Macroeconomic Determinants of Stock Market Performance in Nigeria: An Econometric Approach

4

5

6

7

8

9

10

11 12

13

14 15

16

17

18

19 20

21

22 23

24

25

26

27 28

29

30

31

32

33

3435

36

37

38

39 40

3

1

2

Abstract

This paper examined the macroeconomic determinants of stock market performance in Nigeria using annual time series data spanning 1981 to 2016. The data were obtained from Central Bank of Nigeria (CBN) Statistical Bulletin. Four macroeconomic variables, namely: money supply, interest rate, exchange rate and inflation rate were used as independent variables, while market capitalisation (proxy for stock market performance) was employed as the dependent variable. The results of Jarque-Bera (JB) test showed that all the data series used in the study were normally distributed. The results of Augmented Dickey-Fuller (ADF) test revealed that all the variables studied were stationary at first difference except money supply which was stationary at second difference. The Ordinary Least Square (OLS) regression results showed that money supply has a significant positive effect; interest rate has a significant negative effect; whereas, exchange rate and inflation rate have no statistically significant effect on stock market performance in Nigeria. The cointegration test results disclosed that there exists a cointegrating relationship between the macroeconomic indicators and stock market performance. This implies that there is a long-run relationship between the variables. The Granger Causality test results revealed that a unidirectional causality runs from money supply and exchange rate to stock market performance. Therefore, the study concluded that money supply and interest rate are the true determinants of stock market performance in Nigeria. The reason is that out of the four independent variables considered in the study, only money supply and interest rate exhibited a significant effect on stock market performance. Consequently, the study recommends as follows: Monetary policies that favour the supply of money in the economy should be pursued in order to ensure a better performance of the stock market; Interest rate should be relatively low to guarantee a higher performance of the stock market because high interest rate has a significant negative effect on the Nigerian stock market. Finally, investors should not fail to consider interest rate and level of money supply in the economy whenever investment decisions are to be taken in order to improve their returns.

Keywords: Macroeconomic determinants, stock market performance, Nigeria

1. Introduction

Investment in the stock market could be very rewarding but also very risky. As such, potential investors attempt to analyse and predict the trend of stock market prices in order to maximise their returns and minimise risk. In doing this, investors consider how certain macroeconomic variables like interest rate, inflation rate, exchange rate, money supply, etc. affect the performance of their stocks. According to Masuduzzaman (2012), Macroeconomic variables play an important role in the performance of a stock market. They can be a yardstick to the investors to forecast the performance of the stock market, as well as a

- 41 perfect alternative to get additional information about the behaviour of the stock market
- 42 (Jamaludin, Ismail and Manaf, 2017).
- 43 Stock markets play a pivotal role in growing industries and commerce of a country that
- eventually affect the economy (Naik and Padhi, 2012). The stock market makes long-term
- 45 capital available to firms for investment purposes. The market performs the intermediation
- 46 process by pooling funds from different investors who wish to put their surplus funds in
- 47 alternative investment avenues. The investors carefully watch the performance of stock
- 48 markets by observing the composite market index, before investing funds. The market index
- 49 provides a historical stock market performance, the yardstick to compare the performance
- 50 of individual portfolios and also provides investors the key to forecasting future trends in
- 51 the market.

67

68

- 52 Despite the notion of efficient market hypothesis (EMH), that it is impossible for investors to
- earn abnormal profit because all the available information are fully reflected in prices in the
- 54 stock market, many researchers believe that macroeconomic determinants have an effect
- on stock returns. This believe tends to agree with the proposition of the arbitrage pricing
- 56 theory (APT) formulated by Ross in 1976, that returns on stocks are subject to series of
- 57 factors like inflation rate, size of the company, dividend yield, exchange rate, gross domestic
- 58 product, consumer price index, industrial production index, unemployment rate, interest
- 59 rate, real income (GDP per capita income), domestic savings, stock market liquidity, etc.
- 60 However, only a few studies in Nigeria are directed towards the effect of macroeconomic
- 61 fundamentals on the performance of the Nigerian stock market. This means that there are
- 62 still a lot to be done to fill the gap in knowledge. As such, this study examines the effect of
- 63 macroeconomic determinants on stock market performance in Nigeria.
- The specific objectives of the study are as follows:
 - 1. To examine the effect of money supply on stock market performance in Nigeria
 - 2. To assess the effect of interest rate on stock market performance in Nigeria
 - 3. To determine the effect of exchange rate on stock market performance in Nigeria
 - 4. To ascertain the effect of inflation rate on stock market performance in Nigeria
- 69 This study on macroeconomic determinants of stock market performance in Nigeria covered
- 70 the period 1981 2016. The base year, 1981 is the year that oil price boom ended in
- 71 Nigeria. This triggered the need for alternative ways of growing the economy including stock
- 72 market development. The macroeconomic variables considered in this study include money
- supply, interest rate, exchange rate and inflation rate. Market capitalisation was used as a
- 74 proxy for stock market performance.
- As at the time of conducting this research, 2017 data were not published by the CBN.
- 76 However, the outcome of this study is not affected as the 35 years period covered by the
- study is long enough to give reliable results.
- 78 This study is significant to the following stakeholders:

83

84

85 86

87

88

89

90

91 92

93

94

109

- 1. Policy makers: The knowledge from this study will guide policy makers in formulating and adjusting policies to promote macroeconomic stability and foster the performance of the stock market which will in turn promote economic development.
 - 2. Investors: This study serves an eye opener to investors as it provides useful guides concerning investments in the capital market. Having this knowledge will enable them to make good returns on their investments.
 - 3. Researchers: This research work serves as a reference material for further research on this field of study.
 - 4. Lecturers/Students: This study serves as a study material for both Lecturers and Students interested in this topic.
 - 5. The economy: As the study guides policy makers in making and adjusting policies to achieve macroeconomic stability; helps investors to make good returns on investments; it will help the economy to grow resulting in enhanced standard of living of the people.

2. Review of Related Literature

2.1 Conceptual Framework

- 95 Stock market performance or stock market returns are gains (including dividends) that
- 96 investors generate from buying and selling of stocks in a stock market. Returns are usually
- subject to market risks. To maximise returns, investors should buy at low prices and sell at
- 98 high prices. Rational investors act on informed decisions and conduct either technical or
- 99 fundamental analysis to determine the future trend of stocks. Technical analysis mainly
- 100 focuses on scrutinizing the historical price movements of a particular stock to predict the
- future trend of the stock. However, fundamental analysis focuses more on the cash flows,
- 102 profit growth of companies and any other information that could potentially lead to an
- increase in the share price of a particular stock. Different macroeconomic factors contribute
- to the change in earnings of the market. For instance, changes in inflation, exchange rate,
- interest rate, money supply, etc. usually influence the long term stock market trends.
- 106 The stock market is an impulsive environment with trends that can either give investors
- 107 positive or negative returns. Increase in volatility of the stock market raises the level of risk
- involved and decreases the returns on stocks.

2.2 Theoretical Framework

110 2.2.1 Arbitrage Pricing Theory (APT)

- 111 This study is anchored on Arbitrage Pricing Theory (APT) propounded by Ross in 1976. This
- theory opined that returns on assets are subject to some factors such as interest rate,

- exchange rate, inflation rate, dividend yield, gross domestic product, consumer price index, 113 114 industrial production index, unemployment rate, interest rate, domestic savings, stock 115 market liquidity, etc. The APT is a risk-return equilibrium based model (Izedonmi and 116 Abdullahi, 2011). In 1986, Chen, Roll and Ross tested the validity of APT in the U.S security 117 market using the US macroeconomic variables. They tested seven macroeconomic variables; term structure, industrial production, risk premium, inflation, market return, consumption 118 and oil prices in the period of January, 1952 to November, 1984. They assumed that the 119 120 underlying variables are not serially correlated and all innovations are unexpected. In their 121 research, they found several of these economic variables to be significant in explaining 122 expected stock return during the tested period. They observed that industrial production, changes in risk premium, twist in the yield curve, and measure of unanticipated inflation 123 124 and changes in expected inflation during period when these variable, are highly volatile, are significant in explaining expected return. They found that consumption, oil prices and 125 126 market index are not priced by the financial market. They concluded that stock returns are exposed to systematic economic news that is priced by the market. 127
- 128 The Arbitrage Pricing Theory was developed from Capital Asset Pricing Model.
- 129 2.2.2 <u>Capital Asset Pricing Model (CAPM)</u>
- According to this model, prices are determined in such a way that risk premiums are
- proportional to the systematic risk. CAPM describes the way prices of individual assets are
- determined in markets where information is freely available and reflected instantaneously
- in asset prices (Ibenta, 2005). In market equilibrium, it is expected that a security provides a
- 134 return to compensate for the level of unavoidable risk. In CAPM, there is no reward for
- assuming any unsystematic risk which can be avoided or easily diversified.
- 136 The CAPM is used to determine the appropriate price of securities and whether the security
- is over-priced or under-priced by the market. Portfolios are correctly priced if they fall on
- the security market line (SML). The value of beta is equal to 1 if the security is located on the
- 139 SML, which means that the market price is equal to the appraised (intrinsic) value. However,
- the value of beta is greater than 1 (high risk) if the security is located above the SML, i.e. the
- market price is more than the appraised value, inferring that the security is overpriced. On
- the other hand, if the value of beta is less than 1, which means low risk, the security is
- located below the SML. This means that the market price is less than thesecurity's intrinsic
- value, and the security is said to be under-priced.
- 145 In the case of the overvalued security, the security will be unattractive to investors.
- According to CAPM, the reduced demand for the security will cause the market price to fall.
- On the other hand, undervalued securities will be attractive to investors and the increased
- demand will cause the market value of the securities to rise. This equilibrating process,
- according to Ibenta (2005) will cause the prices of securities to adjust continuously around
- the SML depending on the intrinsic value of a security which is determined by economic
- 151 factors surrounding the firm; and the market forces or other qualitative factors of the
- environment which influence the expectation of investors about the future prospects of the
- 153 economy.

171

172173

174

175

176

177178

179

180

181

182183

184

185

186

2.3 Empirical Review

- 155 Jamaludin, Ismail and Manaf (2017) examined the effect of macroeconomic variables 156 namely inflation, money supply (MS), and exchange rate (ER) on both conventional and 157 Islamic stock market returns in the three selected ASEAN countries (Singapore, Malaysia, 158 Indonesia) by utilizing monthly data over the period of January 2005 to December 2015. 159 Applying the panel least square regression techniques, the results showed that both stock 160 market returns are significantly affected by the ER and inflation rate. MS was found to be insignificant. The paper concluded that inflation poses a greater effect and inversely related 161 162 to the stock market returns. The paper recommended the need for amendment in monetary policy to ensure that inflation rate is set at a low level, since the results would be able to 163 164 bring an impact to boost the capital market in the selected ASEAN countries.
- Jareno and Negrut (2016) analysed the relationship between the US stock market and some relevant US macroeconomic factors, such as gross domestic product, the consumer price index, the industrial production index, the unemployment rate and long-term interest rates. According to the paper, all the relevant factors show statistically significant relationships with the stock market except for the consumer price index, and the signs are consistent with the findings of previous literature.
 - Owiredu, Oppong and Asomaning (2016) examined the macroeconomic determinants of stock market development in Ghana for the period 1992 to 2012 using annual secondary data from Bank of Ghana Quarterly Economic Bulletins, Ghana Statistical Service, Ghana Stock Exchange Market Statistics, the World Bank and IMF's International Financial Statistics. The macroeconomic indicators such as the real income (GDP per capita income), domestic saving, stock market liquidity, financial intermediary growth, macroeconomic stability (inflation) and private capital flows with stock market capitalization used as a proxy for the study were collected and used for the analysis. These variables were examined to establish a relationship with stock market developments based on a linear regression model. The regression analysis found stock market liquidity to be statistically significant to stock market developments as opposed to the other determinants (such as macroeconomic stability(inflation) real income and domestic savings and private capital flows) which were found to be non-significant. This result suggested that macroeconomic stability (inflation), real income, domestic savings and private capital flows proved not to have any significant impact on stock market development, since their regression coefficients were not statically significant at 5% level of significance.
- 187 Shrestha and Subedi (2014) examined the determinants of the stock market performance in Nepal using monthly data for the period of mid-August 2000 to mid-July 2014. The impact of 188 189 major changes in politics and Nepal Rastra Bank's policy on lending against share collateral 190 has also been assessed. Empirical results obtained from OLS estimations of behavioural 191 equations revealed that the performance of stock market is found to respond positively to 192 inflation and broad money growth, and negatively to interest rate. According to the study, 193 this suggests that, in Nepal, share investors seem to take equity as a hedge against inflation and consider stock as an alternative financial instrument. Furthermore, availability of 194 195 liquidity and the low interest rates stimulate the performance of the Nepalese stock market.

More importantly, stock market has been found to respond significantly to changes in political environment and the policy of Nepal Rastra Bank.

Singh (2014) examined the relationship between macroeconomic variables and Indian stock market. The multivariate stepwise regression analysis was used to analyse the impact of macroeconomic factors on Indian stock market. Granger causality test was applied to analyse the dynamic causal relationship among the variables. The data used in the study is in the monthly frequency and period of the study has been considered from January 2011 to December 2012. The empirical result of the study shows significant impact of macroeconomic variables on Indian stock market. The gold prices have its negative impact on the stock market. The study found that gold has been used as best alternative for investment which hampers the stock prices of share market. According to the study, the Indian Stock market improves with the increase in the inflow of foreign investment. Thus, foreign investment as well as money supply exhibits its significant positive impact on the stock market. It was also found that the exchange rate shows its adverse effect on the stock market during the study period. Granger causality test, according to the study, signifies that there exists unidirectional causal relationship from exchange rate to stock market. Thus, any movement in the value of exchange rate has influence on stock market. The causality is running from index to the variables in case of trade deficit and foreign institutional investors. According to the study, there exists requirement for the initiative to be taken by government to reduce interest of investors in yellow metal and enhance the investment in share market through improving the confidence level of investors in the Indian stock market.

Sukruoglu and Nalin (2014) studied the effects of macroeconomic variables on development of stock market in selected European countries by estimating a dynamic panel data for the period spanning 1995 to 2011. The study found that income, monetisation ratio, liquidity ratio; saving rate and inflation have effect on stock market development. According to the paper, monetisation ratio and inflation have negative effects while income, liquidity ratio, saving rate have positive effects on stock market development. The study added that liquidity ratio emphasizes that the stock market liquidity help to improve stock market development. It was also found that income and saving rate are correlated with stock market growth.

Alam and Rashid (2014) examined the relationship between Karachi stock market 100 index and macroeconomic variables, i.e., inflation, industrial production, money supply, exchange rate and interest rate. The long term relationship between macroeconomic variables and stock market returns has been analysed by using Johansen Cointegration test, Augmented Dicky Fuller (ADF) and Phillip Perron (PP) tests. The Autoregressive Conditional heteroskedasticity Lagrange Multiplier (ARCH LM) test provided prudent evidence about the presence of heteroskedasticity in the data. The Generalized Autoregressive Conditional heteroskedasticity (GARCH) model was used to find out the relationship between stock returns and the variance of the squared error terms as there was heteroskedastic trend in the data. The results showed that the cointegrating relationship exists between stock prices and the macroeconomic variables in Pakistani stock market. The GARCH model showed the significant relationships after mitigating the heteroskedasticity. The consumer price index

(CPI), money supply (MS), exchange rates (ER) and interest rates (IR) proved to be negatively associated with the stock returns (SR), while industrial production index (IPI) was found to be positively associated with the stock returns. All the variables were significantly associated to stock market returns except inflation. According to the study, investors can use the GARCH results for investment decisions.

Miseman, Ismail, Ahmad, Akit, Mohamad and Mahmood (2013) assessed the impact of macroeconomic forces on five ASEAN stock market movement including Malaysia, Indonesia, Thailand, Singapore and the Philippines. Four macroeconomic influences (interest rate, broad money supply, domestic output and inflation rate)were used to explain the variation of the stock market movement. Applying generalized least squares regressions, the results showed significant impact of interest rate, broad money and inflation rate on the stock market movement, while domestic output is found to be insignificant. According to the study the quantum effect of time onto the stock market movement also showed significant impact and is unchanged over time. It added that this is also another wake-up call for investors who had been relying on economic growth rate forecasts to synthesize an investment strategy.

Masuduzzaman (2012) investigated the long-run relationship and the short-run dynamics among macroeconomic fundamentals and the stock returns of Germany and the United Kingdom. Each case was examined individually, by applying Johansen co-integration, errorcorrection model, variance decomposition and impulse response functions, in a system incorporating the variables such as consumer price index (CPI), interest rates, exchange rates, money supply and industrial productions between the periods of February 1999 to January 2011. The Johansen cointegration tests indicated that the UK and German stock returns and chosen five macroeconomic variables are cointegrated. The findings also indicated that there are both short and long run causal relationships between stock prices and macroeconomic variables. The results, according to the study, imply the existence of short-term adjustments and long-term dynamics for both the UK and the German stock markets returns and the certain macroeconomic fundamentals.

Naik and Padhi (2012) assessed the relationship between the Indian stock market index (BSE Sensex) and five macroeconomic variables, namely, industrial production index, wholesale price index, money supply, treasury bills rates and exchange rates over the period 1994:04–2011:06. Johansen co-integration and vector error correction model were applied to explore the long-run equilibrium relationship between stock market index and macroeconomic variables. The analysis revealed that macroeconomic variables and the stock market index are co-integrated and, hence, a long-run equilibrium relationship exists between them. It was observed that the stock prices positively relate to the money supply and industrial production but negatively relate to inflation. The exchange rate and the short-term interest rate were found to be insignificant in determining stock prices. In the Granger causality sense, macroeconomic variable causes the stock prices in the long-run but not in the short-run. There is bidirectional causality between industrial production and stock prices, whereas, unidirectional causality from money supply to stock price, stock price to inflation and interest rates to stock prices were found.

- Izedonmi, and Abdullahi (2011) empirically test the performance of the Arbitrage Pricing
 Theory (APT) in the Nigerian Stock Exchange (NSE) for the period of 2000 to 2004 on
 monthly basis. Three macro-economic variables (inflation, exchange rate and market
 capitalization) were investigated against 20 sectors of the Nigerian Stock Exchange. Using
 Ordinary Least Square (OLS) the study observed that there are no significant effects of those
 variables on the stocks' return in Nigeria. According to the study, the results are broadly
 consistent with similar studies carried out for most developed and emerging economies.
- 288 Using the Box-Jenkins ARIMA model, Gay (2008) investigated the relationship between stock 289 market index prices and the macroeconomic variables of exchange rate and oil price for Brazil, Russia, India, and China (BRIC). The study recorded no significant relationship 290 291 between exchange rate and oil price on the stock market index prices of the BRIC countries; 292 this, according to the study, may be due to the influence of other domestic and 293 international macroeconomic factors on stock market returns, warranting further research. 294 Also, there was no significant relationship found between present and past stock market 295 returns, suggesting that the markets of Brazil, Russia, India, and China exhibit the weak-form 296 of market efficiency.

298

306

2.5 Gap in Literature

This study on macroeconomic determinants of stock market performance in Nigeria used data from 1981 to 2016. The variables considered include market capitalisation as the dependent variable, money supply, interest rate, exchange rate and inflation rate as the independent variables. As such, no existing studies(as at the time of conducting this research) in Nigeria on the topic (to the best of the researcher's knowledge) have captured data on the considered variables up to 2016. Therefore, this study fills the gap in knowledge in this regard.

3. Methodology

- The paper used descriptive and analytical research designs in determining the effect of macroeconomic factors on stock market performance in Nigeria.
- The data used in this study were collected fromCentral Bank of Nigeria (CBN) Statistical Bulletinfrom 1981 to 2016. Jarque-Bera (JB) test was used to assess the normality of the data series. Augmented Dickey-Fuller (ADF) test was employed to determine the stationarity of the variables. Ordinary Least Square (OLS) was used to establish the effect of the independent variables on the dependent variable. Johansen cointegration test was carried out to ascertain the existence of a long-run relationship between the variables. Granger
- Causality test employed to determine direction of causality between stock market
- performance and the macroeconomic variables.
- The model for the study is specified as follows:

318
$$SMP = \theta_0 + \theta_1 M S_t + \theta_2 I T R_t + \theta_3 E X R_t + \theta_4 I F R_t + \mu$$
 - - (1)

- 319 Where:
- 320 SMP = Stock market performance proxied by market capitalisation (MCP) of
- 321 Stocks/Securities
- 322 *MS = Money supply*
- 323 ITR = Interest rate
- 324 *EXR = Exchange rate*
- 325 *IFR* = *Inflation rate*
- 326 θ_0 = Constant term
- 327 $\theta_1 \theta_4 = Coefficients$
- 328 μ = Error term
- To improve on the linearity of the model, logarithm was introduced as follows:
- $330 \quad LogSMP = \theta_0 + \theta_1 LogMS_t + \theta_2 LogITR_t + \theta_3 LogEXR_t + \theta_4 LogIFR_t + \mu$

331
$$LSMP = \theta_0 + \theta_1 LMS_t + \theta_2 LITR_t + \theta_3 LEXR_t + \theta_4 LIFR_t + \mu$$
 - (2)

- 4. Data Presentation, Results of Analyses and Discussion
- 333 **4.1 Data Presentation**
- Table 1: Market Capitalisation (MCP), Money Supply (MS), Interest Rate (ITR), Exchange
- 335 Rate (EXR) and Inflation Rate (IFR) in Nigeria from 1981 to 2016

Year	MCP(N	MS (N	ITR	EXR	IFR	
	Billion)	Billion)				
1981	5.0	14.47	10.00	0.61	20.9	
1982	5.0	15.79	11.75	0.67	7.7	
1983	5.7	17.69	11.50	0.72	23.2	
1984	5.5	20.11	13.00	0.76	39.6	-
1985	6.6	22.30	11.75	0.89	5.5	
1986	6.8	23.81	12.00	2.02	5.4	
1987	8.2	27.57	19.20	4.12	10.2	
1988	10.0	38.36	17.60	4.54	38.3	
1989	12.8	45.90	24.60	7.39	40.9	
1990	16.3	52.86	27.70	8.04	7.5	
1991	23.1	75.40	20.80	9.91	13.0	
1992	31.2	111.11	31.20	17.30	44.5	
1993	47.5	165.34	36.09	22.05	57.2	
1994	66.3	230.29	21.00	21.87	57.0	
1995	180.4	289.09	20.79	21.87	72.8	
1996	285.8	345.85	20.86	21.87	29.3	

1997	281.9	413.28	23.32	21.87	8.5
1998	262.6	488.15	21.34	21.87	10.0
1999	300.0	628.95	27.19	92.69	6.6
2000	472.3	878.46	21.55	102.11	6.9
2001	662.5	1,269.32	21.34	111.94	18.9
2002	764.9	1,505.96	30.19	120.97	12.9
2003	1,359.3	1,952.92	22.88	129.36	14.0
2004	2,112.5	2,131.82	20.82	133.50	15.0
2005	2,900.1	2,637.91	19.49	132.15	17.9
2006	5,120.9	3,797.91	18.70	128.65	8.2
2007	13,181.7	5,127.40	18.36	125.83	5.4
2008	9,563.0	8,008.20	18.70	118.57	11.6
2009	7,030.8	9,411.11	22.62	148.88	12.6
2010	9,918.2	11,034.94	22.51	150.30	13.7
2011	10,275.3	12,172.49	22.42	153.86	10.8
2012	14,800.9	13,895.39	23.79	15749	12.2
2013	19,077.4	15,160.29	24.69	157.31	8.5
2014	16,875.1	17,679.29	25.74	158.55	8.0
2015	17,003.4	18,901.30	26.71	193.28	9.0
2016	16,185.7	21,607.68	27.29	258.94	15.7

336 Source: Central Bank of Nigeria Statistical Bulletin 2016

337

338 Table 2: LogMCP, LogMS, LogITR, LogEXR and LogIFR

Year	LMCP	LMS	LITR	LEXR	LIFR
1981	0.699	1.160	1.000	-0.215	1.320
1982	0.699	1.198	1.070	-0.174	0.887
1983	0.756	1.248	1.061	-0.143	1.365
1984	0.740	1.303	1.114	-0.119	1.598
1985	0.820	1.348	1.070	-0.051	0.740
1986	0.833	1.377	1.079	0.305	0.732
1987	0.914	1.440	1.283	0.615	1.009
1988	1.000	1.584	1.246	0.657	1.583
1989	1.107	1.662	1.391	0.869	1.612
1990	1.212	1.723	1.442	0.905	0.875
1991	1.364	1.877	1.318	0.996	1.114
1992	1.494	2.046	1.494	1.238	1.648
1993	1.677	2.218	1.557	1.343	1.757
1994	1.822	2.362	1.322	1.340	1.756
1995	2.256	2.461	1.318	1.340	1.862
1996	2.456	2.539	1.319	1.340	1.467
1997	2.450	2.616	1.368	1.340	0.929
1998	2.419	2.689	1.329	1.340	1.000
1999	2.477	2.799	1.434	1.967	0.820
2000	2.674	2.944	1.333	2.009	0.839

2001	2.821	3.104	1.329	2.049	1.276
2002	2.884	3.178	1.480	2.083	1.110
2003	3.133	3.291	1.359	2.112	1.146
2004	3.325	3.329	1.318	2.125	1.176
2005	3.462	3.421	1.290	2.121	1.253
2006	3.709	3.580	1.272	2.109	0.914
2007	4.120	3.710	1.264	2.010	0.732
2008	3.981	3.904	1.272	2.074	1.064
2009	3.847	3.974	1.354	2.173	1.100
2010	3.996	4.043	1.352	2.177	1.137
2011	4.012	4.085	1.351	2.187	1.033
2012	4.170	4.143	1.376	2.192	1.086
2013	4.281	4.181	1.393	2.197	0.929
2014	4.227	4.247	1.411	2.200	0.903
2015	4.231	4.276	1.427	2.286	0.954
2016	4.209	4.335	1.436	2.413	1.196

339 Source: Author's computation 2017

The data in Table 2 was used to run the analyses. The results are presented in Tables 3, 4, 5, 6 and 7.

4.2 Descriptive Statistics

Descriptive Statistics consider the mean, median, maximum value, minimum value and standard deviation of a data set. Whereas, the mean reports the average value for each data series, the median explains the middle or centre point for each data series in the model. The maximum value presents the highest value for each data set, while minimum value shows the least value for each data set. Standard deviation is used to measure the dispersion or spread in each data series. It shows how volatile or stable each variable is.

Table 3: Descriptive Statistics

	LMCP	LMS	LITR	LEXR	LIFR
Mean	2.507694	2.760972	1.312000	1.428056	1.164500
Median	2.466500	2.744000	1.329000	1.655000	1.105000
Maximum	4.281000	4.335000	1.557000	2.413000	1.862000
Minimum	0.699000	1.160000	1.000000	-0.215000	0.732000
Std. Dev.	1.307854	1.078086	0.131161	0.844338	0.315482

Source: Author's using Eviews 9

The results of the descriptive statistics presented in Table 3 points out that LMS has the highest mean value of 2.760972, while LIFR has the lowest mean value of 1.164500. The median is 2.466500 for LMCP; 2.744000 for LMS; 1.329000 for LITR; 1.655000 for LEXR and 1.105000 for LIFR. LMS has the highest (Maximum) value of 4.335000 recorded in 2016, whereas, LEXR has the lowest (Minimum) value of -0.215000 attained in 1981. LMCP has the highest standard deviation of 1.307854. This means that market capitalisation is the most volatile among the variables considered in this study.

4.3 Normality Test

366

367 368

369

370

375

376

377

378 379

380 381

382 383

384

385

386

Normality test is used to ascertain if a data series is normally distributed or not. The normality test is conducted under the null hypothesis of a normal distribution against the alternative hypothesis of non-normal distribution. Jarque-Bera test of normality was employed in this study to determine if each series is normally distributed or not. In Jarque-Bera test, the null hypothesis of a normal distribution is rejected at 5% level of significance.

Table 4: Normality Test Results

	LMCP	LMS	LITR	LEXR	LIFR
Jarque-Bera	3.351606	2.920932	3.564921	4.192342	3.111395
Df	2	2	2	2	2
Prob.	0.187158	0.232128	0.168224	0.122926	0.211042

365 Source: Author's using Eviews 9

From the normality test results presented in Table 4, Jarque-Bera statistic for each of the variables studied (LMCP, LMS, LITR, LEXR and LIFR) has a probability greater than 0.05. Thus, the null hypothesis of a normal distribution is accepted for all the variables considered in the study. This implies that the data series(variables) were normally distributed.

4.4 Stationarity (Unit Root) Test

Embarking on a regression analysis on non-stationary time series data gives spurious results.

In other to avoid this, the study employed Augmented Dickey-Fuller test to determine the stationarity of the data. The results of the unit root test are presented in Table 5.

374 Table 5: Stationarity (Unit Root) TestResults

Variable	Augmented Dickey-Fuller Test Statistic	1% Level Critical Value	5% Level Critical Value	10% Level Critical Value	Order of Integration	Prob.*	Durbin- Watson Statistic
LMCP	-3.065735	-2.634731	-1.951000	-1.610907	1(1)	0.0032***	2.064322
LMS	-4.247195	-2.644302	-1.952473	-1.610211	1(2)	0.0001***	2.037405
LITR	-5.758056	-2.636901	-1.951332	-1.610747	1(1)	0.0000***	1.838677
LEXR	-4.023156	-2.634731	-1.951000	-1.610907	1(1)	0.0002***	2.070100
LIFR	-6.006444	-2.634731	-1.951000	-1.610907	1(1)	0.0000***	1.825915

***, ** and * connotes that variables are stationary at 1%, 5% and 10% significance level respectively.

Source: Computed by the author with the help of Eviews 9

The results in Table 5, reveals that all the variables are stationary at 1%, 5% and 10% significant level. The variables are non-stationary at levels. However, LMCP (market capitalisation), LITR (Interest rate), LEXR (exchange rate) and LIFR (Inflation rate) are stationary at first difference, while, LMS (money supply) is stationary at second difference. It is observed that the Augmented Dickey-Fuller test statistic is less than the critical values for each of the variable tested, which confirms their stationarity. Furthermore, the Durbin-Watson statistic for each of the variable is approximately 2.0. This confirms the reliability of the results and also depicts that there is no problem of autocorrelation in the time series data.

4.5 Ordinary Least Square Regression

The study used OLS regression technique to analyse the short-run relationship between the dependent and independent variables in the study.

Table 6: Regression Results

Dependent Variable: LMCP Method: Least Squares Date: 01/12/18 Time: 00:00 Sample: 1981 2016

Sample: 1981 2016 Included observations: 36

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LMS LITR LEXR LIFR	0.231141 1.166778 -0.809350 0.121024 -0.047961	0.344465 0.065176 0.271585 0.099092 0.071732	0.671015 17.90209 -2.980094 1.221328 -0.668606	0.5072 0.0000 0.0056 0.2312 0.5087
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.992415 0.991436 0.121032 0.454110 27.63104 1013.959 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	2.507694 1.307854 -1.257280 -1.037347 -1.180518 1.206926

Source: Computed by the author using Eviews 9

SMP (LMCP) =
$$0.231141 + 1.166778$$
LMS $- 0.809350$ LITR $+ 0.121024$ LEXR $- 0.047961$ LIFR $+ \mu$

The regression results shown in Table 7 indicate that two variables (money supply and interest rate) out of four independent variables studied were found to be significant at 5% level. The implication is that only money supply and interest rate affect stock market performance in Nigeria. Whereas, money supply has a positive effect, interest rate has a negative effect on stock market performance. The results further explain that an increase in money supply by 1 will result in1.166778 increases in stock market performance. However, an increase in interest rate by 1 will cause stock market performance to decrease by -0.809350. The other two variables – exchange rate and inflation rate have no significant effect on stock market performance as their regression coefficients were not statistically significant at 5% level. Therefore, it can be inferred from the results that money supply and interest rate are the main determinants of stock market performance in Nigeria.

The R-squared value displayed in Table 7 shows that 99% of the variations in stock market performance in Nigeria are caused by the determinants, that is, money supply and interest rate. The adjusted R-squared supports this result, meaning that the model is fit. Again, the results show that the model is significant at 1% and 5%. This is evidenced by the Probability (F-statistic) of 0.000000.

4.6 Cointegration Test

Cointegration test is employed in this study to analyse the long-run relationship between the dependent and the independent variables.

Table 7: Cointegration Test Results

415416

Date: 01/11/18 Time: 21:32 Sample (adjusted): 1983 2016

Included observations: 34 after adjustments Trend assumption: Linear deterministic trend Series: LMCP LMS LITR LEXR LIFR Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2 At most 3 At most 4	0.755512	92.67647	69.81889	0.0003
	0.476966	44.78449	47.85613	0.0945
	0.296658	22.74881	29.79707	0.2586
	0.199583	10.78379	15.49471	0.2251
	0.090215	3.214610	3.841466	0.0730

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2 At most 3 At most 4	0.755512	47.89198	33.87687	0.0006
	0.476966	22.03569	27.58434	0.2185
	0.296658	11.96502	21.13162	0.5511
	0.199583	7.569179	14.26460	0.4242
	0.090215	3.214610	3.841466	0.0730

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

417 Source: Author's computation using Eviews 9

The first panel of Table 6 presents the results for the Trace statistic. From the results, the Trace statistic of 92.67647 is higher than the critical value of 69.81889 and has a probability of 0.0003 which less than 5%. Thus, the null hypothesis of no cointegrating vectors is rejected. The results points to the fact that the variables are cointegrated, implying that a long-run relationship exists between the dependent and independent variables.

The second panel of Table 6 shows the results of the Max-Eigen statistic. It is observed that the Max-Eigen statistic of 47.89198 is greater than the critical value of 33.87687, confirming the cointegration of the variables. The result is significant at 0.05 level. This means that there is a long-run relationship between the variables (the dependent and the independent) employed in the study.

428

427

418

419

420

421

422

423

424

425 426

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

4.7 Causality Test

- 431 The study employed Granger Causality Test to determine the direction of causal effect
- between stock market performance and the macroeconomic variables. In Granger Causality,
- the null hypothesis is rejected at 5% level of significance.

434 Table 8: Causality Test Results

Pairwise Granger Causality Tests

Date: 03/03/18 Time: 08:22

Sample: 1981 2016

Lags: 2

Null Hypothesis	Observations	F-Statistic	Prob.
LMCP does not Granger Cause LEXR	34	1.05434	0.3718
LEXR does not Granger Cause LMCP		6.02945	0.0065
LMCP does not Granger Cause LIFR	34	2.36265	0.1120
LIFR does not Granger Cause LMCP		1.36049	0.2724
LMCP does not Granger Cause LITR	34	0.42773	0.6560
LITR does not Granger Cause LMCP		2.62638	0.0895
LMS does not Granger Cause LMCP	34	4.95981	0.0140
LMCP does not Granger Cause LMS		1.48543	0.2431

- 435 Source: Computed by the author using Eviews 9
- 436 The results presented in Table 8, reveal in the first panel that no causality runs from stock
- 437 market performance (as represented by market capitalisation) to exchange rate (Prob. =
- 438 0.3718). However, causality runs from exchange rate to stock market performance (Prob. =
- 439 0.0065). This implies that there exists a unidirectional causality running from exchange rate
- 440 to stock market performance.
- 441 The second panel reveals that Stock market performance is not granger causal for inflation
- 442 rate (P value = 0.1120). Also, inflation rate is not granger causal for stock market
- performance (P value = 0.2724). Similarly, the third panel shows no causal relationship
- between stock market performance and interest rate.
- 445 The fourth panel reveals a unidirectional causal effect running from money supply to stock
- 446 market performance (Prob. = 0.0140).

448

4.8 Test of Hypotheses

Decision Rule:

- i. Accept the null hypothesis and reject the alternative hypothesis if the regression result is not positive and significant at 5% level.
- 451 *ii.* Reject the null hypothesis and accept the alternative hypothesis if the regression result is positive and significant at 5% level.

453 Hypothesis 1

- 454 H₀: Money supply has no significant positive effect on stock market performance in Nigeria
- 455 H₁: Money supply has a significant positive effect on stock market performance in Nigeria
- 456 From the results of the regression analysis presented in Table 6, money supply has a positive
- and significant effect on stock market performance as proxied by market capitalisation.
- Therefore, the null hypothesis is rejected, while the alternative hypothesis is accepted.
- 459 The result is in-line with thestudies of Singh (2004) and Shrestha and Subedi (2014) who
- 460 found that money supply exhibits a significant positive impact on the stock market.
- 461 However, the result is contrary to the findings of Alam and Rashid (2014) who found that
- 462 money supply is negatively associated with stock returns. Jamaludin, Ismail and Manaf
- 463 (2017) did not find any significant effect of money supply on stock market returns.

464 **Hypothesis 2**

- 465 H₀: Interest rate has no significant positive effect on stock market performance in Nigeria
- 466 H₁: Interest rate has a significant positive effect on stock market performance in Nigeria
- 467 The regression results presented in Table 6 shows that interest rate has a negative and
- 468 significant effect on stock market performance. Thus, the null hypothesis is accepted,
- whereas, the alternative hypothesis is rejected.
- 470 This result is consistent with the findings of Alam and Rashid (2014) who found that interest
- 471 rate has a negative effect on stock returns.

472 Hypothesis 3

- 473 H₀: Exchangerate has no significant positive effect on stock market performance in Nigeria
- 474 H₁: Exchange rate has a significant positive effect on stock market performance in Nigeria
- 475 The results of the regression analysis displayed in Table 6 indicate that exchange rate has a
- 476 positive but not significant effect on stock market performance. Hence, the null hypothesis
- is accepted, whilst the alternative hypothesis is rejected.
- 478 The result is contrary to the findings of Jamaludin, Ismail and Manaf (2017), Singh (2014)
- 479 and Alam and Rashid (2014) who all found that stock market returns are significantly
- 480 affected by exchange rate.

491

Hypothesis 4

- 483 H₀: Inflation rate has no significant positive effect on stock market performance in Nigeria
- 484 H₁: Inflation rate has a significant positive effect on stock market performance in Nigeria
- 485 The regression results point out that inflation rate has a negative and not significant effect
- 486 on stock market performance. As such, the null hypothesis is accepted, implying that the
- alternative hypothesis is rejected.
- 488 The result is contrary to the findings of Shrestha and Subedi (2014) and Jamaludin, Ismail
- 489 and Manaf (2017) who found a significant negative effect of inflation on stock market
- 490 performance.

4.9 Discussion of Findings

- 492 The study revealed that money supply has a significant positive effect on stock market
- 493 performance in Nigeria. This implies that an increase in money supply will result in a rise in
- 494 stock market performance. The result is in agreement with the findings of Shrestha and
- Subedi (2014) who found that broad money supply has a positive effect on stock market
- 496 performance. However, the result of this study is contrary to the findings of Alam and
- 497 Rashid (2014) who found that money supply is negatively associated with stock market
- 498 returns.
- 499 The result of this study also disclosed that interest rate has a significant negative effect on
- stock market performance. The implication is that a rise in interest rate will cause a decline
- in stock market performance. The result is in line with the studies of Shrestha and Subedi
- 502 (2014); Alam and Rashid (2014) who found a negative effect of interest rate on stock market
- 503 performance.
- According to the study, exchange rate has no statistically significant effect on stock market
- 505 performance. The result of this study agrees with the findings of Izedonmi, and Abdullahi
- 506 (2011) who found no significant effect of exchange rate on stock returns. This result is
- 507 contrary to the findings of Jamaludin, Ismail and Manaf (2017) who found that both
- 508 conventional and Islamic stock market returns are significantly affected by exchange rate.
- 509 However, Alam and Rashid (2014) found a negative effect of exchange rate on stock market
- 510 returns.

517

- 511 The Findings of this research also revealed that inflation rate has no significant effect on
- 512 stock market performance. This result agrees with the findings of Owiredu, Oppong and
- 513 Asomaning (2016); Izedonmi, and Abdullahi (2011) who found no significant effect of
- inflation on stock market performance. This finding is opposing the findings of Jamaludin,
- Ismail and Manaf (2017); Miseman, Ismail, Ahmad, Akit, Mohamad and Mahmood (2013)
- who found a significant effect of inflation rate on stock market performance.

5. Implications, Conclusion and Recommendations

518 **5.1** Implications of the Study

- 519 The study considered four macroeconomic variables to ascertain the true determinants of
- 520 stock market performance in Nigeria. The macroeconomic (independent) variables include
- 521 money supply, interest rate, exchange rate and inflation rate. The results of Johansen

522 cointegration test showed that there exists a long-run relationship betweenthe independent 523 variables and stock market performance (as proxied by market capitalisation). The OLS 524 results showed that money supply has a significant positive effect on stock market 525 performance. It means that the supply of money, to a greater extent, affects the 526 performance of stock market in Nigeria positively. Therefore, if money supply increases, other factors being normal, stock market performance increases too. The results also 527 indicated that interest rate has a significant negative effect on stock market performance, 528 529 implying that an increase in interest rate will result in decrease(s) in stock market 530 performance. Conversely, exchange rate and inflation rate have no statistically significant 531 effect on stock market performance.

5.2 Conclusion

In conclusion, money supply and interest rate are the true determinants of stock market performance in Nigeria. The reason is that out of the four independent variables considered in this study, only two of them (money supply and interest rate) exhibited a significant effect on stock market performance.

537 **5.3 Recommendations**

538

539 540

541542

543

544

545

553

- 1. Monetary policies that favour the supply of money in the economy of Nigeria should be pursued in order to ensure a better performance of the stock market. This is necessary because money supply has a significant positive effect on stock market performance in Nigeria.
- 2. Interest rate should be relatively low to guarantee a better performance of the stock market. This is indispensable judging from the fact that interest rate demonstrated a significant negative effect on stock market performance.

5.4 Suggestions for Further Studies

The study used four macroeconomic indicators, namely: money supply, interest rate, exchange rate and inflation rate as independent variables whilst market capitalisation (proxy for stock market performance) was employed as the dependent variable. However, there are other variables that were not captured in this study but could be employed in a study of this nature. Thus, further studies in this area should capture other relevant variables like stock market liquidity, industrial production index, consumer price index, wholesale price index, unemployment rate, etc.

References

- Alam, Z. & Rashid, K. (2014). Time Series Analysis of Relationship between Macroeconomic Factors and the Stock Market Returns in Pakistan. *Journal of Yasar University, Vol. 9,* No. 36, Pp. 6261-6380
- Akani, H. W. & Lucky, L. A. (2014). Money Supply and Aggregate Stock Prices in Nigeria. An Analysis of Co-integration and Causality Tests. *Researchjournal's Journal of Finance, Vol. 2, No. 10, Pp. 1-24 , ISSN: 2348-0963*

560 561 562	Azeez, A. A., Yonezawa, Y. (2003). Macroeconomic factors and the empirical content of the arbitrage pricing theory in the Japanese stock market. <i>Japan and the World Economy, Vol. 18, No. 4, Pp. 568-591</i>
563564565566	Bissoon, B., Seetanah, B., Bhattu-Babajee, R., Gopy-Ramdhany, N. & Seetah, K. (2016). Monetary Policy Impact on Stock Return: Evidence from Growing Stock Markets. Theoretical Economic Letters, Vol. 6, Pp. 1186-1195, ISSN Online: 2162-2086; ISSN Print:2162-2078, DOI: 10.4236/tel.2016.65112
567 568	Ballester, L., Ferrer, R. and González, C. (2011). Linear and nonlinear interest rate sensitivity of Spanish banks. <i>Spanish Review of Financial Economics, Vol. 9, No. 2, pp. 35-48</i>
569	CBN (2018). CBN Exchange Rates
570 571 572	Elyasiani, E. and Mansur, I. (1998). Sensitivity of the bank stock returns distribution to changes in the level and volatility of interest rate: A GARCH-M Model. <i>Journal of Banking and Finance. Vol. 22, No. 5, pp. 535–563</i>
573 574	Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. <i>Journal of Finance, Vol. 25, Pp. 383-417</i>
575 576 577	Flannery, M.J. and James, C. (1984). The effect of interest rate changes on the common stock returns of financial institutions. <i>Journal of Finance, Vol. 39, No. 4, pp.1141-1153</i>
578 579 580	Gay, R. D. (2008). Effects of Macroeconomic Variables on Stock Market Returns for Four Emerging Economies: Brazil, Russia, India and China. <i>International Business and Economic Research Journal, Vol. 7, No. 3</i>
581 582 583	Izedonmi and Abdullahi (2011). Effects of Macroeconomic Factors on the Nigerian Stock Returns: A Sectoral Approach. Global Journal of Management and Business Research, Vol. 11, Issue 7, Print ISSN: 0975-5853
584 585 586	Jamaludin, N., Ismail, S. & Manaf, S. A. (2017). Macroeconomic Variables and Stock Market Returns: Panel Analysis from Selected ASEAN Countries. <i>Journal of Economics and Financial Issues, Vol. 7, No. 1, Pp. 37-47, ISSN: 2146-4138</i>
587 588	Jareno, F. & Negrut, L. (2016). US Stock Market and Macroeconomic Factors. <i>The Journal of Applied Business Research, Vol. 23, No. 1</i>
589 590 591 592	Kganyago, T, & Gumbo, V. (2015). An Empirical Study of the Relationship between Money Market Interest Rates and Stock Market Performance: Evidence from Zimbabwe (2009-2013). International Journal of Economics and Finance Issues, Vol. 5, No. 3, Pp. 638-646, ISSN: 2146-4138
593 594 595	Kumar, R. (2013). The effect of macroeconomic factors on Indian stock market performance: A factor analysis approach. <i>IOSR Journal of Economics and Finance (IOSR-JER), Vol. 1, Pp. 14-21</i>

596 Masuduzzaman, P. (2012). Impact of Macroeconomic Variables on the Stock Market 597 Returns: The Case of Germany and the United Kingdom. Global Journal of 598 Management and Business Research, Vol. 12, Issue 16, Online ISSN: 2249-4588, Print 599 ISSN: 0975-5853 600 Miseman, M. R., Ismail, F., Ahmad, W., Akit, F.M., Mohamad, R. & Mahmood, W. M. W. 601 (2013). World Applied Sciences Journal, Vol. 23, Pp. 61-66, ISSN: 1818-4952, DOI: 602 10.5829/idosi.wasj.2013.23.eemcge.22012 603 Naik, P. K. and Padhi, P. (2012). The Impact of Macroeconomic Fundamentals on Stock 604 Prices Revisited: Evidence from Indian Data. Eurasian Journal of Business and 605 Economics, Vol. 5, No. 10, Pp. 25-44 606 Nwakoby, C. & Bernard, A. (2016). Effect of Monetary Policy on Nigerian Stock Market Performance. International Journal of Scientific Research and Management, Vol. 4, 607 608 No. 9, ISSN: 2321-3418 609 Olulu-Briggs, O. V. & Ogbulu, O. M. (2015). Money Supply and Asset Prices in Nigeria (2008-2018): An Empirical Review. Research Journal of Finance and Accounting, Vol. 6, No. 610 10, Pp. 45-56, ISSN: 2222-1697 (Paper); ISSN: 2222-2847 (Online) 611 Osisanwo, B. G. & Atanda, A. A. (2012). Determinants of Stock Market Returns in Nigeria: A 612 613 Time Series Analysis. African Journal of Scientific Research, Vol. 9, No.1, Pp. 478-496 Owiredu, A., Oppong, M. & Asomaning, S. A. (2016). Macroeconomic Determinants of Stock 614 615 Market Development in Ghana. International Finance and Banking, Vol. 3, No.2, ISSN: 2374-2089, DOI: 10.5296/ifb.v3i2.9555 616 Ross, S. A. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 617 618 Vol. 13, Pp. 340-362 619 Singh, P. (2014). Indian Stock Market and Macroeconomic Factors in Current Scenario. 620 IMPACT: International Journal of Research in Business Management (IMPACT: IJRBM), Vol. 2, Issue 11, Pp. 43-54, ISSN (E): 2321-886X, ISSN (P): 2347-4572 621 622 Staikouras, S.K. (2003). The interest rate risk exposure of financial intermediaries: A review 623 of the theory and empirical evidence. Financial Markets, Institutions and Instruments, Vol. 12, No. 4, pp. 257-289 624 Staikouras, S.K. (2006). Financial Intermediaries and Interest rate risk: II. Financial Markets, 625 626 Institutions and Instruments, Vol. 15, No. 5, pp. 225-272 627 Sukruoglu, D. & Nalin, H. T. (2014). The Macroeconomic Determinants of Stock Market 628 Development in Selected European Countries: Dynamic Panel Data Analysis. International Journal of Economics and Finance, Vol. 6, No. 3, Pp.64-71 ISSN: 1916-629 630 971X, E-ISSN: 1916-9728, DOI: 10.5539/ijef.v6n3p64 631 Shrestha, P. K. & Subedi, B. R. (2014). Determinants of Stock Market Performance in Nepal.

NRB Economic Review - Working Paper Series, NRB-WP-24

UNDER PEER REVIEW

633	Talla, J. T. (2013). Impact of Macroeconomic Variables on the Stock Market Prices of the
634	Stockholm Stock Exchange (OMXS30). Master's Thesis of Jonkoping University. Pp. 1-
635	48
636 637	Vena, H. (2014). The Effect of Inflation on the Stock Market Returns of the Nairobi Securities Exchange. An M.Sc. Thesis Submitted to School of Business, University of Nairobi
638 639	Zubair, A. (2013). Causal Relationship between Stock Market Index and Exchange Rate: Evidence from Nigeria. CBN Journal of Applied Statistics, Vol. 4, No. 2, Pp. 87-110