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We investigates the basic problem of the interaction of a single quantised mode of the radiation field,

modelled as quantised harmonic oscillator (HO) with a laser pulse of chirped Gaussian line-shape. The

average photon number and the transient emitted spectrum are calculated analytically in terms of the

error function of complex argument. The spectral peaks of the line structure of the emitted radiation are

examined for different system parameters and initial states of the HO.

1.. INTRODUCTION

The field of quantum optics is concerned with quantum properties of radiation-matter and radiation

-radiation interaction. The simplest model of matter is a single atom of 2-level structure, whilst the

simplest wave radiation is modelled as a simple harmonic oscillator (HO).

The model of a laser pulsed- driven- single quantised HO have been examined previously for different

shapes of laser pulses. Specifically, the Fourier transform (FT) transient scattered spectrum of the HO

was studied in the case of multi-mode rectangular pulse [1] and both the FT and wavelet spectra was

studied in the case of sin2-pulse shape [2-4].

Here, we extend the above investigation (HO ⊕ pulsed laser) to the case of a chirped Gaussian laser

pulse. The paper is presented as follows: in sec 2, we present the corresponding Heisenberg equations of

motion and their solutions in the case of chirped Gaussian pulse. In sec 3 and 4 we calculate and examine

computationally the average photon number and the scattered spectrum of the HO, respectively. A

summary is given in sec 5.

2.. THE MODEL EQUATIONS

(a) Exact solutions

The Hamiltonian model representing the interaction of a single quantised (non-dissipative) HO with

a (classical) laser pulse within the RWA is of the following form [2] (in units of ~ = 1);

H = ω0â
†â+ Ωo(f(t)â†e−iωLt + f∗(t)âeiωLt) (1)

where ω0 is the HO frequency, ωL is the oscillating frequency of the pulse envelope, f(t) is the pulse

shape function and Ω0 is the pulse strength (Rabi frequency).

The first term of the Hamiltonian (1) is the unperturbed Hamiltonian of the HO, while the rest of
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terms represent the interaction Hamiltonian between the HO and the driving pulse.

Heisenberg equations of motion for the operators â and â† according to the Hamiltonian (1) are of

the form,

˙̂a = −iωoâ− iΩof(t)e−iωLt

˙̂a† = iωoâ
† + iΩof

∗(t)eiωLt
(2)

The formal operator solutions of (2) for arbitrary pulse shape f(t) are given by ,

â(t) = â(to)e
−iωot − iΩoe−iωot

t∫
to

f(t′)e−i∆t
′
dt′

= e−iωotÂ(t). (3a)

â†(t) = eiωotÂ†(t) (3b)

where,

Â(t) = â(to)− iΩoI(t) (4)

I(t) =

t∫
to

f(t′)e−i∆t
′
dt′ (5)

and ∆ = (ωL − ωo) is the frequency detuning parameter, and to is the initial time (which depends

on the switching of the pulse).

(b) Case of chirped Gaussian pulse.

The pulse shape in this case takes the form ,

f(t) = e−(1+ic)( t
τo

)2 (6)

Where C is the chirp parameter, τo is the
1

2
-width of the pulse. For C 6= 0, f(t) has the complex
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form,

f(τ) = fr(τ) + ifi(τ); τ =
t

τo
(7a)

Where,

fr(τ) = e−τ
2

cos(cτ2) (7b)

fi(τ) = e−τ
2

sin(cτ2) (7c)

Effect of the chirp parameter to stretch the pulse τ in an oscillatory pattern-as seen at fixed values

of C = ±2 (Fig 1a) and C = ±6-(Fig 1b). Increasing the value of C = 6 induces wave oscillations,

while the negative value of (C) is to change the phase of the oscillations in the imaginary part

function fi(t) (see insets of Fig1a,b). For fixed values of τ , both fr(C), fi(C) are purely sinusoidal

functions of C.

爀

椀

쐃

䌀㴀㈀

挀㴀ⴀ㈀

昀⠀쐃⤀

⠀愀⤀

昀⠀쐃⤀

⸀⸀⸀

Fig.1a: The real and the imaginary parts of fr(τ), fi(τ) against (τ) at fixed value of C = 2.. Inset shows fi(τ)
for c = −2

Now, due to the smooth switch-on of the Gaussian pulse we take to → −∞ (unlike the sharp switch-on

of other pulses, like rectangular, at to = 0). Thus, the expression for I(t), eq(5) with f(t) given by (6) is
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Fig.1b: As Fig.1a but for C = 6.

expressed in terms of the error function erf (z) of complex argument,

I(t) =

t∫
−∞

f(t′)e−i∆t
′
dt′ (8a)

=
τo
√
π

2
√
a
e
b2

a (erf (C1t+ C2) + 1) (8b)

where a = 1 + iC , b = i∆τo
2 , C1 =

√
a∗

τo
, C2 =

b∗√
a∗

and the error function erf (z) = 2√
π

z∫
0

e−t
2

dt.(see,

e.g.[5]).

3.. AVERAGE PHOTON NUMBER

The HO photon number operator n̂(t) ≡ â†(t)â(t) using eq(3) is given by,

n̂(t) = â†(to)â(to) + Ω2
o|I(t)|2 − iΩoâ†(to)I(t) + iΩoâ(to)I

∗(t) (9)
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Where, I(t) is given by (8) with to = −∞. The averaged photon number n̄(t) = 〈n̂(t)〉 of the HO, in the

general case of initial coherent state |α〉 is given by,

n̄α(t) = 〈α|â†(to)â(to)|α〉+ Ω2
o|I(t)|2 − iΩo(〈α|â†(to)|α〉I(t)− c.c.) (10)

= |α|2 + Ω2
o|I(t)|2 + 2ΩoIm(α∗I(t)) (10a)

The first term in (10) represents the initial average photon number of the HO 〈â†(to)â(to)〉 = |α|2, while

the second term in Ω2
o represents the intensity of the (classical) pulse. The last term represents the change

in the photon number n̄(t) due to the exchange of initial amplitude < â†(to) >= α∗ of the HO with the

driving pulse.

Two special cases of initial state for the HO are:

(i) The zero (vacuum) number state |0〉, 〈â†(to)â(to)〉 = 0, 〈â†(to)〉 = 0, and (10a) reduced to ,

n̂o(t) = Ω2
0|I(t)|2. (10b)

(ii) In the number state |n〉 (n 6= 0), 〈â†(to)â(to)〉 = no, 〈â†(to)〉 = 0, and (10a) reduced to,

n̄no(t) = no + Ω2
o|I(t)|2 (10c)

The computational of plots of the normalised average photon numbers n̄o(t), n̄no(t), n̄α(t), eqs(10b, c, a),

are shown in fig(2-4).

(i) Initial vacuum state.

At exact resonance (∆ = 0) -Fig.2a- and for C = 0-the normalized average photon number

n̄o(τ) is independent of the pulse strength Ω2
o and reaches its stationary maximum value

monotonically around the normalised time τ = 2. For non-zero chirp |C| = 10, the reach to a

lesser value of the steady state is oscillatory within the period (0, 2). In the off resonance case

(∆′ = ∆τo = 4)- Fig.2b- and for C = 0, no(τ) has essentially a Gaussian profile. For τ > 0

and positive C = 4, the amplitude of oscillations is reduced, while for negative C = −4, the

approach to the steady value is much less oscillatory. For ∆, C of the same (opposite) sign the

results are the same as the full (dotted) lines.The steady state value is less reduced for C = 4
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compared with negative C = −4.

(ii) Initial number state , no = 1,Ω′o = 10.

In the resonance case (∆ = 0)- Fig.(3a) and for C = 0 the normalised average photon number

n̄no(τ) has a monotonic behaviour similar to Fig.2a of the vacuum state. For non-zero positive

chirp, n̄no(τ) has a peak around τ = 0 with prominent oscillations for τ > 0, while for negative

chirping reduced oscillations show only for τ > 0. For ∆ = 4-Fig.3b- and C = 0, the profile is

a main peak at τ = 0 with two small symmetrical side peaks. With positive C = 4, the small

peak for τ < 0 is flattened while the peak for τ > 0 switches to a decaying oscillatory pattern.

For C = −4, there is dimensioning two peaks for τ < 0, while for τ > 0 the approach to the

long time value is much less oscillatory, compared with the positive C = 4. For ∆ = −4, the

full (C = 4) and the dotted (C = −4) lines are exchanged.

(iii) Initial coherent state , α = 5, Ω′o = 10.

For real amplitude (θ = 0) of the coherent parameter α and at exact resonance ∆ = 0- Fig.4a-

the monotonic profile of the normalized average photon number n̄α(τ) in the case C = 0 turns

to asymmetric oscillatory behaviour with respect to τ = 0 for positive C. For negative C we

have the same behaviour but with a lesser amplitude of oscillations. In the off-resonance case

(∆ = 4)-Fig.4b- for C = 0 the profile has the shape of ”Mexican hat”. This turns for C = 4

to oscillatory behaviour for τ > 0 and fading oscillation for τ < 0. The opposite behaviour is

obtained for C = −4. For ∆ = −4-Fig.4c- and for C = 0, the profile is an inverted Mexican

hat which turns to asymmetric profile for C = 4 with decaying oscillatory for τ < 0 and much

reduced oscillation for τ > 0 .The behaviour for τ ≶ 0 is reversed for C = −4.

In all the above three initial states of HO, similar signs for (C,∆) leads to a lesser steady value of n(τ),

as compared with opposite signs of (C,∆).
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Fig.2a: Normalised average photon number for n̄o(τ) = 〈n̄(τ)〉/〈n̄(τ〉)max for the initial vacuum state at
∆′ = 0 and for |C| = 0, 10.

开

Fig.2b: Same as Fig.2a but for ∆′ = 4 and C = 0,±4.

4.. TRANSIENT SCATTERED SPECTRUM

Information about the scattered radiation due to the interaction of the HO with the driving pulse is

achieved through the transient spectrum function. This is given by (e.g.[2]),
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Fig.3a: . The same as Fig.2a but for n̄no(τ) in the initial number state with no = 1,Ω′o = 10, |C| = 0, 10, ∆′ = 0

开

Fig.3b: Same as Fig.2b but for the initial number state no and for ∆′ = 4, C = 0,±4.

S(t,D,Γ) = 2Γ

t∫
−∞

dt1

t∫
−∞

dt2e
(−Γ+iD)(t−t1)e(−Γ−iD)(t−t2)〈Â†(t1)Â(t2)〉 (11)

where D = ω − ω0 is the frequency mismatch between the frequency (ω) of the instrument (photon

detector) and the HO frequency (ωo), and Γ is the detector’s width. The function 〈Â†(t1)Â(t2)〉, with Â(t)
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Fig4a: Same as Fig.2a but for n̄α(τ) in the initial coherent state with θ = 0, α = 5,Ω′o = 10

开

Fig.4b: Same as Fig.4a but with ∆′ = 4, C = 0,±4

given by (4) and (5), is the auto-correlation function for the shift (creation and annihilation) operators.

From (4) and its conjugated, we have

〈Â†(t1)Â(t2)〉 = 〈â†(to)â(to)〉+ Ω2
oI
∗(t1)I(t2)− iΩo〈â†(to)I(t2)〉+ iΩo〈â(to)I

∗(t1)〉 (12)

Where I(t) is given by (8).
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Fig.4c: Same as Fig.4a but with ∆′ = −4, C = 0,±4

Inserting (12) into (11), we have the following form for the spectrum,

S(t,D,Γ) = 2Γe−2Γt[n(to)|J1(t)|2 + Ω2
o|J2(t)|2 − 2ΩoIm(ā(0)J∗1 (t)J2(t))] (13)

where, n̄(to) = 〈a†(to)a(to)〉, ā(to) = 〈â(to)〉, and the quantities J1,2(t) are given by,

J1(t) =

t∫
−∞

e(Γ−iD)t′dt′ =
e(Γ−iD)t

Γ− iD
. (14a)

J2(t) =

t∫
−∞

e(Γ1−iD)t′I∗(t′)dt′ (14b)

=
τo
2

√
π

a∗
e
b2

a∗

t∫
−∞

(
erf (
√
a
t′

τo
+

b√
a

) + 1

)
e−(Γ−iD)t′dt′

=
τo
√
π

2
√
a∗
e
b2

a∗ (A1(t)− J1(t)) (15a)

Where,

A1(t) =
1

Γ− iD
e−dC2

[
edC2e(Γ−iD)terf (C1t+ C2)− e d

2

4 (erf (c1t+ c2 −
d

2
) + 1)

]
(15b)

With, d =
Γ− iD
C1

, C1,2, a, b are given below eq.(8b).

Effect of pulse shape, through I∗(t) in J2(t), is shown in the last two terms in (13), While the first term
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is only associated with the initial average photon number, n̄(to), of the HO.

We consider the three cases of initial conditions of the HO.

(a) The HO is initially in the zero (vacuum) number state |0〉, n̄(to) = 0, ā(to) = 0 , so (13) is reduced

to,

So(t,D,Γ) = 2ΓΩ2
oe
−2Γt|J2(t)|2 (16a)

(b) The HO is initially in the number state |n〉(n 6= 0),

n̄(to) = no, ā(to) = 0, and (13) is reduced to ,

Sno(t,D,Γ) = 2Γe−2Γt(no|J1(t)|2 + Ω2
o|J2(t)|2) (16b)

(c) The HO is initially in the coherent state |α〉, n̄(to) = |α|2, ā(to) = α, and (13) is of the general form,

Sα(t,D,Γ) = 2Γe−2Γt[|α|2|1(t)|2 + Ω2
o|J2(t)|2 − 2ΩoIm(αJ∗1 (t)J2(t))] (16c)

The computational plots of the normalised spectra So,no,α(D′) =
So,no,α(t,D,Γ)

max(S(t,D,Γ))
, eqs(16), are shown in

the following Figs.(5-7).

(i): Initial vacuum state

For observation time τ = 0.7π and for pulse 1
2 -width τ ′o = 0.4, C = 0 and increasing detuning

∆′ = 0, 9, 15, the normalised spectrum So(D
′) in Fig.5a shows that the symmetric single peak at

D′ = 0 has asymmetric structure, which, with larger ∆′ it develops to a broader peak at D′ ' ∆′.

For non-zero |C| = 1 and for larger ∆′ = 15, the central Lorenzian at D′ = 0 is accompanied with

enhanced oscillation of larger amplitude for positive C, compared with negative C (Fig.5b).These

oscillations disappear for larger |C| = 3.

(ii): Initial number state

The effect of the initial number state (no = 1) on the normalised spectrum Sno(D
′) is best seen for

Ωo � no, C = 5 in Figs.6. For early observation, τ = 0.1π and pulse 1
2 -width τ ′o = 1, the spectrum

has a distorted broader peak and flattened top to the left (right) of D′ = 0 for C ≷ 0, respectively.

With increased detuning ∆′, the central Lorentzian structure at D′ = 0 gets narrower with fading

oscillations due to the chirp parameter, C 6= 0.
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(iii): Initial coherent state

For observation time τ ′ = 0.3π and τ ′o = 0.3, the normalised spectrum with the initial coherent

state Sα(D′) in Fig.7 shows that in the off-resonance case (∆′ 6= 0) there is an asymmetric hole

burning structure that depends on the sign of the chirp parameter C.
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Fig5a: The normalised spectrum So(D
′) in the initial vacuum state for τ = 0.7π, τ ′o = 0.4, c = 0 and different

∆′ = 0, 9, 15.
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Fig5b: Same as Fig.5a but for C = 1,−1.
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Fig6: The normalised spectrum Sno(D′) in the initial number state for
τ = 0.1π, τ ′o = 1, |C| = 5, no = 1,Ω′ = 10 and different ∆′ = 0, 9, 15.
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Fig7: The normalised spectrum Sα(D′) in the initial coherent state for
τ = 0.3π, |∆′| = 5, 8, 12, τo = 0.3, α = 1, θ = 0.5π, |C| = 3.

5.. SUMMARY

The model of a single quantized harmonic oscillator (HO) coupled with a single chirped Gaussian laser

pulse is examined analytically and computationally. This concerns:

(i) The average photon number n̄(t) of the HO (related to its energy), and

(ii) The transient scattered radiation spectrum S(t,D,Γ).
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Exact expressions of n̄(t), S(t,D,Γ) are obtained in terms of the error function of complex argument and

for arbitrary initial state of the HO. The system parameters (pulse strength, frequency detuning, chirp

parameter, initial HO state) induce asymmetry and oscillatory structure in the spectrum.
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