Statistical Analysis of Rice Husk Ash as a Construction Material in Building

Production Process

3

4

1

2

Abstract

- 5 This study considers the statistical analysis of rice husk ash as a construction material in building
- 6 production process. The quality of concrete mixture is of inevitable concern to all stakeholders in
- 7 the construction industry in the zone when the climatic conditions of the zone are considered.
- 8 The mix ratio is examined and all the prevailing construction/production practices are considered
- 9 statistically. The statistical tools employed are descriptive, normality, process statistical
- summary and confidence estimation methods of statistics. The tools portrays the necessary
- information in the data to understand what the data information for further production process
- 12 analysis.
- 13 **Keywords:** Concrete, Quality, Production, Process, Statistics, rice husk, ash

14 15

1. Introduction

- 16 Construction industry plays an active role in the fixed capital formation of any economy. It
- 17 accounts for over sixty percent of the Gross Fixed Capital Formation of any nation,
- 18 Ezeokonkwo, (2002). The construction industry thus is very strategic in its contribution to the
- 19 gross domestic product of a country. From the foregoing, it has a very high capacity of
- 20 generating growth and inducing multipliers effects on a nation's economy.
- 21 However, current events in construction industry in Nigeria are inducing negative effects within
- 22 the industry. For instance the issue of collapse of buildings has been persistent in the country in
- 23 recent times and the need to proffer solutions to avert future occurrences become obvious. Over
- the last ten years, the incidence of building collapse has become so alarming and worrisome and
- 25 it does not show any sign of abating. Each collapse carries along with it tremendous effects that
- 26 cannot be easily forgotten by any of its victim. These effects include loss of human lives,
- economic waste, loss of jobs, incomes, loss of trust, dignity and exasperation of crises among
- stakeholders and environmental disasters (Ede, 2010). It is believed that any pursuit in human

life has its cost, but the cost being paid in South-Eastern Nigeria due to incessant incidents of 29 30 building collapse cannot be comprehended and quantified. Buildings are structures which provide shelter for man, his properties, and activities. As such, 31 32 they must be properly planned, designed and constructed to obtain desired satisfaction from the environment. Major factors observed during building construction include; the functional 33 performance requirements of durability, adequate stability to prevent structural failure, 34 discomfort to the users, resistance to climatic conditions and use of good quality materials. The 35 styles of building construction are constantly changing with the introduction of new materials 36 37 and techniques of construction. Consequently, the work involved in the design and construction stages are largely those of selecting materials, component and structures that will meet the 38 expected building standards and aesthetics on an economic basis Obiegbu, (2007). 39 A general survey shows that most of modern buildings in the south eastern Nigeria have concrete 40 as their major component. It then becomes pertinent that the quality of concrete materials 41 42 required for concrete used in the construction process must be of paramount importance. Many building failures are mostly linked to the use of substandard materials, poor workmanship and 43 inefficient management in the production process. Experts have canvassed the assessment of 44 quality of materials and the level of workmanship utilized in concrete production on project sites. 45 According to Amana, (2010), there is also a need for an accurate assessment of quality, strength 46 and variability of the materials used in forming the structural components. 47 He further observed that a good example of how quality, strength and variability play out in our 48 environment is in the wide variability of the quality of concrete used in our construction sites. 49 50 Imaga, (1994) is of the opinion that enterprises in developing countries do not appear to pay 51 sufficient attention to the areas of quality standards, definition and proper inspection of products produced in their organization. A critical look at this, now reminds us that the quality of a 52 53 product is determined by the character it possesses. It then becomes imperative that the 54 producers and professionals involved in the construction process must decide ahead of time what

the characteristics of their product should possess and have them integrated into the design and specification of quality of concrete that should be employed in projects.

Quality therefore is defined as pre-determined standards (basis) sets to ensure a minimum level of requirement for achievable out-come. These predetermined standards are seen as an agreed reputable way of doing something. It is a published document that contains a technical specification or other precise criteria designed to be used consistently as a rule, guideline or definition.

Furthermore standards help to make life simpler and increase reliability and the effectiveness of many goods and services we use. Standards are created by bringing together the experience of all interested parties such as the producers, sellers, users and regulators of a particular material, product, process or service. Through these, the quality of any product now becomes achievable in the actual production process in construction sites. This study is therefore an effort to evaluate the quality control management of concrete works in building construction projects within the study area (Ezeokonkwo, 2015).

The research method used in this work is the application of Factorial design Analysis of Mathematical Models for Variables in the Zones. The method is used to study the relative influence of each of the factors on the slumps (workability) of concrete, density and compressive strength for each climatic season, quasi or mono factorial models were obtained. From the analysis, it is possible to make the following deductions on the influence of the different factors over the workability density and strength of concrete.

2. Computer Analysis of the Experimental Results from the Two Zones

Table 1: Values of Results from Hot Humid Zone (Awka)

	$X_1 = C$ Cement kg/m ³	_		X ₄ = Ca coarse Aggregate kg/m ⁰	Slump Swet (mm)
Xnar Highest level	300	7	690	1380	

(1)	207	5	414	953	
(+)					
Xim Lowest level (-)	254	6	552	1167	
Xer Central Level (0) average	46	1	138	213	
§ Interval of Change Δ					
Test No	X_1	X_2	X ₃	X ₄	$\mathbf{Y_{i}}$
1	207	5	414	953	88
2	207	7	690	953	109
3	207	5	690	953	160
4	207	5	690	953	156
5	300	7	414	953	65
6	300	5	690	1380	81
7	207	7	690	1380	99
8	207	7	690	1380	50
9	207	6	552	1167	67
10	300	7	552	1167	62
11	254	5	552	1167	82
12	254	7	552	1167	93
13	254	6	414	953	166
14	300	5	690	953	157
15	207	7	414	1380	110
16	254	6	552	1167	179
17	207	5	414	953	105
18	207	5	690	953	101
19	254	7	552	1167	95
20	254	5	552	1167	90
21	254	7	690	953	89

22	254	6	414	1167	102
23	254	6	552	1380	105
24	254	6	552	953	195
25	254	6	552	1167	165

Source: Researcher's Field Work, 2018

After experimentally generating data on Tables 1, the data was subjected to electronic manipulation with Statistical Packages for Social Science (SPSS) software and the following results with appropriates tables were obtained.

Table 2: Descriptive Statistics Analysis

		Statistic	Std.		istics imary	Bootstrap	
			Error	Bias	Std. Error	BCa 98%	Confidence Interval
						Lower	Upper
	N	25		0	0		
	Range	93.00					
	Minimum	207.00					
Cement	Maximum	300.00					
	Sum	6064.00					
(kg/m3)	Mean	242.5600	6.743 16	0956	6.7534	229.480 0	255.6527
	Std.	33.71582		-	3.35725	26.6262	38.66859
	Deviation			.86767		4	
	Variance	1136.757		- 46.496	217.272	707.324	1495.260
	N	25		0	0		
	Range	2.00					
	Minimum	5.00					
Water	Maximum	7.00					
Content	Sum	150.00					
(kg/m3)	Mean	6.0000	.1732 1	.0069	.1755	5.6187	6.4213
	Std.	.86603		-	.05960	.75719	.92736
	Deviation			.02117			
	Variance	.750		033	.098	.573	.860
Fine Rice	N	25		0	0		
Husk	Range	276.00					
(kg/m3)	Minimum	414.00					

Mean S68.5600 21.55 629 -		Maximum	690.00					
Std. Deviation 107.78145 629		Sum	14214.00 568 5600	21.55	6624	20 3036	524.400	612 7200
Std. Deviation		Mean	308.3000		.0024	20.3930	0	012.7200
Deviation Variance 11616.840 Variance Varianc		G. 1	107.78145	02)	_	9.73109	85.4781	121.61760
Variance Variance N 25 Range A27.00 Minimum Maximum 1380.00 Sum 27886.00 Ringe (kg/m3) Std. Deviation N 25 Range A27.07 Negration Variance N 25 Range A27.00 Minimum 1380.00 Sum 1460.35055 Sum 15.74731 136.291 Sum 15.74731 Sum 166.35055 Sum 15.74731					2.6008		3	
Variance		Deviation			3			
N 25 0 0 0 0 0 0 0 0 0			11616.840		-	2026.610		15044.760
N 25		Variance					0	
Range Minimum 953.00 1380.00 27886.00 1115.4400 33.27 1.9812 33.3459 1047.04 1192.3457 000 115.74731 136.291 15 15 15 15 15 15 15		NT	25		_	0		
Minimum Maximum Solution Sum					U	U	•	•
Coarse aggregate (kg/m3) Std. Deviation N Std. N Stange Maximum Sum 27672.507 Variance N Std. Range Minimum Sum 1380.00 27886.00 1115.4400 33.27 011 - 15.74731 136.291 15 - 5066.358 17966.0 90 N 27672.507 946.65 90 N 25 Range 145.00 Minimum Maximum 195.00 Sum 2771.00 Slump (mm) Mean Std. Deviation Std. Deviation Std. Deviation Std. Deviation Variance 110.8400 8.011 80 - 2532 7.6574 94.0974 129.6330 - 4.73820 28.6244 47.60430 - 98032 - 360.532 799.994 2281.044		_						
Coarse aggregate (kg/m3) Mean (kg/m3) 27886.00 1115.4400 2115.4400 33.27 011 115.4400 211								
Coarse aggregate (kg/m3) Mean (kg/m3) 1115.4400 33.27 011 1.9812 33.3459 1047.04 00 1192.3457 000 15.74731 136.291 15 15 15 15 15 15 15								
Std. Deviation Std. Deviation 27672.507 Variance 27672.507 Variance Slump (mm) Mean Std. Deviation Std.	Coarse			33.27	1.9812	33.3459	1047.04	1192.3457
Std. Deviation 27672.507 Variance 27672.507 Variance 27672.507 N 25 N 25 N Range Minimum 50.00 Maximum 195.00 Sum 2771.00 Slump (mm) Mean Std. Deviation Std. Deviation Variance 3.6295 6 - 5066.358 17966.0 90	aggregate	Mean		011			00	
Deviation 27672.507 3.6295 15	(kg/m3)	Std	166.35055		-	15.74731	136.291	188.17191
Variance Varian					3.6295		15	
Variance N 25 Range 145.00 Minimum 50.00 Maximum Sum 2771.00 Slump (mm) Mean Std. Deviation Variance 946.65 5 0 0 0		Deviation			6	7 0.66 0.7 0	1=0660	27100 667
N 25 0 0 0		3 7 •	27672.507		- 046.65	5066.358		35408.667
N 25 0 0 0		variance					90	
Range Minimum 50.00 Maximum 195.00 Sum 2771.00 Slump (mm) Mean Std. 40.05900 Deviation Variance 1604.723		N	25		-	0		
Minimum 50.00 Maximum 195.00 Sum 2771.00 Slump (mm) Mean Std. 40.05900 Deviation 1604.723 - 1604.723 - 360.532 799.994 2281.044					U	O	•	•
Maximum Sum 195.00 2771.00 110.8400 8.0112532 7.6574 94.0974 129.6330 Std. 40.05900 - 4.73820 28.6244 47.60430 Deviation 98032 2 360.532 799.994 2281.044								
Slump (mm) Mean 110.8400 8.011 80 2532 7.6574 94.0974 129.6330 Std. 40.05900 - 4.73820 28.6244 47.60430 Deviation .98032 2 Variance 1604.723 - 360.532 799.994 2281.044		Maximum						
Std. 40.05900 - 4.73820 28.6244 47.60430 Deviation .98032 - 360.532 799.994 2281.044		Sum	2771.00					
Std. 40.05900 - 4.73820 28.6244 47.60430 Deviation .98032 - 360.532 799.994 2281.044	Slump (mm)	Mean	110.8400		2532	7.6574	94.0974	129.6330
Deviation .98032 2 2 281.044				80				
Variance 1604.723 - 360.532 799.994 2281.044			40.05900		-	4.73820	28.6244	47.60430
\/omonoo		Deviation	1604 722		.98032	260 522	700.004	2201.044
55.152		Variance	1004.723		- 55 152	300.332	/99.994	2281.044
Valid N 25 0 0	Valid N		25			n		
(listwise)		N	23			U	•	·

Table 2 shows the descriptive statistical analysis which was used to portray information in the data. It analysis the data statistically, reveals and details the information in the data. It also emphasis the data mean, median, sum, range, variance standard deviations, confidence level, residual errors in the data and the standard error in the data.

90 Coarse aggregate (kg/m3)

Table 3: Case Processing Summary

	Coarse	Cases						
	aggregate	Valid		M	Missing		Total	
	(kg/m3)	N	Percent	N	Percent	N	Percent	
Claren	953.00	11	100.0%	0	0.0%	11	100.0%	
Slump (mm)	1167.00	9	100.0%	0	0.0%	9	100.0%	
	1380.00	5	100.0%	0	0.0%	5	100.0%	

Table 4: Coarse aggregate M-Estimators

		Table 4.	Coarse	iggi egate i	vi-Esumau	71.5	
	Coarse a	ggregate (kg/m3)	Statistic			Bootstrap	
				Bias	Std. Error	BCa 98%	Confidence Interval
						Lower	Upper
	_	Huber's M-	125.6317	3535 ⁱ	19.0402 ⁱ	89.7525 ⁱ	160.2611 ⁱ
		Estimator					
	953.00	Tukey's Biweight	125.8833	-1.5816 ⁱ	22.1158 ⁱ	88.4845 ⁱ	162.9755 ⁱ
		Hampel's M-	126.4545	7262 ⁱ	19.6975 ⁱ	88.8551 ⁱ	162.6822 ⁱ
		Estimator					
		Andrews' Wave	125.8787	-1.6135 ⁱ	22.1574 ⁱ	88.4890 ⁱ	162.9655 ⁱ
		Huber's M-	92.4295	2.4849^{j}	14.4906 ^j	67.4795 ^j	162.6503 ^j
		Estimator					
Slump	1167.00	Tukey's Biweight	86.0199	6.2427^{j}	16.8065 ^j	j	j
(mm)	1107.00	Hampel's M-	86.0148	7.9399 ^j	15.8676 ^j	j	j
(11111)		Estimator					
		Andrews' Wave	86.0156	6.2076^{j}	16.8339 ^j	j •	j •
		Huber's M-	95.0578	9595 ^k	10.1189 ^k	65.6282 ^k	107.5000^{k}
		Estimator					
	1380.00	Tukey's Biweight	99.4180	-3.5515^{k}	10.9710 ^k	68.4169 ^k	108.4724 ^k
		Hampel's M-	94.6979	1041 ^k	10.6841 ^k	65.5000 ^k	108.7500^{k}
		Estimator					
		Andrews' Wave	99.6441	-3.7565 ^k	10.9742^{k}	68.4245 ^k	108.4839^{k}

Table 5: Tests of Normality

Table 21 Tests of I (officially)									
	Coarse	Kolm	ogorov-Sm	irnov	Shapiro-Wilk				
	aggregate (kg/m3)	Statistic	df	Sig.	Statistic	df	Sig.		
	953.00	.216	11	.160	.924	11	.351		
Slump (mm)	1167.00	.296	9	.022	.826	9	.041		
	1380.00	.259	5	.200*	.876	5	.290		

Fine Rice Husk (kg/m3)

Table 6: Fine M-Estimators

	Fine (kg		Statistic	ile ivi-Est		Bootstrap	
	Tine (Kg	3/1113)	Statistic	D.	C. 1. E.	•	
				Bias	Std. Error		Confidence Interval
-		-				Lower	Upper
		Huber's M-	101.3111	1.4796 ⁱ	10.8098^{i}	77.7682^{i}	135.5000 ⁱ
		Estimator					
414.00	Tukey's Biweight	98.4511	3.1955 ⁱ	11.4013 ⁱ	i	i •	
	414.00	Hampel's M-	98.8138	3.7421 ⁱ	10.9845 ⁱ	i	i •
		Estimator					
		Andrews' Wave	98.4261	3.1892 ⁱ	11.4333 ⁱ	i	i •
	Huber's M-	98.0502	5.0902 ^j	19.8758 ^j	69.5201 ^j	174.0098 ^j	
		Estimator					
		m 1 D' 1	86.0940	13.315	23.0046^{j}	j	j
Slump	7.7.2 0.0	Tukey's Biweight		4 ^j			
(mm)	552.00	Hampel's M-	96.8503	5.8041 ^j	21.1481 ^j	66.8653 ^j	175.2135 ^j
		Estimator					
			85.7565	13.555	23.0681 ^j	j	j
		Andrews' Wave		1 ^j			
		Huber's M-	106.3838	4.4396 ^k	19.3970 ^k	81.0441 ^k	156.4626 ^k
		Estimator					
	600.00	Tukey's Biweight	107.4876	2.2151 ^k	21.0520^{k}	84.2190 ^k	157.9911 ^k
	690.00	Hampel's M-	109.2851	1.6786 ^k	20.2975 ^k	85.0286 ^k	158.0000^{k}
		Estimator					
		Andrews' Wave	107.5429	2.1427 ^k	21.0657 ^k	84.1899 ^k	157.9906 ^k

Table 7: Tests of Normality

	Fine (kg/m3)	Kolm	ogorov-Sm	irnov	Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.
	414.00	.286	6	.137	.904	6	.396
Slump (mm)	552.00	.269	10	.039	.850	10	.057
	690.00	.210	9	.200*	.903	9	.269

Water Content (kg/m3)

Table 8: Case Processing Summary

	Water Content	Cases						
	(kg/m3)	Val	id	Missing		Total		
		N	Percent	N	Percent	N	Percent	
C1	5.00	9	100.0%	0	0.0%	9	100.0%	
Slump (mm)	6.00	7	100.0%	0	0.0%	7	100.0%	
(111111)	7.00	9	100.0%	0	0.0%	9	100.0%	

Table 9: Water Content (kg/m3) M-Estimators

	Water	Content (kg/m3)	Statistic			Bootstrap	
				Bias	Std. Error	BCa 98%	Confidence Interval
						Lower	Upper
		Huber's M- Estimator	103.7866	4.2753 ⁱ	20.2857 ⁱ	82.5721 ⁱ	156.4945 ⁱ
	5 00	Tukey's Biweight	102.2221	3.6057^{i}	22.6701 ⁱ	82.6736 ⁱ	158.3351 ⁱ
	5.00	Hampel's M- Estimator	107.2360	.8281 ⁱ	21.8922 ⁱ	83.6913 ⁱ	158.2500 ⁱ
		Andrews' Wave	102.3307	3.4688^{i}	22.6921 ⁱ	82.6725 ⁱ	158.3075 ⁱ
	6.00	Huber's M- Estimator	143.9491	.3490 ^j	23.7487 ^j	93.6233 ^j	183.1073 ^j
Slump		Tukey's Biweight	145.5352	.9948 ^j	27.1169 ^j	88.8371 ^j	189.0046 ^j
(mm)		Hampel's M- Estimator	143.5207	1.1220 ^j	24.1167 ^j	90.5028 ^j	185.8005 ^j
		Andrews' Wave	145.4891	1.0361 ^j	27.1510 ^j	88.6338 ^j	189.0296 ^j
		Huber's M- Estimator	88.5363	4308 ^k	9.4347 ^k	61.2381 ^k	108.8327 ^k
	7.00	Tukey's Biweight	88.0530	$.8954^{k}$	10.6101 ^k	54.0308 ^k	109.7560^{k}
	7.00	Hampel's M- Estimator	86.8562	1.2952 ^k	9.6713 ^k	56.7241 ^k	109.7500 ^k
		Andrews' Wave	88.0466	$.9086^{k}$	10.6317 ^k	54.0397 ^k	109.7560^{k}

100

Table 10: Tests of Normality

Water Content	Kolmogorov-Smirnov	Shapiro-Wilk

	(kg/m3)	Statistic	df	Sig.	Statistic	df	Sig.
Slump (mm)	5.00	.263	9	.073	.787	9	.014
	6.00	.271	7	.129	.901	7	.338
	7.00	.226	9	.200*	.899	9	.246

Cement (kg/m3)

Table 11: Case Processing Summary

	Cement (kg/m3)	Cases					
		Valid		Missing		Total	
		N	Percent	N	Percent	N	Percent
	207.00	10	100.0%	0	0.0%	10	100.0%
Slump (mm)	254.00	11	100.0%	0	0.0%	11	100.0%
	300.00	4	100.0%	0	0.0%	4	100.0%

Tables 3, 8 and 11 reveal the validity of a data and the missing values in the data using a method that is known as case processing summary. This method reveals the number of values in the lower boundary, mean boundary and upper boundary in the data system and the possibility of valid data in the boundaries. However, it also reveals the possible missing data in the lower boundary, mean boundary and upper boundary in the data system.

Table 12: Cement (kg/m3) M-Estimators

		Table 12:	Cement (k	.g/m3) w	1-Esumai	lors	
	Cemer	nt (kg/m3)	Statistic	Bootstrap			
				Bias	Std.	BCa 98%	6 Confidence
					Error	In	terval
						Lower	Upper
		Huber's M-	102.0348	1.1497	11.6041	71.4591 ^h	155.2357 ^h
		Estimator		h	h		
Slum	207.0	Tukey's Biweight	100.1067	2.3994 h	12.2625 h	58.2672 ^h	159.1125 ^h
p	0	Hampel's M-	100.5684	2.3589	11.9952	70.2221 ^h	158.9132 ^h
(mm)		Estimator		h	h		
		Andrews' Wave	100.1103	2.4031 h	12.2662 h	58.1394 ^h	159.1173 ^h

	Huber's M- Estimator	104.2431	6.9247 i	19.7272 i	89.6182 ⁱ	169.8525 ⁱ
254.0	Tukey's Biweight	93.7213	12.361 9 ⁱ	22.8537 i	i •	·
0	Hampel's M- Estimator	100.4116	8.9054 i	21.0067 i	86.6663 ⁱ	173.9062 ⁱ
	Andrews' Wave	93.7216	12.289 7 ⁱ	22.8952 i	i •	i ·
	Huber's M- Estimator	73.5722	6.1730 j	17.2994 j	63.5000 ^{j,} k	119.0000 ^j
300.0	Tukey's Biweight	68.8974	7.3918 j	17.9252 j	62.6465 ^{j,} k	119.0000 ^j
0	Hampel's M- Estimator	69.3333	9.3889 j	17.9394 j	62.7500 ^j ,	119.0000 ^j
	Andrews' Wave	68.8924	7.3635 j	17.9294 j	62.6457 ^{j,} k	119.0000 ^j

Tables 4, 6, 9 and 12 shows that some M-Estimators cannot be computed in one or more split files because of the highly centralized distribution around the median. Some results could not be computed from jackknife samples or the estimators, so this confidence interval is computed by the percentile method rather than the BCa method. M-Estimators is a method used to determine the average estimated confidence level of the data using several estimation methods to achieve more effective results. The estimation methods developed their confidence methods around the lower value, mean value and the upper value of the used data. However, it will be noted that the estimated confidence level in this research is 98 percent (%), this is used because of the economic importance and its necessity to construction.

Table 14: Tests of Normality^c

	Cement (kg/m3)	Kolmogorov-Smirnov ^a			S	Shapiro-Wil	k
		Statistic	df	Sig.	Statistic	df	Sig.
	207.00	.236	10	.122	.926	10	.411
Slump (mm)	254.00	.306	11	.005	.804	11	.011
	300.00	.341	4	•	.773	4	.062

Tables 5, 7, 10 and 13 investigates and reveals tests of normality using Kolmogorov-Smirnov and Shapiro-Wilk which shows that statistically, the data is not normally distributed along the upper and lower boundaries of the data mean except at the mean. The cement data is significance along the mean of slump data but is not significance at the upper and lower boundary of the slump wet data. This is applicable in the two normality test methods applied.

128129130

124125

126

127

Generalized Linear Mixed Models

Model Summary

Target: Slump (mm)

Target	Slump (mm)	
Probability Distributio	Gamma	
Link Function	Log	
	Akaike Corrected	2,246.667
Information Criterion	Bayesian	2,235.293

Information criteria are based on the -2 log pseudo likelihoo (2,196.667) and are used to compare models. Models with smaller information criterion values fit better. When compar models using pseudo likelihood values, caution should be us because different data transformations may be used across tl models.

131 132

133

134

135

136

137

Conclusion

On the basis of the statistical analysis, the derived mathematical model for the slumps (workability) and strength of concrete in a hot humid zone as functions of quantity of cement, water-cement ratio and quantity of aggregates, it is possible to evaluate the composition of the concrete mix by varying the independent factors (variables) for various seasons.

The statistical results developed will help to understand the data and what the data portrays.

139

140

141142

138

References

Aman, A. (2010): Assessment of the Quality Strength and Variability of the Consturtion Materials. Nigerian Institute of Structural Engineers Conference 2010. 10-12.

143 144 145	International Conference held at the University of Dundes Scotland, UK on 11-13 September, 1990.
146	Edeh, et.al, (2011): Analysis of Environmental Risk factors affecting Rice farming in
147	Ebonyi State, South Eastern Nigeria.
148	Ezeokonkwo, J.U. (2002): Quality Control in Construction, Project. Effective Building
149	Procurement and Delivery in Nigerian Construction Industry. Rex Charles and Patrick
150	Ltd. Nimo Anambra State. 85-101.
151	Ezeokonkwo J.U. (2015). "Assessment of Quality Control of Concrete Production Works in
152	Nigeria", Publisher: LAP LAMBERT Academic Publishing, Deutschland, Germany.
153	ISBN: 9783659389306
154	Heiseman, (2007): Concrete Characteristics. Sweet Haven publishers.
155	Imaga, (1994): Theory and Practice of Production Management. Afritrade International Limited
156	Publishers. 8/10 Broad Street 10 th Floor Western House.
157	Obiegbu, M. E. (2007): The Professional Builder. Magazine Published by Nigerian Institute of
158	Building.
159	US Research Department of Transportation, Federal Highway Administration (2012): Concrete
160	Mixture Optimization Using Statistical Methods. FHWA-RD-03-060.