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Aims: This paper seeks to undertake a behavioral analysis of the rainfall pattern in Katsina
in a view to characterizing the rainfall data and describing its dynamics so that adequate
recommendations can be made for its modelling.
Study design: The analysis involves a complete statistical, trend, spectral and
nonlinear analysis of the daily rainfall time series recorded in Katsina.
Place and Duration of Study: Location: Katsina City, Katsina State, Nigeria from
1990 to 2015; a period of 26 years.
Methodology: Secondary data of daily rainfall recorded in Katsina from 1990 to 2015
was collected from the Nigerian Meteorological Agency (NiMet) and then subjected to
statistical, trend, spectral and nonlinear analysis techniques so as to reveal the
behavioral patterns in the rainfall and also to reveal its underlying dynamics for its
future modelling and prediction.
Results: The outcome of this analysis indicates that the rainfall in Katsina exhibits an
annual increasing trend over the past 26 years with a high variance and right-skewed
distribution requiring a maximum of 5 independent variables to model its dynamics.
The largest Lyapunov exponent for the rainfall time series in Katsina was also
computed and found to be -0.001157/day indicating a dissipative (stable fixed point)
behavior while the correlation exponent plot failed to reach a saturation value
confirming that the daily rainfall in Katsina over the last 26 years exhibits a stochastic
behavior.
Conclusion: Since from the findings of this work it is confirmed that the rainfall in
Katsina exhibits stochastic behavior, it is recommended that more drainages and dams
be built to provide steady supply of water for agricultural and domestic purposes as
well as curtail the menace of flooding and drought which may occur as a result of
global warming and climate change.
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11
1. INTRODUCTION12

13
Nowadays meteorological and hydrological studies, lays huge emphasis on the modelling of time14
series so as to ease the designing, planning and forecasting of these natural resources. Time15
series represents a dynamic measure of a physical process over a given period of time and may16
be discrete or continuous [1]. The discovery of Chaos by Edward Lorenz in 1961 [2], has brought17
about a great revolution on the mode of understanding and expressing most of these18
phenomena in nature. Chaos theory, the basis and foundation of nonlinear dynamics, is a tool19
that can be used for characterizing and modelling complex phenomena in nature such as rainfall20
data which has a higher variation coefficient [3]. Weather is a continuous, data-intensive,21
multidimensional, dynamic and chaotic process and these properties make weather prediction a22
big challenge as the chaotic nature of the atmosphere implies the need for massive23
computational power required to solve the equations that describe the atmospheric conditions24
[4]. Climate indeed varies nonlinearly too, but this has not prevented scientists from making good25
predictions using advance regression techniques. Science and technology has been applied to26
predict the state of the atmosphere in future time for a given location and this is very important27
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as it affects life on earth. Today, computational weather forecasts are made by collecting28
quantitative data about the current state of the atmosphere and using scientific understanding of29
atmospheric processes to numerically project how the atmosphere will evolve, but due to an30
incomplete understanding of the chaotic atmospheric processes, forecasts become less accurate31
as the range of forecast increases [5].32
This paper is focused on undertaking a detailed behavioral analysis of the rainfall in Katsina33
over the last twenty-six years so as to unveil its dynamics thereby characterizing the data for34
modelling and forecasting to boost the planning of agricultural activities in the nearest future.35

36
2. MATERIAL AND METHODS37

38
The behavioral analysis of daily rainfall in Katsina state will be undertaken in this research by39
applying the following techniques: statistical analysis of the data, trend and spectral analysis,40
and nonlinear analysis.41

42
2.1 Statistical Analysis43
Statistical analysis involves the computation of the arithmetic mean, variance and standard44
deviation, coefficient of variation, signal-to-noise ratio, range, kurtosis and skewness. Skewness45
is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the46
data are spread out more to the left of the mean than to the right. If skewness is positive, the47
data are spread out more to the right. The skewness of the normal distribution (or any perfectly48
symmetric distribution) is zero. The skewness, S of a distribution with mean and standard49
deviation is given as [6]:50 = ( )

(1)51
52

The parameter ( ) represents the expectation value of the quantity t. Kurtosis on the other hand53
is a measure of how outlier-prone (scattered and detached) a distribution is. The kurtosis of the54
normal distribution is 3 while distributions that are more outlier-prone than the normal distribution55
have kurtosis greater than 3; with distributions that are less outlier-prone have kurtosis less than56
3. The kurtosis, K of a distribution with mean and standard deviation is given as [6]:57 = ( )

(2)58
59

MATLAB statistics toolbox (R2014a) is used to achieve these computations.60
61

2.2 Trend Analysis62
In order to check the overall effect of greenhouse effect and global warming on the rainfall63
pattern in Katsina, trend analysis was carried out using the following statistical tools:64

i. the correlation coefficient of the rainfall data with time was computed to determine the65
strength of the linear relationship the daily rainfall data with time,66

ii. the monotonic increasing or decreasing trend was tested using the non-parametric67
Mann-Kendall test, and68

iii. the slope of a linear trend is estimated with the nonparametric Sen’s slope estimator.69
70

2.2.1 Correlation coefficient71
The Pearson product moment correlation coefficient R, measures the strength and the pattern of72
a linear relationship between two variables. It is mathematical given by [7]:73 = ∑ (∑ )(∑ )(∑ ) (∑ ) (∑ ) (∑ ) (3)74

R value ranges from –1 to +1, with +1 or –1 indicating a perfect correlation and a correlation75
coefficient close to or equal to zero indicating no relationship between the variables. A76
correlation greater than 0.8 is generally described as strong, whereas a correlation77
less than 0.5 is generally described as weak. While a positive correlation coefficient indicates an78

increasing trend, a negative correlation coefficient indicates a decreasing trend.79
80

2.2.2 Mann-Kendall analysis81
The nonparametric Mann-Kendall test is usually used to detect trends that are monotonic but82
not necessarily linear. The Mann-Kendall test statistic S is computed using the formula [8]:83
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= ∑ ∑ ( − ), (4)84
85

Where xj and xk are the daily rainfall values and time in days j and k, with j > k, respectively.86
The sign ( ) function is defined as [9]:87

88
1 − > 089 − = 0 − = 0 (5)90

-1 − < 091
92

A very high positive value of S (>120) is an indicator of an increasing trend, while a93
very low negative value indicates a decreasing trend [10]. The Man-Kendall parameter S and its94
variance VAR(S) are used to compute the test statistic Z as follows [8]:95

96 ( ) > 097 = 0 = 0 (6)98 ( ) < 099
100

The Z statistic follows a normal distribution trend, is tested at 95% (α=0.05) level of significance101
( = 1.96) and its value describes the trend as [11]:102

i. decreasing if Z is negative and the absolute value is greater than the level of103
significance,104

ii. increasing if Z is positive and greater than the level of significance, and105
iii. no trend if the absolute value of Z is less than the level of significance.106

107
2.2.3 Sen’s slope estimator108
The Sen’s test estimates the true slope of an existing trend (i.e. change per day). The Sen’s109
method is used in cases where the trend can expressed as linear:110 ( ) = + (7)111
Where Q is the slope, B is a constant and t is time.112

113 , = (8)114

115
For n values xj in the time series there will be as many as116 = ( ) slope estimates Qi of which the median value gives the Sen’s estimator, Q. In order to117

get an estimate of the intercept B in equation (7), the n values of differences − are118
calculated and the median of these values gives an estimate of B [12].119

120
2.3 Spectral Analysis121
Spectral analysis is another simple way of characterizing attractors and is often used to122
qualitatively distinguish quasi-periodic or chaotic behavior from periodic structure and also to123
identify different periods embedded in a chaotic signal. Chaotic signals are characterized by the124
presence of wide broadband noise in their power spectrum, with a continuum of frequencies in125
their oscillations [13]. The power spectrum of a signal shows how a signal’s power is distributed126
throughout the frequency domain [14]. To convert the rainfall time domain series to frequency127
domain, the fast Fourier transform (fft) was applied. The power per Hertz is obtained from the128
square of the absolute value of the fast Fourier transform [15]:129 / = { [ ( )]} (9)130
The periodicity of the rainfall in Katsina was estimated from the power spectrum as the reciprocal131
of the dominant frequency (peak or fundamental frequency) of the power spectrum plot [16].132

133
2.4 Nonlinear Analysis134
The tools of nonlinear analysis used to characterize the daily rainfall data in this paper include:135
time series plot, phase portrait and Poincaré map, correlation dimension, Lyapunov exponents136
and Kolmogorov-Sinai entropy.137

138
2.4.1 Time series plot139
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Time series plot involves plotting the daily, monthly and yearly rainfall data and observing the140
trend. If they exhibit irregular, aperiodic or unpredictable behavior, then it could be described as141
random or chaotic. On the other hand if they exhibit a regular repeating pattern, then the system142
exhibits either a periodic and quasi periodic behavior [17].143

144
2.4.2 Phase portrait145
A phase portrait is a two-dimensional visualization of the phase-space. It displays the attractor146
and unveils its dynamics. Chaotic systems exhibit distinct shapes, periodic systems exhibit limit147
cycle (closed curves) while quasi periodic systems exhibit torus shape [13].148

149
2.4.3 Poincaré maps150
The Poincaré map is that it represents a slice through the attractor of the dynamical system and151
it is a stroboscopic view of the phase portrait of the dynamical system; hence it can also be152
referred to as a stroboscopic map [18]. Poincaré maps of periodic systems shows a single point,153
quasi-periodic systems shows a closed curve while chaotic systems show distinct points. A154
summary of the different dynamical systems and their characteristics is shown in Table 1 [13].155

156
Table 1. Different Dynamic Systems and the Structure of their Power Spectrum,157

Phase Portraits and Poincaré Maps158
159

Solution
of
Dynamical
System

Fixed Periodic Quasi
Periodic

Chaotic

Power
spectrum

- Single
dominant
peak

Dominant
peak and
other sub-
peaks

Broad band noise
with continuum  of
frequencies; may
peak at f

o
= 0

Phase
portrait

Point Closed
Curve

Torus Distinct Shapes

Poincaré
Maps

- Point Closed
Curve

Space filling or
Ergodic points

160
2.4.4 Correlation dimension161
The correlation dimension gives a measure of the complexity or number of active degrees of162
freedom excited by the system [19]. The Grassberger-Procaccia algorithm is used to compute163
the correlation dimension in this work using the correlation integral. For any set of M points in164
an m-dimensional phase space, the correlation integral or correlation sum (spatial correlation of165
points) C(r) is computed by the equation [20]:166 ( ) = lim → ( ) ∑ ∑ − ⃗ − ⃗167
(10)168
H(x) is the Heaviside function and ‖… ‖ is the Euclidean norm, while r is the scaling parameter.169
The correlation integral measures the fraction of the total number of pairs of phase points that170
are within a distance r from each other. For chaotic time series, the correlation integral power law171
for small values of r takes the form:172 ( )~ (11)173
Thus, the correlation dimension ν is given by:174 = lim → lim → ( )175
(12)176
Hence, a log-log graph of the correlation integral versus the scaling parameter, r will yield an177
estimate of the correlation dimension ν, which is computed from the slope of a least-square fit of178
a straight line over a large length scale of r. For chaotic systems, the correlation exponent curve179
for a range of values of embedding dimension (say m = 2 to 30) usually saturates at values180
beyond its actual embedding dimension. The saturation value of the correlation exponent plot181
gives the correlation dimension and the value of the embedding dimension at which the182
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saturation of the correlation exponent curve occurs generally provides an upper bound on the183
number of variables sufficient to model the dynamics [17]. The dynamics of different systems is184
described in Fig. 1 [3]:185

186

187
188
189

Fig. 1. Characterization of systems based on their correlation exponent plot190
191

Furthermore, If the calculation of correlation dimension leads to a finite integer value, the192
underlying dynamics of the system is considered to be dominated by some strong periodic193
phenomena whereas if the value is fractional (and usually small) then the system is considered194
to be dominated by low dimensional deterministic chaotic dynamics governed by the geometrical195
and dynamical properties of the attractor [21].196
2.4.5 Lyapunov Exponents197
Lyapunov exponents (λ) are the average rates of exponential divergence or convergence of198
nearby orbits in phase space and is a fundamental property that characterizes the rate of199
separation of infinitesimally close trajectories [22]. It is mathematical given by:200 ( ) = .∆ . . ∑ ln ( )( ) (13)201

202
∆t is the sampling period of the time series, M is the number of reconstructed phase points and203
dj(i) is the distance between the ℎ pair of nearest neighbors after i discrete-time steps, i.e., i.∆t204
seconds. The nearest neighbor, ̂ , is found by searching for the point that has the least distance205
to the particular reference point, . This is expressed as:206

dj (0) = min − ̂207
(14)208

209
dj(0) is the initial distance from the ℎ point to its nearest neighbor ̂. A positive Lyapunov210

exponent indicates chaotic behavior, a negative value indicates a dissipative system i.e. a stable211
fixed point while a zero Lyapunov exponent indicates conservative system i.e. a periodic one or212
stable limit cycle [23]. The method used in this work to compute the largest Lyapunov exponent213
was developed by Rosenstein et al. in 1992 [24].214

215
2.4.6 Phase Space Reconstitution216
In order to effectively carry out nonlinear analysis, phase space reconstruction has to be done so217
as to draw out a multi-dimensional description of system in an embedded space called state218
space. The method of delays was thus employed to achieve this [22],[25]. For a generalized time219
series {x1, x2,…,xN}, the attractor can be reconstructed in a m-dimensional phase space of delay220
coordinates in form of the vectors:221 = [ , , , … , ( ) ] (15)222

223
τ is the time lag, and m is the embedding dimension. The time delay is evaluated in this work224
using the method of average mutual information (AMI) developed by Cellucci et al. in 2003 [26].225
In order to obtain the time delay, the value of the lag length at the first local minimum of the AMI226
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plot corresponding to the delay time of the time series [3],[17]. The minimum embedding227
dimension, m was computed using the method of “False Nearest Neighbors (FNN)” which was228
developed by Kennel et al. in 1992 [27]. By plotting the percentage of FNN against increasing229
embedding dimension values, a monotonic decreasing curve is observed and the minimum230
embedding dimension can be evaluated from the point where the percentage of FNN drops to231
almost zero or a minimum value.232
The mean period, of the data was computed as the inverse of the peak period of the fast233
Fourier transform. The mean period or periodicity P in a time series removes cyclic/seasonal234
variations in a time series data by seasonal differencing technique. The phase space235
reconstruction will not be properly achieved and the deterministic components of the data will not236
be adequately revealed if the data is not made stationary and this could lead to misleading237
results in the nonlinear analysis of the data [28].238

239
2.5 Study Area and Data Source240
Katsina state, also known as the home of hospitality, is located in the North-Western region of241
Nigeria. The state is located within the coordinates 12°15’ , 7°30’ and 12°25’ , 7°50’ E, and242
was created on 23rd September, 1987. It covers a total land area of 24,192 km2 with a population243
density of 160 /km2 and its landscape is largely dominated by the Sahel savannah vegetation.244
Katsina state experiences two dominant seasons: the rainy and dry season, with the Hausa-245
Fulani who are predominantly farmers being the largest ethnic group in the state [29]. The data246
used in this research was obtained from the Nigerian Meteorological Agency (NiMet) Abuja. It247
comprises of secondary data made up of daily average rainfall (mm) recorded in Katsina from 1st248
January, 1990 to 31st December 2015, a period of twenty-six years.249
3. RESULTS AND DISCUSSION250

251
The results of the behavioral analysis of rainfall pattern in Katsina is presented in this section.252

253
3.1 Results of the Statistical Analysis254
The statistics of daily rainfall (mm) is displayed in Tables 2:255

256
Table 2. Statistics of daily rainfall in Katsina257

258
Statistic Value

No. of data 9490

No. of zeros 8241 (86.8%)

Mean (mm) 1.594

Standard Deviation (mm) 6.525

Variance (mm) 42.574

Coefficient of Variation (cv) 4.093

Signal-to-noise ratio 0.244

Maximum value (mm) 156.00

Minimum value (mm) 0.00

Kurtosis 78.2994

Skewness 6.8979

259
The results in Table 2 show a generally low overall mean value of daily rainfall (1.59 mm) and a260
high variability ( = 4.09). Furthermore a kurtosis of 78.3 and Skewness of 6.9 (skew to the261
right) with a large amount of zeros (86%) in the data used indicates a sparse irregular distribution262
(high outlier-prone data) of rainfall in Katsina over the last 26 years. This is attributed to the fact263
that Katsina is located in the Sahel savannah region of Nigeria within the Sahara desert region,264
hence the limited and sparse amount of rainfall received in the town. Fig. 2. (a), (b), (c) and (d)265
shows time series plots of daily, monthly and yearly rainfall in Katsina.266

267
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Fig. 2. Time Series for: (a) Daily, (b) Monthly, and (c) Yearly (d) Differenced rainfall time269
series for Katsina from 1990-2015270

271
3.2 Trend Analysis272
The summary of the trend analysis of the converted annual rainfall data using the Mann-Kendall273
trend test, Sen’s slope estimator and Pearson’s correlation coefficient are displayed in Table 3274
and Fig. 3.275

276
Table 3. Summary of the Mann-Kendall analysis for annual rainfall in Katsina277

278
Variable Annual Rainfall (mm)
Pearson’s correlation coefficient (R) 0.5029

Kendall tau 0.3846

Mann-Kendell coefficient S 125

Z statistic 2.7332

Hypothesis test (h=1: significant, h=0: not significant) h = 1

Trend description (from R and Z values) Increasing trend
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Trend Significance Significant

279
280

281
282

Fig. 3. Annual Rainfall trend for Katsina using Sen’s Slope Model, = . − .283
(increasing trend)284

285
The trend analysis results in Table 3 (Mann-Kendall test) and Fig. 2 (Sen’s slope estimator)286
indicates that the trends of the annual rainfall in Katsina is significant as the Z-statistic computed287
(2.73) is greater than the z-value at the level of significance (1.96). This implies an increasing288
trend in the mean annual rainfall in Katsina state. Hence there could be an increased risk of289
occurrences of flooding and surface run-off/erosion in the nearest future.290

291
3.3 Results of Spectral Analysis292

293
The result of the spectral analysis of daily rainfall in Katsina from 1990 to 2015 is displayed in294
Fig. 4.295

296
297

Fig. 4. Power Spectrum of Rainfall in Katsina showing the Dominant Frequency298
299

The result of the spectral analysis displayed in Fig. 4 shows that the rainfall in Katsina has a300
single dominant peak and some smaller peaks indicating a quasi-periodic behavior with a mean301
annual cycle of 256 days rainfall over the last 26 years.302

303
3.4 Results of the Nonlinear Analysis304
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Fig. 5 shows the estimation of time lag using the method of average mutual information (AMI). A306
delay time of 6 days was calculated for the rainfall dataset. Fig. 6 on the other hand illustrates307
the determination of the optimum embedding dimension using the method of false nearest308
neighbors (FNN). The rainfall data for Katsina was found to have an embedding dimension of309
eleven ( = 5). The embedding dimension value obtained ( = 5) indicates that the rainfall in310
Katsina requires a maximum of 5 independent variables (degrees of freedom) to model its311
dynamics.312

313

314
Fig. 5. Estimation of time lag using the method of AMI (τ = 6 days)315

316
317

318
Fig. 6. Percentage of FNN for Rainfall in Katsina (m = 5)319

320
Fig. 7 and 8 show the phase portrait and Poincaré map for rainfall constructed using the time lag321
and embedding dimensions calculated. The phase portrait exhibits a sponge-like geometry of322
distinct shapes tending towards the origin (zero) while the Poincaré map shows scattered distinct323
points also tending towards an equilibrium point (attractor) indicating the presence of a324
dissipative-damped random cycles in the dynamics of the rainfall time series. These plotted325
phase points are concentrated at the origin due to the numerous zeros (86.8%) in the rainfall326
dataset which is as a result of the sparse distribution of rainfall in Katsina.327
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329
Fig. 7. Phase portrait of daily rainfall in Katsina330

331

332
333

Fig. 8. Poincaré map of daily rainfall in Katsina334
335

The correlation dimension was then calculated for the rainfall datasets using the time lag τ =6336
and for increasing embedding dimensions, m, from 2 to 50. Fig. 9 is a plot showing the337
relationship between the correlation function C(r) and the radius r (i.e. log ( ) versus log ) for338
increasing embedding dimension m while Fig. 10 shows the relationship between the correlation339
exponents and the embedding dimension values m. It is observed from Fig. 10 that the340
correlation exponent values keep increasing with increase in embedding dimension and thus341
failure of the plot to saturate indicates a likely stochastic behavior in the daily rainfall time series.342
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Fig. 9. (a) log-log plot showing the relationship between the Correlation Integral C(r) and349
the Scaling Radius r for different values of embedding dimension for daily rainfall in350
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374
The Lyapunov spectrum obtained from the computation of the Lyapunov exponent for daily375
rainfall in Katsina using Rosenstein’s algorithm is displayed in Fig. 11 while the details of the376
Lyapunov exponents for increasing values of embedding dimension is presented in Table 4.377
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The Lyapunov spectrum obtained from the computation of the Lyapunov exponent for daily381
rainfall in Katsina using Rosenstein’s algorithm is displayed in Fig. 11 while the details of the382
Lyapunov exponents for increasing values of embedding dimension is presented in Table 4.383

380

UNDER PEER REVIEW



12

379
Fig. 11. The Lyapunov Spectrum for the Estimation of the Largest Lyapunov Exponent for380
Rainfall in Katsina from 1990-2015.381

382
Table 4. The Lyapunov exponent values from m=1 to 5383

384
Embedding
dimension

(m)

Lyapunov exponent
(λ)

1 -0.001964050055998
2 -0.002785724113455
3 -0.002077999517956
4 -0.001332489877303
5 -0.001157108333026

*Largest Lyapunov exponent, λ = -0.001157/day385
386

The largest Lyapunov exponent for the rainfall time series in Katsina was computed and found to387
be -0.001157/day. The negative near zero values of the Lyapunov exponent indicate that the388
daily rainfall in Katsina over the last 26 years exhibits a stable fixed point (dissipative) behavior389
which is likened to a critically damped oscillator as the values tend towards an equilibrium point390
(zero) at certain irregular intervals. This also indicates that the daily rainfall in Katsina is sparse391
and stochastic but has relatively fair predictability.392

393
4. CONCLUSION394

395
In this paper, a behavioral analysis of rainfall pattern in Katsina from the year 1990-2015 was396
carried out. The outcome of this analysis indicates that the rainfall in Katsina exhibits an397
increasing trend with high variance and stochastic behavior. A maximum of five (5) independent398
variables is required to model the daily rainfall in Katsina while the rainfall is sparse and has399
good predictability in the next couple of days. It is recommended that adequate measures such400
as irrigation and flood control measures like building of more drainages and dams to curb the401
menace of irregular rainfall, flash floods and other effects of global warming and climate change402
which are eminent in the northern part of Nigeria.403

404
405
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