
Sensitivity analysis of mathematical model

for malaria transmission with saturated

incidence rate.

Abstract:

Malaria is a life threatening vector borne disease caused by parasites that

are transmitted to people through the bites of infected female Anopheles

mosquitoes. In this paper, we study and analyze mathematical model

of ordinary differential equations for human and mosquito with saturat-

ed incidence function. The stability of the system was analyzed for the

Malaria-Free Equilibrium (MFE) through the reproduction number R0

which was obtained using the next generation matrix method. The MFE

is locally asymptotical stable if R0 < 1 and unstable otherwise. More-

over, our sensitivity analysis shows that the most effective parameter is,

a, mosquito biting rate and the less effective one is αh, human progression

rate. Our numerical simulations show that, reducing the biting rate of

mosquitoes will reduce the number of exposed humans as well as infected

individuals and increase the number of treated individuals. This can be

achieved by increasing the proportion of antibodies.
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1 Introduction

According to [2], Malaria is a life-threatening disease caused by parasites that are
transmitted to people through the bites of infected female Anopheles mosquitoes. It is
preventable and curable. In 2016, there were an estimated 216 million cases of malaria in
91 countries, an increase of 5 million cases over 2015. Malaria deaths reached 445000 in
2016. The total funding for malaria control and elimination reached an estimated US 2.7
billion in 2015. Nearly half of the world’s population is at risk of the malaria disease with
most of the malaria cases and deaths occurring in the sub-saharan Africa. The female
infected mosquitoes carry a parasite called Plasmodium. The mosquitoes take the blood
meal from human which is needed for their egg production and such blood meals are the
link between the human and the mosquito host in the parasite life [3]. There are four
common species of plasmodium that cause malaria in humans which include;Plasmodium
falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Recently,
some human cases of malaria have also occurred with Plasmodium knowlesi, which is
a species that infects animals. Among the species, Plasmodium falciparum is the most
deadly and accounts for 80 percent of malaria cases and 90 percent off death [4, 5].

The use of mathematical modeling has played a unique role in comparing the effects
of control strategies, used individually or in packages [6]. It can also be used to project
how infectious diseases progress, to show the likely outcome of an epidemic, and help
inform public health interventions [7].Understanding the epidemiology of emerging and
re-emerging of infectious diseases in a population produces a healthy environment for
living. Mathematical models are used in likening, designing, implementing, evaluating
and optimizing several detection, prevention and control plans [8].

Mathematical modelling of malaria has flourished since the days of Ross [9], who
was the first to model the dynamics of malaria transmission and Macdonald [10–12] who
expounded on Ross’s work, introducing the theory of superinfection. In the work of Chit-
nis et al [6], they perform the sensitivity analysis on a mathematical model of malaria
transmission to determine the relative importance of the model parameters to disease
transmission and prevalence. They also studied the sensitivity indices of the reproduction
number and the endemic equilibrium point to the parameters at the baseline value. In a
Ph.D. dissertation, Chitnis [13] described a compartmental model for malaria transmis-
sion, based on a model by Nqwa and Shun [14]. He defined a reproductive number, R0, as
the expected number of secondary cases that one infected individual would cause through
the duration of the infectious period. Also he showed the existence and stability of the
disease free and endemic equilibrium points. He also computed the sensitivity indices of
R0 and the endemic equilibrium to the parameters in the model.

There has been a high incidence and prevalence of malaria in the last few decades
due to increasing parasite drug-resistance and mosquito insecticide-resistance.This calls
for a comparative knowledge of the effectiveness and efficacy of different control strate-
gies which are useful and cost-effective in the malaria control programs. It is from this
background that we developed a vector-host mathematical model for the transmission
dynamics of malaria to examine the sensitive parameters that play vital roles in the dy-
namical spread and control of the disease. The paper is organized as follows: In Section
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2, we describe the formulation of the model. Section 3 is devoted for the analysis of the
model; the basic reproduction number is also computed. The stability of the disease free
equilibrium is investigated as well as the existence of the endemic equilibrium. Section
4 has the sensitivity analysis of the basic reproduction number. Section 5 is devoted for
the numerical simulations . The conclusion is discuss in section 6.

2 Mathematical Model

2.1 Model description

The total population size, Nh, of the human population is sub-divided into five classes
namely Susceptible human,Sh, Exposed human, Eh, Infected human, Ih, Treated human,
Th, and Recovered human, Rh, so that

Nh = Sh + Eh + Ih + Th +Rh (2.1)

The mosquitoes population Nm is also sub-divided into three classes namely Susceptible
mosquitoes Sm, Exposed mosquitoes Em and Infected mosquitoes Im, so that

Nm = Sm + Em + Im (2.2)

The susceptible human population increases by the recruitment of individuals either by
birth or immigration at the rate Λh .With a biting rate of a, there is an infection from
the infected human to a susceptible mosquito at a rate of βhm. The recovered humans
becomes susceptible to the disease after they have been fully recovered at a rate ρ. The
susceptible human population is reduced by a natural death rate of µ. The class Eh
of exposed humans is generated after the mosquito bites a susceptible human at a rate
a. At this stage, individuals do not show any signs and symptoms of malaria. The
exposed human class is reduced by a rate αh, which is the human progression rate from
the exposed human to the Infected human class and also by a natural death rate of µ.
When the exposed humans start showing signs of malaria, they leave the expose class
and join the infected class at a rate of αh. After treatment, a rate γ, leaves the infected
class to join the treated class. The infected class is further decreased by a disease induced
death rate δh and a natural death rate of µ. A rate σ leaves the treatment class to the
recovery class after they have fully recovered. The class is further decreased by a natural
death rate of µ. A class of recovered human, Rh, is generated when the infected human
respond fully to the treatment given to them. There is a natural death rate of µ. Also a
rate ρ of the recovered humans joins the susceptible class again.

In the case of the mosquitoes, there is a recruitment of Λm, into the susceptible class.
With a biting rate of a, the infected mosquito transfer the plasmodium parasite to the
susceptible human at a rate of βmh. The susceptible mosquitoes also decreases by a
natural death rate of η. A class of exposed mosquito is generated after they have bitten
an infected human. A rate αm leaves the exposed class of mosquitoes to the infected class
of mosquitoes. There is a natural death rate of η. After the mosquitoes leaves the exposed
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class, a class of Infected mosquitoes is formed. A rate αm leaves the expose class to join
the infected class. The infected mosquitoes are reduced by a disease induce and natural
death rate of δm and η respectively.

With the above formulations and assumptions, we have the following system of differ-
ential equations: 

dSh
dt

= Λh −
aβhmShIm
1 + vhIm

+ ρRh − µSh,
dEh
dt

=
aβhmShIm
1 + vhIm

− (αh + µ)Eh,

dIh
dt

= αhEh − (γ + µ+ δh)Ih,

dTh
dt

= γIh − (µ+ σ)Th,

dRh

dt
= σTh − (µ+ ρ)Rh,

dSm
dt

= Λm −
aβmhSmIh
1 + vmIh

− ηSm,
dEm
dt

=
aβmhSmIh
1 + vmIh

− (η + αm)Em,

dIm
dt

= αmEm − (η + δm)Im,

(2.3)

With the initial conditions: Sh(0) > 0,Eh(0) ≥ 0,Ih(0) ≥ 0,Th(0) ≥ 0, Rh(0) ≥ 0,
Sm(0) > 0, Em(0) ≥ 0, Im(0) ≥ 0.

3 Model analysis

3.1 Positivity and boundedness of the solutions

Since the model (2.3) characterize interaction between host (human) and vector (mosquito)
populations, it is important to state that all the model variables and parameters are non-
negative with respect to time, thus t ≥ 0. The system (2.3) will be considered in the
epidemiologically- feasible region Ω = Ωh × Ωm ⊂ R5

+ × R3
+ with,

Ωh = {Sh, Eh, Ih, Th, Rh ∈ R5
+ : Nh ≤

Λh

µ
}, (3.1)

and

Ωm = {Sm, Em, Im ∈ R3
+ : Nm ≤

Λm

η
}, (3.2)

It can be shown that the region Ω is a positively invariant set and global attractive
of the system (2.3), this means any trajectory indicated any where in the non-negative
region R8

+ of the phase space ultimately enters the feasible region Ω and remains in Ω
thereafter.
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Lemma 3.1. The region

Ωh = {Sh, Eh, Ih, Th, Rh, Sm, Em, Im ∈ R8
+ : Nh ≤

Λh

µ
,Nm ≤

Λm

η
},

is positively invariant region for the model (2.3)

Proof.
dNh

dt
= Λh − µNh − δhIh,

dNh

dt
≤ Λh − µNh,

limt−→∞Nh(t) ≤ Λh

µ
,

(3.3)

dNm

dt
= Λm − ηNm − δmIm,

dNm

dt
≤ Λm − ηNm,

limt−→∞Nm(t) ≤ Λm

η
,

(3.4)

3.2 Reproduction number and existence of equilibrium

The malaria-free equilibrium is a point at which the population is free from the malar-
ia disease. The MFE of the system (2.3) is denoted by P0 and is given by
P0 = (Sh0, Eh0, Ih0, Th0, Rh0, Sm0, Em0, Im0) = (Sh0, 0, 0, 0, 0, Sm0, 0, 0) = (Λh

µ
, 0, 0, 0, 0, Λm

η
, 0, 0)

Let

F =


aβhmShIm
1+vmIm

0
aβmhSmIh

1+vmIh

0

 , V =


(αh + µ)Eh

−αhEh + (γ + µ+ δh)Ih

(η + αm)Em

−αmEm + (η + δm)Im

 .
by differentiating F and V partially with respect to: Eh, Ih, Em and Im at MFE P0, we
get,

f = D[F(P0)] =


0 0 0

aβhmΛh

µ

0 0 0 0

0 aβmhΛm

η
0 0

0 0 0 0

 , v = D[V(P0)] =


αh + µ 0 0 0

−αh γ + µ+ δh 0 0

0 0 η + αm 0

0 0 −αm η + δm



fv−1 =


0 0 0

aβhmΛh

µ

0 0 0 0

0 aβmhΛm

η
0 0

0 0 0 0




1
(αh+µ)

0 0 0
αh

(αh+µ)(γ+µ+δh)
1

(γ+µ+δh)
0 0

0 0 (η + αm) 0

0 0 αm

(η+αm)(η+δm)
1

(η+αm)

 .
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=


0 0 aβhmΛhαm

µ(η+αm)(η+δm)
aβhmΛh

(η+δm)

0 0 0 0
aβmhΛmαh

(αh+µ)(γ+µ+δh)
aβmhΛm

η(γ+µ+δh)
0 0

0 0 0 0


Then R0, is given by spectral radius of fv−1 which is denoted by ρ(fv−1) and defined

as:

R0 = ρ(fv−1) =

√
a2βhmβmhΛhΛmαhαm

µη(αh + µ)(γ + µ+ δh)(η + µ)(η + δm)
, (3.5)

3.2.1 Stability of the Malaria-Free Equilibrium

In this subsection, we investigate the stability of the MFE P0, by evaluating the Ja-
cobian matrix of system (2.3) at P0 = (Λh

µ
, 0, 0, 0, 0, Λm

η
, 0, 0) and obtained

J(0) =

−µ 0 0 0 ρ 0 0 −aβhmΛh

µ

0 −(αh + µ) 0 0 0 0 0 aβhmΛh

µ

0 αh −(γ + µ+ δh) 0 0 0 0 0

0 γ 0 −(µ+ σ) 0 0 0 0

0 0 0 σ −(µ+ ρ) 0 0 0

0 0 −aβmhΛm

η
0 0 −η 0 0

0 0 aβmhΛm

η
0 0 0 −(αm + η) 0

0 0 0 0 0 0 αm −(δm + η)


It is clear that λ1 = 0,λ2 = −µ , λ3 = −(µ + σ), λ4 = −(µ + ρ) are negative eigenvalues
and the sign of the other eigenvalues can be determined by the equation

G(λ) = c4λ
4 + c3λ

3 + c2λ
2 + c1λ+ c0 = 0 (3.6)

where:
c4 = 1,

c3 = k1 + k2 + k5 + k6,

c2 = k1k2 + k1k5 + k1k6 + k2k5 + k2k6 + k5k6,

c1 = k1k2k5 + k1k2k6 + k1k5k6 + k2k5k6,

c0 = k1k2k5k6(1−R2
0),

such that: k1 = (αh + µ), k2 = (γ + µ+ δh), k3 = (µ+ σ), k4 = (µ+ ρ), k5 = (αm + η),

6

UNDER PEER REVIEW



k6 = (δm+η). Clearly it can be seen that all the roots of equation (3.6) have negative real
parts, by applying the Routh-Hurwitz Criterion if and only if the factors ci, are positive
for i = 0, 1, 2, 3, 4 and the determinants Di > 0, for i = 1, 2, 3, 4. From (3.6) clearly
c1 > 0, c2 > 0, c3 > 0, c4 > 0. moreover,if R0 < 1 then c0 > 0. Also

D1 = c3 > 0, D2 =

∣∣∣∣∣c3 c4

c1 c2

∣∣∣∣∣ > 0, D3 =

∣∣∣∣∣∣∣
c3 c4 c0

c1 c2 c3

0 c0 c1

∣∣∣∣∣∣∣ > 0, D4 =

∣∣∣∣∣∣∣∣∣
c3 c4 0 0

c1 c2 c3 c4

0 c0 c1 c2

0 0 0 c0

∣∣∣∣∣∣∣∣∣ > 0, (3.7)

Thus, all the eigenvalues of J(P0) have negative real parts whenever R0 < 1, and P0 is
said to be locally asymptotically stable. However, if R0 > 1 then c0 < 0 and by Descartes
rule of signs [15,16], there exist exactly one sign change in c4, c3, c2, c1, c0 of factors of the
equation (3.6). So, there is one eigenvalue with non-negative real part then the MFE P0

is unstable when R0 > 1, which indicates an existence of an endemic equilibrium.

Theorem 3.2. System (2.3) has the MFE point P0 if R0 < 1,which is locally asymptoti-
cally stable and unstable if R0 > 1.

4 Sensitivity Analysis

Table 1: Description and values of parameters of the model (2.3).

Parameter Parameter Description Value References

Λh Human recruitment rate 0.0250 Assumed

Λm Mosquito recruitment rate 0.035 Assumed

vh Proportion of antibody produced by human 0.29 Assumed

vm Proportion of antibody produced by mosquito 0.21 Assumed

γ treatment rate of the infectious individual 0.14 Assumed

µ Human natural death rate 4.74× 10−5 Assumed

δh Disease induced death rate of human 0.001 [15]

δm Disease induced death rate of mosquito 0.01 [15]

αh Human progression rate from Eh to Ih 0.08333 [17]

αm Mosquito progression rate from Em to Im 0.48 [17]

σ Recovery rate through the treatment 3.5× 10−3 [17]

βhm Transmission rate from infected human to susceptible mosquito 0.48 [17]

βmh Transmission rate from infected mosquito to susceptible human 0.048 [17]

a Mosquito biting rate 0.33 [18]

η Mosquito natural death rate 0.1 [18]

ρ Loss of immunity rate 2.74× 10−3 [18]

Sensitivity indices permit us to measure the proportional change in a state variable
when a parameter changes. We consider that change of the state variable parallels with
a change in the value of R0 in our model simulation. Since the reproduction number
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is a function of the parameters, then we can evaluate the relative sensitivity of R0 for
every parameter that R0 depends on.The parameters µ and η are simply not considered
because they are natural death rate of humans and mosquitoes respectively. In order to
determining how to reduce human morbidness due to malaria it is better to know the
relative importance of different factors that changes the spread of the disease. The pa-
rameters are listed in Table 2 in such a way that they begin from the most sensitive to
the least sensitive one.The signs on sensitivity indices indicate the direction of the change
for each parameter.The most sensitive parameter is a the mosquitoes biting rate and the
least sensitive one is αh, which is human progression rate from Eh to Ih.

(i) if we decrease the value of a from 0.33 to 0.25 and the other parameter values re-
main the same then the value of R0 is reduces from 0.0137 to 0.0104.
(ii) if we reduce the value of βhm from 0.48 to 0.35 and the other parameters remain the
same then the value of R0 reduces from 0.0137 to 0.01168
(iii) if we reduce the value of βhm from 0.048 to 0.035 and the other parameters remains
the same then the value of R0 reduces from 0.0137 to 0.0117

Table 2: Sensitivity indices of R0 to parameters for model (2.3)

Parameter Sensitivity index

1 a +1

2 βhm +0.5

3 βmh +0.5

4 Λh +0.5

5 Λm +0.5

6 µ -0.5

7 γ -0.4963

8 αm + 0.0862

9 δm -0.0455

10 δh -0.0035

11 αh 0.000028435

5 Numerical simulations

In this section, we study the numerical simulations of our model. The graphs in Fig 1
show the simulations of malaria model showing the varying effect of the ratio of antibodies,
vh on the human population. Fig 1(a) indicates that an increase in the antibody in human
greatly increases the number of susceptible human. In the case of the exposed human,
increasing the antibody sharply reduces the number of exposed human as depicted in
Fig.1(b). Also, an increase in the antibody increases the number of infected humans and
vice verse, this is shown in Fig 1(c). Fig 1(d) shows that when the antibody is increased,
it doesn’t show any initial changes until after day 10, after which the number of treated

8

UNDER PEER REVIEW



humans reduces drastically. Fig 2 shows the simulation of malaria model showing the
varying effect of the ratio of antibody vm on the mosquitoes population Sm. From Fig
2(a), we clearly see that an increase or decrease in the antibody does not affect the
susceptible mosquitoes. However, Fig 2(b) indicates that the number of magnitude of the
exposed mosquitoes decreases as the antibody increases. Thus, increasing the antibodies
reduces the expose mosquito population depicted in Fig 2(c). In general, it is observed
that an increase in antibody greatly reduces the infected mosquitoes.

Fig.3 shows the simulations of malaria model showing the effect of vector biting rate a
on the susceptible and infected human. It is clearly seen from Fig 3(a) that as the biting
rate of mosquitoes increases, the population of the susceptible humans reduces drastically.
On the other hand, as the biting rate a of the mosquitoes increase, the number of infected
human also increases.
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Figure 1: Simulations of malaria model (2.3) showing the varying effect of the ratio of antibody vh on
the human population Sh(t) Fig 1 (a),Eh(t) Fig 1 (b) Ih(t) Fig 1 (c) and Th(t) Fig 1 (d). when R0 < 1 .
All Parameter values used are listed in Table 1
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Figure 2: Simulations of malaria model (2.3) showing the varying effect of the ratio of antibody vm on the
mosquitoes population Sm(t) Fig (a),Em(t) Fig 2 (b) and Im(t) Fig 2 (c), when R0 < 1 . All Parameter
values used are listed in Table 1
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Figure 3: Simulations of malaria model (2.3) showing the effect of vector biting rate a on the human
population Sh(t) Fig 3 (a) and infected human Ih(t). Fig 3 (b), as a function of time. Parameter values
used are listed in Table 1

6 Conclusion

The sensitivity analysis of the ordinary differential equations model of malaria trans-
mission with saturated incidence function was studied. Basic properties of the model were
discussed. The malaria-free equilibrium, P0 was shown to be locally asymptotically stable
whenever R0 < 1. Our sensitivity analysis shows that the most effective parameter is, a,
mosquito biting rate and the less effective one is, αh, human progression rate from Eh to
Ih. Furthermore, our numerical simulations showed that increasing the antibodies is the
best strategy to reduce the number of exposed humans and infected individuals, which
increases the number of treated humans and controlls the disease.
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