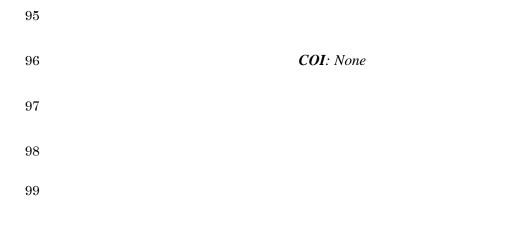
1	Improvement of antibiotics susceptibility of <i>Escherichia coli</i> in a tertiary hospital
2	in Japan
3	
4	ABSTRACT
5	
6	Antimicrobial stewardship team (AST) and Infection Control Team (ICT) have
7	recently been linked Infectious diseases (ID) physicians, and implemented in clinical
8	settings in Japan. The microbiological effects of an AST and ICT, in addition to
9	Diagnostic stewardship team (DST) supported by ID physicians in our tertiary hospital
10	were shown in significant reduction of antibiotic resistance of Escherichia coli (E coli)
11	including extended spectrum beta-lactamases (ESBL)-producing E coli
12	
13	
14	Key words: Antimicrobial stewardship team (AST), Diagnostic stewardship team
15	(DST), Infection Control Team (ICT), Infectious diseases (ID) physicians,
16	Escherichia coli, extended spectrum beta-lactamases (ESBL)
17	
18	

19	SHORT REPORT
20	
21	Antimicrobial stewardship (AS) has been defined as an activity that includes
22	appropriate selection, dosing, route, and duration of antimicrobial therapy [1, 2].
23	The benefits of AS are improved patient outcomes, reduced-frequency adverse
24	events, improved rates of antibiotic susceptibility to targeted antibiotics, and
25	optimization of resource utilization across the continuum of care. The Infectious
26	Diseases Society of America (IDSA), the Society for Healthcare Epidemiology of
27	America (SHEA), and the Pediatric Infectious Diseases Society (PIDS) have strongly
28	suggested that AS program (ASP) are best led by infectious disease physicians with
29	additional stewardship training [1, 2].
30	In addition to Infection Control Teams (ICT), interdisciplinary AS teams
31	(AST), comprising infectious disease physicians, pharmacists, nurses, and
32	microbiological technicians who recently contributed Diagnostic stewardship (DS),
33	have begun to be organized at university and/or tertiary hospitals in Japan, and the
34	efficacy of the resulting interventions in preventing inappropriate antibiotic use have
35	been reported for Japanese AST and its related staffs [3-6].
36	

 $\mathbf{2}$

3738In our hospital, a 650-bed tertiary-care university hospital in the city of Sendai 39in Japan, all adult patients who were (a) hospitalized at our facility from 2015 to 2018, 40 (b) received antibiotic therapy, and (c) for whom an intervention was recommended by 41 42our ICT/AST in addition to diagnostic stewardship team (DST) and Infectious diseases (ID) physicians, were eligible for enrollment in this analysis. 43The roles of the these infection staffs and clinical microbiological laboratory 44included a review of antimicrobial orders with respect to the usage, dose, isolated 4546 pathogens, and sites of infection for all inpatients receiving parenteral antibiotics, and 47consultation with physicians before the prescription of antibiotics. Cases receiving carbapenems, anti-pseudomonad penicillins, fluoroquinolones, 4th-generation cefems, 4849and anti-Methicillin resistant Staphylococcus aureus (MRSA) agents were specifically reviewed. When an inappropriate use of antibiotics was found, infection members made 5051immediate contact with the prescriber over the telephone, via report papers, and/or via electronic messaging on the computer order system. Usually, total 50-100 patients were 52monitored, and finally a half of them were intervened in each month by our infection 53

54 staffs and reported to clinical microbiological laboratory.

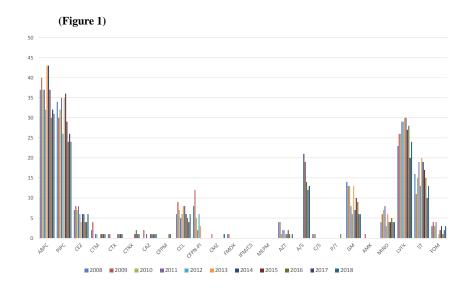

55	As the results, antibiotic susceptibility of Escherichia coli were significantly
56	improved, especially, resistant E coli for penicillin including ampicillin/sulbactam,
57	cefazolin, and levofloxacin were significantly decreased (Figure 1).Furthermore, the
58	rates of extended spectrum beta-lactamases (ESBL)-producing E coli among all isolated
59	E coli were also reduced (Figure 2).
60	The occurrences of drug-resistant strains including ESBL- producing E coli and
61	related infectious diseases were big issues in Japan[7]. The nationwide surveillance
62	showed that susceptibility rates of <i>E. coli</i> were decreased to 38% for
63	ampicillin/sulbactam, 82% for cefazolin, and 92 % for PIPC/TAZ although they were
64	96% for cefoxitin, and 100 % for ertapenem. Ampicillin/sulbactam are not acceptable
65	especially for intra-abdominal infection (IAI) and urinary tract infection (UTI),
66	sometimes in pneumonia and blood stream infections (BSI) treatments, and cefozolin
67	should be used for these infections with caution empirically because we have to
68	consider <i>E coli</i> as an one of the important pathogens of these infectious diseases.
69	PIPC/TAZ may have the possible of treatment failure in <i>E coli</i> treatment in Japan.
70	Therefore, antimicrobial and diagnostic stewardship interventions should work
71	synergistically to decrease ordering of bacterial cultures without clear indication and
72	prevent excessive antimicrobial administration in patients without clearly defined these

73 infectious diseases.

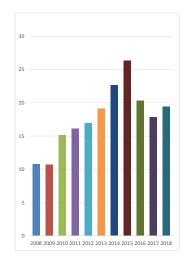
74	To solve these issues, the infection staffs and clinical microbiological
75	laboratory intervention for pneumonia has been recently reported to yield a significant
76	decrease (from a median of 10 to 7 days) in the duration of antibiotic therapy, and also
77	result in more frequently narrowing of antibiotic spectrum or modification on the basis
78	of susceptibility results [8]. Maeda et al. showed that an AST intervention approach
79	decreases the use of inappropriate therapy and may improve clinical outcomes in blood
80	stream infection (BSI) patients, and previous other studies have reported that clinical
81	intervention by infectious disease specialists also reduces mortality, length of stay
82	(LOS), and medical costs [4, 9, 10]. These results indicate that the infection staffs and
83	clinical microbiological laboratory interventions can decrease inappropriate therapy and
84	also potentially improve clinical and economic outcomes in severe infectious disease,
85	including IAI, UTI, pneumonia, and BSI by E coli.
86	Therefore, a multidisciplinary infection staffs, including microbiologists, is
87	very important for successful interventions and improving drug susceptibility of the
88	pathogenic bacteria, including Pseudomonas aeruginosa as we previously reported [4,
89	11, 12]. Our team could decreased significant resistant rates of <i>P aeruginosa</i> in our
90	hospital by the synergistically collaborations. Recommendations regarding appropriate

 $\mathbf{5}$

- 91 therapies require a broad knowledge of infectious diseases. Interdisciplinary teams that
- are able to facilitate discussion among specialists from various relevant occupational
- 93 fields may be lead to successful implementation by the infection staffs and the clinical
- 94 microbiological laboratory.



100		REFERENCES
101		
102	1.	Dellit TH, Owens R., McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP et
103		al, Infectious Diseases Society of America and the Society for Healthcare
104		Epidemiology of America guidelines for developing an institutional program to
105		enhance antimicrobial stewardship. Clin Infect Dis, 2007. 44: 159-77.
106	2.	Barlam TF, Cosgrove S, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ,
107		et al., Implementing an Antibiotic Stewardship Program: Guidelines by the
108		Infectious Diseases Society of America and the Society for Healthcare
109		Epidemiology of America. Clin Infect Dis., 2016. 62: e51-77
110	3.	Niwa T, S.Y., Suzuki A, Ohmori T, Yasuda M, Ohta H, Fukao A, Kitaichi K,
111		Matsuura K, Sugiyama T, Murakami N, Itoh Y., Outcome measurement of
112		extensive implementation of antimicrobial stewardship in patients receiving
113		intravenous antibiotics in a Japanese university hospital. Int J Clin Pract., 2012.
114		66 : p. 999-1008.
115	4.	Maeda M, Takuma T., Seki H, Ugajin K, Naito Y, Yoshikawa M, et al, Effect of
116		interventions by an antimicrobial stewardship team on clinical course and
117		economic outcome in patients with bloodstream infection. J Infect Chemother.,
118		2016. 22: 90-95


119	5.	Tagashira Y, Horiuchi.M, Tokuda Y, Heist BS, Higuchi M, Honda H.,
120		Antimicrobial stewardship for carbapenem use at a Japanese tertiary care center:
121		An interrupted time series analysis on the impact of infectious disease
122		consultation, prospective audit, and feedback. Am J Infect Control. , 2016. 44:
123		708-710.
124	6.	Patel R, Fang.F., Diagnostic Stewardship: Opportunity for a
125		Laboratory-Infectious Diseases Partnership. Clin Infect Dis. 2018. 67:
126		799-801.
127	7.	Takesue Y, Kusachi S., Mikamo H, Sato J, Watanabe A, Kiyota H, et al.,
128		Antimicrobial susceptibility of common pathogens isolated from postoperative
129		intra-abdominal infections in Japan. J Infect Chemother. , 2018. 24: 330-340.
130	8.	Avdic E, Cushinotto L., Hughes AH, Hansen AR, Efird LE, Bartlett JG, et al,
131		Impact of an antimicrobial stewardship intervention on shortening the duration
132		of therapy for community-acquired pneumonia. Clin Infect Dis. , 2012. 54:
133		1581-7.
134	9.	Schmitt S, McQuillen.D., Nahass R, Martinelli L, Rubin M, Schwebke K, et al ,
135		Infectious diseases specialty intervention is associated with decreased mortality
136		and lower healthcare costs. Clin Infect Dis., 2014. 58: 22-28.

137	10.	Huang AM, Newton.D., Kunapuli A, Gandhi TN, Washer LL, Isip J, et al,
138		Impact of rapid organism identification via matrix-assisted laser
139		desorption/ionization time-of-flight combined with antimicrobial stewardship
140		team intervention in adult patients with bacteremia and candidemia. Clin Infect
141		Dis., 2013. 57: 1237-45.
142	11.	Briceland LL, Nightingale C., Quintiliani R, Cooper BW, Smith KS., Antibiotic
143		streamlining from combination therapy to monotherapy utilizing an
144		interdisciplinary approach. Arch Intern Med., 1988. 148: 2019-22.
145	12.	Seki M, Watanabe Y, Microbiological improvement by antimicrobial stewardship
146		program and infection control in Japan, J Prev Infect Control 3, 1-2, 2017 DOI:
147		10.21767/2471-9668.100034
148		

149	FIGURE LEGENDS
150	
151	Figure 1: Antibiotics resistant rates of Escherichia coli were decreased year by year
152	from 2008-2018.
153	
154	Figure 2: The rates of extended spectrum beta-lactamases (ESBL)-producing type
155	among all isolated <i>Escherichia coli</i> were decreased year by year from 2008-2018.

(Figure 2)

