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Evaluation of a low-cost camera for agricultural 2 

applications 3 

4 
.5 
ABSTRACT  6 
 7 
This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a 
low-cost red, green and blue (RGB) filter for obtaining NIR images and to evaluate its 
performance in two agricultural applications. First, the sensitivity of the webcam to 
differentiate normalized difference vegetation index (NDVI) levels through five nitrogen (N) 
doses applied to the Batatais grass (Paspalum notatum Flugge) was verified. Second, 
images from maize crops were processed using different vegetation indices, and 
thresholding methods with the aim of determining the best method for segmenting crop 
canopy from the soil. Results showed that the webcam sensor was capable of detecting the 
effect of N doses through different NDVI values at 7 and 21 days after N application. In the 
second application, the use of thresholding methods, such as Otsu, Manual, and Bayes 
when previously processed by vegetation indices showed satisfactory accuracy (up to 
73.3%) in separating the crop canopy from the soil. 
 8 
Keywords: NDVI; Paspalum notatum fluegge; Otsu; segmentation. 9 

1. INTRODUCTION 10 

Recent developments in sensor technologies have made digital cameras more and more 11 
efficient and affordable. These systems have been widely used as a versatile remote 12 
sensing tool for many applications due to its advantages over film-based aerial photography 13 
and satellite imagery [1]. The main advantage of digital photography lies in simplified image 14 
processing [2]. Among the advantages of digital photography from these cameras are its 15 
relatively low cost, high spatial resolution and near-real-time availability of imagery for visual 16 
assessment and image processing.  17 

Digital cameras are fitted with either a charge-coupled device (CCD) sensor or a 18 
complementary metal oxide semiconductor (CMOS) sensor that are photoconductive 19 
devices. These sensors are sensitive to near-infrared (NIR) wavelengths, however, most of 20 
these cameras are fitted with a blocking filter to this wavelength. Thus, typically these 21 
images present only the red, green, and blue (RGB) bands, which are sufficient to represent 22 
colors in the visible portion of the spectrum (400 – 700 nm), as recognized by the human 23 
vision [3]. In most cases, the digital photographs are recorded in joint photographic experts’ 24 
group (JPEG) or tagged image file format (TIFF), and the RGB channels are obtained 25 
through image processing. 26 

The use of images with RGB and NIR bands is very common in agricultural applications, 27 
especially for vegetation monitoring. Many vegetation indices, such as the normalized 28 
difference vegetation index (NDVI) [4] require spectral information in the NIR and red bands, 29 



 

 

even though the RGB bands could be sufficient for some applications [5]. Since most 30 
consumer-grade cameras only provide RGB bands, NIR filtering techniques can be used to 31 
convert an RGB camera into a NIR camera. Moreover, it is possible to replace the blocking 32 
filter by a long-pass infrared filter on standard CCD or CMOS sensors for obtaining NIR 33 
images [6]. 34 

Over the years, numerous systems for collecting images based on cameras or webcams 35 
have been developed and modified to obtain NIR information across multiple domains. Most 36 
systems included analysis of the nutritional status of agricultural crops [7], disease detection 37 
[8], yield estimation [9], and weed identification [10]. In addition, other authors highlight the 38 
possibilities of using vegetation indices combined with segmentation techniques and texture 39 
analysis for obtaining data of interest, such as crop canopy and soil [11, 12]. Furthermore, 40 
these cameras can be mounted in a stationary installation [13] or onboard a light aircraft or 41 
unmanned aerial vehicle, a deployment which was made possible due to its low weight [14, 42 
15]. 43 

Given the many possibilities of using images from RGB or modified cameras to access the 44 
NIR band, the use of artificial vision systems through image processing has enabled the 45 
extraction of information of interest, which proves to be a great tool for application in the 46 
agricultural environment. Therefore, in view of the challenge to obtain low-cost images with 47 
good quality for solving problems, the present study aimed to modify a webcam to obtaining 48 
data from the NIR band and to evaluate its performance over different agricultural 49 
applications.  50 

2. MATERIAL AND METHODS 51 

The experiment was conducted at the Federal University of Viçosa, Viçosa Campus in Minas 52 
Gerais, which is located among the coordinates: 20° 45' 14 "(S) and 42° 52' 54" (W), 649 53 
meters above sea level. The image acquisition system comprised two C3 Tech model HB 54 
2105 webcams that produced images in JPEG format (640x480 pixels). 55 

In order to obtain NIR images, a modification was carried out in one of the webcams by 56 
removing the NIR blocking filter, and adding an RGB blocking filter, which was made from 57 
the magnetic material of a floppy disk (common diskette) as proposed by [16]. Thus, the 58 
unmodified webcam, named in this study as RGB webcam and the modified NIR webcam 59 
were tested on two different applications. First, the performance of the webcam's images to 60 
differentiate NDVI values according to different N rates was verified. Second, these images 61 
were processed for separating the crop canopy from the soil using different thresholding 62 
algorithms. 63 

In the first application, a field experiment was carried out using the Batatais grass (Paspalum 64 
notatum Flugge), where a randomized block design with five treatments and five replications 65 
was adopted. Treatments consisted of five nitrogen (N) doses in the form of ammonium 66 
sulfate ((NH4)2SO4), which corresponded to 0, 40, 80, 120 and 160 kg ha-1. Plot dimensions 67 
were 1m x 1 m.  68 

Furthermore, the digital images were captured with both webcams at a height of 3 m from 69 
the ground. Data acquisition was performed twice with images being captured at 7 and 21 70 
days after the N application. All images were geometrically corrected through the projective 71 
transformation technique using the Matlab® software, where reference points were defined at 72 
the boundaries of each plot. Lastly, the NDVI [4] was calculated by Equation 1 for each 73 
experimental plot.  74 



 

 





nir r

NDVI
nir r

                                                                 (1)                                      75 

Where: nir: near-infrared band; and r: red band. 76 

In addition, the portable chlorophyll meter (SPAD-502, Konica Minolta Sensing, Tokyo, 77 
Japan) was used to measure the SPAD index (SI). Thus, at the 7 and 21 days after N 78 
application, 30 readings per plot were taken, where the average of all readings was 79 
considered as a result. In this study, the SPAD-502 readings were assumed to be the 80 
reference of chlorophyll content for the purpose of validating the sensitivity of the webcams 81 
in detecting the effect of N doses over the Batatais grass. 82 

In order to verify the significance of the proposed treatments, the results were submitted to 83 
analysis of variance (ANOVA) through the F-test. Lastly, regression models were adjusted to 84 
assess treatment effects on results of the SPAD index readings and NDVI values. All 85 
analyses were carried out using the ASSISTAT, version 7.7 free software [17]. 86 

In the second application, the RGB images were used for the ability to differentiate crop 87 
canopy from soil under different growing conditions. There were 30 images captured for this 88 
study and all of it belonged to maize crops at the V4 vegetative stage (four expanded 89 
leaves), which were grown under different soil cover conditions, such as conventional 90 
planting system, and no-tillage system with coffee husk and straw residue. 91 

The digital images were captured at a height of 1.5 m from the ground and then stored as 92 
24-bit colour images with resolutions of 640 x 480 pixels saved in RGB colour space in the 93 
JPEG format. Then, to discriminate between the object of interest (plant) and background 94 
(soil), algorithms were developed using different thresholding methods, such as Otsu [18], 95 
Manual threshold selection, and Bayes [19]. 96 

Initially, two methods were used to accentuate the green color of plants in RGB images. 97 
First, in the absolute green method, the pixel color distance (PCD) value was obtained 98 
through the euclidean distance (ED) calculation using normalized values from the red and 99 
green bands of each pixel, as shown in Equation 2 [20]. 100 

( ²) [ ( ) 1]²  PCD pixel r pixel g                                          (2)  101 

 102 
Where: r: pixel value from the red band; and g: pixel value from the green band. 103 

Second, the excess green normalized index (ExG) was obtained as it is shown in Equation 3 104 
[21].  105 
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Where: g: pixel value from the green band; r: pixel value from the red band; and b: pixel 107 
value from the blue band. 108 

Subsequently, the Otsu, Manual, and Bayes methods were applied to each image. As a 109 
result, all images showed some noise, which was removed by using a median filter with a 110 
3m x 3m window size. Moreover, the ground truth segmentation model for comparison of the 111 
three algorithms was developed from the K-means method.  112 



 

 

Generally, this method can be employed in different areas including image processing, 113 
where it can be used as a thresholding method based on data clustering. This method 114 
partitions n pixels into k clusters, where k is an integer value that holds k < n.  k-means 115 
algorithm classifies pixels in an image into k number of clusters according to some similarity 116 
feature, such as the grey level intensity of pixels, and distance of pixel intensities from 117 
centroid pixel intensity [22]. 118 

The algorithm is based on six steps:  119 

1. Selection of k clusters (k is a user defined parameter); 120 
2. Calculation of the number of image pixels N; 121 
3. Selection of k initial pixel intensity centroids μj;  122 
4. Calculation of distances Dij between pixel xi and each centroid μj as given in Equation 4. 123 

 124 
( )²ij i jD x m-=                                                                 (4)      125 

Where: i = 1 ÷ N; and j = 1 ÷ k. 126 
 127 

Particular pixel xi is then classified to cluster cj to which centroid it has the smallest distance.  128 

5. Recalculation of centroid positions μj as a mean value of all pixel intensities, which 129 
belong to cluster cj as shown in Equation 5. 130 
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Where: lj is the number of pixels that belong to cluster cj.  132 

6.  Steps (4) and (5) are repeated until classification of the image pixels does not change.  133 

In this study, the value of k (number of clusters) was defined as two, where the first 134 
represented the crop canopy and second the soil. Then, in order to validate the performance 135 
of each thresholding method, the accuracy index, proposed by [23] was computed using 136 
Equation 6.  137 

ݕܿܽݎݑܿܿܣ ൌ 100 ൈ
∩

∪
                                                           (6) 138 

Where: A: represents the set of pixels in the ground truth image that is marked as crop 139 
canopy; and; B: represents the set of pixels in the segmentation that is marked as crop 140 
canopy. 141 

This measure of accuracy determines how closely the segmentation matches the ground 142 
truth, with 100% indicating an exact match and perfect segmentation. Thus, to verify the 143 
significance of the proposed methods, the accuracy means were compared by the Students t 144 
test at a 5 % significance level (α <0.05). 145 

3. RESULTS AND DISCUSSION 146 

3.1 Application 1 147 



 

 

Average values of the SI and NDVI as a function of the nitrogen doses, as well as its 148 
respective coefficient of variation (CV), are shown in Table 1. It can be observed that CV 149 
values for NDVI index were higher than to SI values at 7 and 21 days, which may be justified 150 
by the low uniformity of the Batatais grass on the study area. Furthermore, the fact that 151 
SPAD readings are done by direct contact with the leaf surface might have decreased its 152 
CV. In addition, its higher number of readings per plot also contributes to decrease CV 153 
values, which is not done in the NDVI calculation, since only one RGB, and NIR images are 154 
used per plot to obtain the index. 155 

Table 1. Descriptive statistics of the SI (SPAD index) and NDVI (normalized difference 156 
vegetation index) at 7 and 21 days after N application. 157 

Time N rates (kg ha-1) CV 
Days 0 40 80 120 160 (%) 

 SI (SPAD-502)  
7  40.22 43.17 43.20 44.95 47.00 3,67 
21 37.95 44.92 48.12 45.82 46.95 6.55 
 NDVI (webcam)  
7  0.19 0.23 0.27 0.31 0.33 26,4 
21 0,23 0.25 0.26 0.22 0.39 17.9 

CV: Coefficient of variation 158 

Even showing sensitivity to the applied N rates, NDVI results from both dates (7 and 21 159 
days) were relatively low, which might be associated with low uniformity of the vegetation, 160 
and absence of radiometric calibration. [24] highlights that using a reference panel for 161 
standardization or the inclusion of a gray Spectralon (or other diffuse reflectors) panel within 162 
the field of view of the webcam would potentially be of value for calibration under changing 163 
illumination conditions (e.g. cloudy vs. sunny days). Thus, a radiometric calibration could 164 
increase the sensitivity of the webcam, which would result in higher NDVI values and lower 165 
weather interference. However, the results obtained here suggest that even without this 166 
calibration, the webcam was still capable of detecting differences among treatments. 167 

The regression analyses carried out to access the effect of nitrogen doses on SI and NDVI 168 
values at 7 and 21 day after N application showed a linear (7 days) and quadratic (21 days) 169 
response for both indices. Moreover, both indices were significant at 1% probability with a 170 
coefficient of determination (R²) of 0.93 (SI), and 0.98 (NDVI), respectively. In Figure 1 it is 171 
possible to observe the linear increase of the SI and NDVI values as the N doses increases 172 
at 7 days after the fertilization. 173 
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Fig 1. SPAD Index (SI) and NDVI index as a function of topdressing nitrogen doses. 176 

When observing the SI values at 21 days (Figure 1), a linear increase in its values is also 177 
observed up to the dose of 80 kg ha-1 of N. However, from the 120 kg ha-1 of N, SI values 178 
showed a decrease, which demonstrates a quadratic response to different N doses. 179 
Similarly, NDVI values showed a linear increase up to 80 kg ha-1 of N. Although, when 180 
looking at 120 and 160 kg. ha-1 N doses, NDVI response showed a high variation for both 181 
treatments, which resulted in low correlation (R² = 0.67). Even though there was a high 182 
variation in response to these treatments, SI and NDVI values at 21 days were also 183 
significant at 1%, and 5% probability, respectively. 184 

In general, this quadratic response for both indices at 21 days indicates that, in this range, 185 
increasing the nutrient concentration (nitrogen) would not reflect on grass growth, and it 186 
represents the plant luxury consumption. According to [25], the luxury consumption is 187 
defined as the N storage in the vacuole instead of its participation in the chlorophyll 188 
molecule. The same authors also point out that, excessive consumption is not always 189 
undesirable since it allows plants to accumulate nutrients when its availability is high. In this 190 
case, a gradual release is performed by the plant, when the absorption is insufficient to 191 
support its growth. 192 

Results obtained in this study showed that the webcam sensor was capable of detecting the 193 
effect of N doses over the Batatais grass for both dates, at 7 and 21 days after N application. 194 
The SPAD-502 used here as a reference method presented better results, which was 195 
expected due to its higher sensitivity and correlation with the leaf chlorophyll content.  196 

Compared to other low-cost, sensor-based methods for monitoring crops phenology, such as 197 
radiometric instruments based on LED sensors [26], or light emitting diodes [27], a clear 198 
advantage of using webcams is that it can yield images with good spatial resolution. This 199 
enables tracking the phenology of different crops by breaking the image into different regions 200 
of interest (e.g., crops and weeds) [24]. On the other hand, there is no doubt that higher-201 
quality spectral imaging could, potentially, be obtained from existing, commercially available 202 
multispectral cameras. However, for budget-limited observational and experimental studies, 203 
the system proposed here may represent an acceptable compromise, given its low cost and 204 
promising performance.  205 

3.2 Application 2 206 

Initially, performance analyses of segmentation algorithms were based on visual analysis by 207 
comparing the proposed methods to the reference binary image. Then, the accuracy index 208 
(equation 6) was used for comparing each result with that obtained through the K-means. In 209 
general, segmentation methods when combined with the ExG index showed higher accuracy 210 
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results than those methods preceded by the euclidean distance (ED). Moreover, the highest 211 
overall mean accuracy (80.3%) was obtained using the Otsu method preceded by ExG 212 
index. On the other hand, the lowest accuracy mean was observed using the Manual 213 
method with the ED index (73.3%).  214 

These results corroborate with [28], which observed that images segmented by the Otsu with 215 
the ExG index showed 88% accuracy when compared to other indices using RGB bands. In 216 
another study [29], these authors when using the Otsu method preceded by different indices, 217 
such as ExG, ExR (excess of red), and another index based on the CIE l*a*b color space 218 
obtained accuracies of 74%, 77.2%, and 62%, respectively. This demonstrates that the 219 
contrast provided by vegetation indices is of great use to highlight the crop canopy from the 220 
soil, and could yield in high accuracy segmentation. 221 

When analyzing the accuracy of each image, the highest values were observed for the 222 
Manual and Otsu method when preceded by the ED index, which resulted in 95.9 % of 223 
accuracy for both methods. According to [20], the ED method is based on the search for 224 
homology among plants, where after obtaining the spectral energy of plant content; its 225 
similarity is verified through the Euclidean distance measurement. Figure 2 shows examples 226 
of resulting images from the proposed segmentation algorithms. 227 

 228 
Fig 2. Images processed by the proposed segmentation algorithms. (a) RGB image, 229 
(b) Euclidean distance, (c) ExG index, (d) K-means, (e) Bayes with ED, (f) Bayes with 230 
ExG, (g) Manual with ED, (h) Manual with ExG, (i) Otsu with ED, and (j) Otsu with ED. 231 

In order to determine the most accurate method, the data set was submitted to the Student t-232 
test at 5% significance level. Results from the ANOVA showed that statistically, there was no 233 
difference in performance among the proposed methods when compared to each other. 234 
Although, the highest CV values were obtained through Bayes (34.72%), and Otsu methods 235 
(33.28%), when preceded by the ED index as it is shown in Table 2. 236 

Table 2. Accuracy results from the proposed segmentation algorithms. 237 
Methods Accuracy (%) 

 Max Min SD CV Mean 



 

 

Otsu + ED 95.9 32.0 25.65 33.28 77.1 
Otsu + ExG 90.9 61.6 9.09 11.33 80.3 
Manual + ED 95.9 32.0 23.43 31.99 73.3 
Manual ExG 93.5 55.9 13.05 17.12 76.2 
Bayes + ED 93.7 22.5 26.15 34.72 75.3 
Bayes + ExG 90.9 61.6 16.11 21.19 76.0 
Max: maximum; Min: minimal; SD: Standard deviation; CV: coefficient of variation. ED: Euclidean 238 
distance; ExG: Excess of green 239 

These results can be justified by the adverse illumination conditions during the image 240 
acquisition period, which resulted in erroneous segmentation due to shaded areas in 241 
images. Thus, the Otsu, manual, and Bayes segmentation methods presented satisfactory 242 
accuracy (up to 73.3%) for separating crop canopy from the soil when preceded by the ExG 243 
and ED indices. Even though a satisfying performance has been achieved, there are still 244 
factors, such as the lighting conditions, plant shading and complex background that are 245 
challenges to the success of segmentation. 246 

Thus, the application of low-cost consumer cameras for process control as an element of 247 
precision farming could save fertilizer, pesticides, machine time, and labor force. Although 248 
research activities on this topic have increased over the years, high camera prices still reflect 249 
on low adaptation to applications in all fields of agriculture. Smart cameras adapted to 250 
agricultural applications can overcome this drawback. 251 

4. CONCLUSION 252 

The webcam sensor was capable of detecting the effect of nitrogen doses over the Batatais 253 
grass through different NDVI values at 7 and 21 days after N application. Regarding the use 254 
of webcam images in agricultural applications through thresholding methods, it was possible 255 
to observe that the segmentation process over RGB images becomes challenging due to 256 
non-uniform illumination conditions, and complex image background. Thus, the use of 257 
thresholding methods, such as Otsu, Manual, and Bayes when previously processed by the 258 
ExG and ED indices can satisfactorily separate the crop canopy from the soil. 259 
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