) and some lengthy algebraic
calculations.
The previous theorem gives the following two corollaries as particular examples. Firstly, the next one

presents the generating functions of even and odd-indexed Gaussian Tetranacci sequences.

COROLLARY 3.4. The generating functions of the sequences GMa,, and GMas, 1 are given by

(144)z+ (1 —i)z? —ia®

(3.4) Jorz, = 4+ 23 —322 -3 +1
and

1—(1—d)z—(1—19)z?
(35) fGM2n+1 — ( ) ( )

ot 4+ a3 —322 -3 +1

respectively.
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The following Corollary gives the generating functions of even and odd-indexed Gaussian Tetranacci-

Lucas sequences.

COROLLARY 3.5. The generating functions of the sequences GRa,, and GRa,11 are given by

(4—14)—(9—4i)x — (6 —Ti) 2% + (1 +1) 23

3.6 = -
(36) fara, (%) a2t 4+ 23— 322 -3z +1
and

(1+4)+@A-9)z+2-6)2* + (1 +19)a°
3.7 = -
(3.7) JGRz1 () zt+ad —322 -3z +1
respectively.

The next Corollary present identities between Gaussian Tetranacci and Gaussian Tetranacci-Lucas se-

quences.
COROLLARY 3.6. We have the following identities:

(4 — )G Ma,, — (9 — 4i) GMay_g — (6 — 7i) GMay_s + (1 + 1) GMapn_g
= (14+4)GRap—2+ (1 —9) GRap—4 — iGR2p—s,

(14 49)GMaop, + (4 — 91) GMap o + (2 — 6i) GMayp_g + (1 4+ 1) GMay,—6
= (144)GRop_1+ (1 —i)GRop_3 — iGRon_3),

(4 — )G Map i1 — (9 — 40) GMap_1 — (6 — 78) GMap_3 + (14 1) GMay_s
= GRop—(1—4)GRop_o— (1 —9))GRon_4

(1 +40)GMop 1 + (4 — 91) GMoy 1 + (2 — 6i) GMay_5 4 (1 +14) GMay,_5

= GRony1— (1 —i)GRay 1 — (1 —1))GRan_3
Proof. From (3.4) and (3.6) we obtain
(A—i)—(9—4i)z— (6 —Ti) x>+ (1+0)2°) far,, = (L+i)z+ (1 —i)2? —iz®) far,, .
The LHS (left hand side) is equal to
LHS = ((4—1i)—(9—4i)z—(6—Ti)z>+ (141)2>) i G My, z"
n=0

= (5 — Z) 362 + (5 + 32) T+ f:(@: — Z)GMQn — (9 — 42) GMQn,Q
n=3

— (6 — 72) GMsy,_4 + (1 + Z) GMQH_G)ZEn
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whereas the RHS is
RHS = ((1+i)a+(1-i)a*—ia")y  GRypa"
n=0

= (6-i)2®+(G+3)z+ Y (1+17) GRana + (1 — i) GRay—s — iGRay_g)1".

n=3
Compare the coefficients and the proof of the first identity is done. The other identities can be proved
similarly by using (3.4)-(3.7).

We present an identity related with Gaussian general Tetranacci numbers and Tetranacci numbers.
THEOREM 3.7. Forn >0 and m > 0 the following identity holds:
(3.8) GVign = My—2GViys + (My—3 + Myp—a + My—5)GVgo + (My—3 + Myy—4)GVit1 + M,y 3GV,
Proof. We prove the identity by strong induction on m. If m = 0 then
GV, =M _3GVpis+ (M_s+M_y+M_5)GVyio+ (M_s+ M_4)GVyp1 + M_3GV,

which is true because M_o =0, M_3=1,M_4 = —1, M_5 = 0,. Assume that the equaliy holds for m < k.

For m =k + 1, we have

GVisy4n = GV +GVigk 1 +GVigp2 + GVigp—3

= (Mp—2GVyuy3 + (My—3+ My_g+ My_5)GVyyo + (Mg—3 + My 4)GVyy1 + My_3GV,,)
+(My_3GVyq3+ (Mg—g+ My_5 + My_6)GVipo + (My_yg + My_5)GVpi1 + My_4GV,,)
H(My-aGVipy3 + (Mg + Mg—¢ + My—7)GVyy2 + (Mg—5 + Mi—6)GViy1 + My _5GV,,)
+(My—5GViys + (Mg—6 + Mi—7 + My—8)GVyio + (Mi—6 + Mi—7)GVy11 + My—6GV,)

= (Myp—2+ My_3+ My_s+ My_5)GV,43
+(My—3 + Mg—g + My—5 + My—¢) + (My—s + My_5 + My—¢ + My_7)
(My—s + Mi—g + My—7 + My_8))GVirso
F((Mg—3 + My + My_5+ My_¢) + (Mg + My_5 + My, + My_7)) GV 11
+(My—3 + Mg + My_5 + My_s)GV,,

My GViys + (Mo + My_s + My 3)GVoss + (My_s + My_5)GVir1 + My_2GVi,

= Mr1)—2GVayz + (M(gg1y)—3 + Mgg1)—a + Mi1)—5)GVii2

F(Mg41)—3 + M(11)—2)GViy1 + M1y —3G Vi,

By strong induction on m, this proves (3.8).
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The previous Theorem gives the following results as particular examples: For n > 0 and m > 0, we have

(taking GV,, = GM,,)

GMm+n = Mm—QGMn—i-B + (Mm—3 + Mm—4 + Mm—5)GMn+2 + (Mm—B + Mm—4)GMn+1 + Mm—SGMn

and (taking GV,, = GR,,)

GRm+n = Mm—ZGRn+3 + (Mm—S + Mm—4 + Mm—S)GRn+2 + (Mm—3 + Mm—4)GRn+l + Mm—3GRn~

4. Matrix Formulation of GV,

Now, consider the sequence {U,,} which is defined by the fourth-order recurrence relation

Upn=Up1+Up2+Up3+U,y, U=U=0Us=Us=1.

Next, we present the first few values of numbers U,, with positive and negative subscripts in the following

Table 5:

Table 5. A few values of the numbers U,
n 012 3 45 6 7 8 9 10 11 12 13 14

v, 001 1 2 4 8 15 29 56 108 208 401 773 1490
v, o001 -1r002-3 1 0 4 -8 5 -1 8

Note that some authors call {U,,} as a Tetranacci sequence instead of {M,,}. The numbers U,, can be

expressed using Binet’s formula

a” g" " 5"
@—Ba-—Na-10 B-aB-NB-9 (-a0-Br-09 0-a0-B0-1

U, =

The matrix method is very useful method in order to obtain some identities for special sequences. We define

the square matrix A of order 4 as:

o O = =
O = O =
_ o O =
[ R
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such that det M = —1. Induction proof may be used to establish

Mn+1 Mn + Mn—l + Mn—2 Mn + Mn—l Mn

W o My, My +My_o+ Moy My +Myo My,
My1 My_o+ My 5+Mya My o+ My 3 My
My_o My 3+My_g+M,_5 My_3+M,_y M,3
Unias  Unir+Un+Unr Uppr +Up  Unis
(4.2) _ Upy1 Up+Up1+U,—o U,+U,—1 U,
U Un1+Upo2+Up-z Upo1+Up—2 Upa
Up-1 Upo+ Uy 3+Upys Upo+Uy3 U,_2
Unt2 Upy2o—Un—z2 Unt1+Un  Uppa
(4.3) _ Unt1 Unt1—Un—z  Un+Us Un
U, Up—Up-s Up1+Un2 Upg
U1 Upn1 —Ups Upo+Up_z Uy_z

Matrix formulation of M,, and R,, can be given as

M3 1 1 1 1 M;
M, 1 0 0 O M-
(4.4) +2 _ 2
Mpia 01 00 M,
M, 0 010 My
and
Ryys 1 111 R3
R, 1 0 0 O R
(4.5) +2 _ 2
Ryt 01 00 Ry
R, 0 010 Ry

Induction proofs may be used to establish the matrix formulations M, and R,. Note that

GM,, = iUy, + Uy
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Consider the matrices Ny, Eys defined by as follows:

1

141 1 0
Ny =

0

GM,.5 GMys
GMpi2 GMyi
GM,.1 GM,
GM, GM,

Ey =

Next Theorem presents the relations between A™, Ny

THEOREM 4.1. Forn > 3, we have

0 0 vt 1—1

GM,.1 GM,
GM, GM,_,
GM,_1 GM,_»
GM,_5 GM,_;

and Ey;.

A"Ny = Eyr.

Proof. Using the relation

GMn =1U, + Un-l—lv

and the calculations

a = 2+)Up+ (1 +9)Up1+2+0) Upy1 + (2+14) Unyo

= 22U, +iUp, +Up—1+iUp—1+2Un41 +Upy1 +2Up 42 + iUp o

= (Uny2+Uns1 + Uy +Up1) + 2Upy2 + 2Up 41 +2U, + Up—1)

= Upqs+ (Un+2 +Upy1 + U, + (Un+2 +Upy1+ U, + Unfl))

= iUn+3 + (Un+2 + Un+1 +Un + Un+3) = iUn-&-S + Un+4 = GMn+3

and

Un+Un71+Un+1 +(1+'L) Un+2 = Un+Un71+Un+1 +Un+2+iUn+2

ZTJn—I—Q + Un+3 = GMn—i—Qa
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we get
Un+2 Un+1 + Un + Unfl Un+1 + Un Un+1 2 +'L 1 + ]
Un+1 Un + Unfl + Un72 Un + Unfl Un 1+1 1
AnN]M =
Un Un—l + Un—2 + Un—3 Un—l + Un—2 Un—l 1 0
Unfl Un72 + Un73 + Un74 Un72 + Un73 Un72 0 0

GMu3 GMpio GMny GM,
GM,o GMn1 GM, GM,_,
GM,.1 GM, GM,, GM,_»
GM, GM,_1 GM, o GM,_;

Above Theorem can be proved by mathematical induction as well.

Consider the matrices Ny, Er defined by as follows:

T+3 3+7 1+4 4—1

347 1+47 4—3 —1-—1
Np =

1+4 4—¢ —-1—1¢ —-1-—3

4—7 —1—7¢ —1—12 —-14+T

GRn+3 GRnis GR.y1  GR,
E GRn+2 GRn+1 GRn GRn— 1

R =
GR,+1 GR, GR,.1 GR,_»

GR, GR,_1 GR,—2 GR,_3

The following Theorem presents the relations between A", N and ER.

THEOREM 4.2. We have

A"Ngp = Ep.

Proof. The proof requires some lengthy calculation, so we omit it.
The previous Theorem, also, can be proved by mathematical induction.

Similarly, matrix formulation of V,, can be given as

n

Vs 1111 Vs
Vie | | 1000 Vs
Voo | o100 Vi
v, 0010 Vo

oS O =
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Consider the matrices Ny, By defined by as follows:

ico+c3 1c1+co ico+c1 al
N, — ic1+co ico+cy (1 —i)cy—ici—ica+ics as ’
ico+cy (1 —id)cy—ici—icatics (1 —id)cg—c1—(1 —2i)cy—co  as
(1 —d)cy—ici—icotics (1 —i)cg—c1—(1 —2i)cy—co 2ic1+(2 — i)cy,—cs ay
GVpis GViao GV GV,
By — GVpsro GVyurr GV, GV,y
GVpt1 GV, GVuor GViug
GV, GV,1 GV,_o GV,_3
where

ar = (1 —1)cg—icy —icy +ics

a; = (I—d)ez—c1—(1—2i)eqa — o
as = 2ic1+(2—1i)ca —c3

ay = 2ico+ (2—14)cy — ca.

We now present our final Theorem.

THEOREM 4.3. We have

A"Ny = By

Proof. The proof requires some lengthy work, so we omit it.

5. Conclusions

e In the section (1), we present some background about generalized Tetranacci numbers and Gaussian
numbers.

e In the section (2), we define Gaussian generalized Tetranacci numbers and as special cases, we
investigate Gaussian Tetranacci and Gaussian Tetranacci-Lucas numbers with their properties such
as the generating functions, Binet’s formulas and sums formulas of these Gaussian numbers.

e In the section (3), we obtain some identities of Gaussian Tetranacci numbers and Gaussian Tetranacci-
Lucas numbers.

e In the section (4), we give matrix formulation of Gaussian generalized Tetranacci numbers.
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