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Abstract
Aims/ objectives: This paper studies the impact of the generally parabolic law of nonlinearity on the
evolution of the energy of super-sech soliton dynamics.
Study design: generally parabolic law of nonlinearity terms study.
Place and Duration of Study: Department of Physics, Faculty of Sciences and Technology(FAST),
University of Abomey Calavi, Bénin. between Febuary 2018 and January 2019.
Methodology: Variational approach, namely, the Lagrangian Variational Method (LVM) is presented.
The different results are obained using standard fourth order Runge-Kutta method for integration of
the system of ordinary differential equation systems.
Results: Dynamics of the different parameters (amplitude, center position, pulse width, chirp,
frequency and phase) has been presented with respect to propagating distance.
Conclusion: This study reveals that the generally parabolic law of nonlinearity terms don’t affect the
energy of the system but influence the pulse phase.
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1 Introduction
The metamaterial is a new type of microstructured material which has been extensively used and
studied during the recent years. Metamaterials are artificial composite structures with both negative
permittivity and negative permeability. They also have fascinating physical properties and spectacular
uses [Veselago (1968); Pendry (2000); Shalaev (2007); Zharova (2005); Veljkovic (2017, 2015);
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Biswas (2017c, 2014a,b); Green (2008); Solymar (2009)]. Metamaterials are an emerging technology
with applications in a range of diverse areas. Metamaterials are artificially engineered materials with
properties not available in natural systems such as negative permeability and permittivity, display
anomalous behaviour, such as negative refraction, superlensing, backward wave propagation and
reverse Doppler shifting. Consequently the are many applications including energy harvesting, objet
cloaking, high data rate communications, sensors and detectors, imaging, anti-vibration, noise reduction,
seismic protection and antennae [Steve (2015)]. Metamaterials can either be used to improve the
performance of existing applications. Nowadays, it is possible to use this material as waveguide in
order to optimize the data transmission. This is precisely the framework of the present research. This
research aims to study the dynamics of a soliton pulse, super-sech soliton which is propagated in
a metamaterial, in order to assess the impact of the generally parabolic law of nonlinearity on the
pulse profile along its path in the metamaterial. The dynamics of solitons in optical metamaterials is
governed by the model [Agrawal (1989); Biswas (2014b); Douvagai (2017); Faroutan (2018); Zhou
(2017a, 2014b); Veljkovic (2017, 2015)]:

iqz + aqtt + b|q|2q = iαqt + iλ(|q|2q)t + iν(|q|2)tq (1.1)

+θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt

This equation was recently used by Douvagai et al. where they showed an additional nonlinear term.
These last ones used the complex envelope ansatz method and the F-expansion method to solve
the generally nonlinear Schrödinger equation (GNLSE) with an additional parabolic law nonlinearity.
Bright and dark soliton soliton solutions are obtained [Douvagai (2017)].

iqz + aqtt + b(|q|2 + σ|q|4)q = iαqt + iλ(|q|2q)t + iν(|q|2)tq (1.2)

+θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt

Recent work by Biswas et al. has taken this additional term into account [Biswas (2018)]. Similarly,
Foroutan et al. studied disturbances of the optical soliton in a metamaterial using two approachs:
the extented trial equation method and the improved G’/Gexpansion method. The bright, dark and
singular soliton are retrieved in this research [Faroutan (2018)]. The study equation is:

iqz + aqtt + (b1|q|−4 + b2|q|2 + b3|q|4)q = iαqt + iλ(|q|2q)t + iν(|q|2)tq (1.3)

+θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt

This equation is the nonlinear Schrödinger equation with an additional anti-cubic nonlinear term. In
this work, we propose to solve by the Lagrangian method the equation (1.2) with generally parabolic
law of nonlinearity [Biswas (2017c); Cai (2010); Fujioka (2011); Saha (2013); Zhou (2017a,b, 2014a)].
The objective of such a study would be to exhibit the contribution of these terms on the dynamics of
the optical soliton. These terms appear in the metamaterial context when considered as centrosymmetric
materials and high order polarization vectors are taken into account in the Maxwell equation. The new
equation is therefore given by (1.4) and is named the general parabolic law nonlinearity equation.

iqz + aqtt +

n∑
k=1

bk|q|2kq = iαqt + iλ(|q|2q)t + iν(|q|2)tq (1.4)

+θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt

In eq.(1.4), the unknown or dependent variable q(z, t) represents the wave profile, while z and t are
the spatial and temporal variables respectively. The first and second terms are the linear spatial
evolution terms and the group velocity dispersion, while third term introduces the generaly parabolic
law of nonlinearity, fourth, fifth and sixth terms represent inter-modal dispersion, self steepening and
the nonlinear dispersion respectively. Finally, the last three terms with θk for k = 1, 2, 3 appear in the
context of metamaterials [Veljkovic (2017)].
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2 Lagrangian Variational Method
The main idea of LVM is based on extending Euler-Lagrange least-action principles to dissipative
systems. LVM is used to express the generalized NLSE in terms of fondamental parameters (collective
variables). This consists in finding the Lagrangian of NLSE, then choosing any convenient trial
function f (ansatz) assumed to best approximate the behaviour of the pulse in order to derive the set
of variational equations [Adrian (2008); Biswas (2018, 2017a); Cheng (2009); Edah (2014); Moubissi
(2001); Nakkeeran (2005)]. Let’s write the NLSE (1.4) in the form

iqz + aqtt +

n∑
k=1

bk|q|2kq = ζ (2.1)

where

ζ = iαqt + iλ(|q|2q)t + iν(|q|2)tq + θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt (2.2)

is considered as a perturbation term. Consider the equation (2.1) without perturbation term (ζ = 0)
and look for the solution q on the form

q(z, t) = u(z, t) + iv(z, t) (2.3)

where u and v are real functions. Substituting (2.3) in (2.1), one obtains

uz + avtt +

n∑
k=1

bk(u
2 + v2)kv = 0 (2.4)

− vz + autt +

n∑
k=1

bk(u
2 + v2)ku = 0 (2.5)

The equations (2.4) and (2.5) can be deduced respectively from Euler-Lagrange equations given by

∂L0

∂v
− ∂

∂z

(
∂L0

∂vz

)
− ∂

∂t

(
∂L0

∂vt

)
= 0 (2.6)

∂L0

∂u
− ∂

∂z

(
∂L0

∂uz

)
− ∂

∂t

(
∂L0

∂ut

)
= 0 (2.7)

where the Lagrangian L0 is given by:

L0 =
1

2
(uzv − vzu) +

n∑
k=2

bk−1

2k

(
u2 + v2

)k − a

2

(
u2
t + v2t

)
(2.8)

When we express respectively u and v as follows: u = 1
2
(q + q∗); v = i

2
(q∗ − q), the Lagrangian L0

can be rewritten as follows:

L0 =
i

4
(qzq

∗ − q∗zq) +
n∑

k=2

bk−1

2k
|q|2k − a

2
| qt |2 (2.9)

The averaged Lagrangian of equation without right hand side is defined as:

L =

∫ +∞

−∞
L0dt (2.10)

. Then

L =

∫ +∞

−∞

[
i

4
(qzq

∗ − q∗zq) +
n∑

k=2

bk−1

2k
|q|2k − a

2
| qt |2

]
dt (2.11)
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3 Super-sech Parameter Dynamics

The ansatz function f that we assume in this paper is the super sech soliton [Veljkovic (2017)]:

f = X1sech
m

[
t−X2

X3

]
exp

[
i

(
X4

2
(t−X2)

2 +X5(t−X2) +X6

)]
; (3.1)

where X1 represents the amplitude of the pulse, X2 the temporal position, X3 the width, X4 the chirp,
X5 the frequency and X6 the phase. m is the parameter of the super-sech. In this paper, m is set
equal to 2. Substituting q = f in (2.11), one obtains:

L = L1 +
n∑

k=2

bk−1

2k

∫ +∞

−∞
sech2k

[
t−X2

X3

]
dt (3.2)

where

L1 =
2

3
X2

1X3X5Ẋ2 +
6− π2

36
X2

1X
3
3 Ẋ4 −

2

3
X2

1X3Ẋ6

− a

90

X2
1

X3
(48 + 60X2

3X
2
5 − (30− 5π2)X4

3X
2
4 ) (3.3)

so for n = 6, the average Lagrangien is:

L =
2

3
X2

1X3X5Ẋ2 +
6− π2

36
X2

1X
3
3 Ẋ4 −

2

3
X2

1X3Ẋ6 +
8

35
b1X

4
1X3

− a

90

X2
1

X3
(48 + 60X2

3X
2
5 − (30− 5π2)X4

3X
2
4 ) +

256

2079
b2X

6
1X3

+
512

6435
b3X

8
1X3 +

71

1251
b4X

10
1 X3 +

127

2948
b5X

12
1 X3 (3.4)

Ẋj , (j = 1, 2, 3, 4, 5, 6) stands for derivative of Xj with respect to z. Now, let’s come back to the full
equation (2.1) where the term of right-hand side ζ is non zero. When one applies the Euler-Lagrange
equations to (1.4), the variational equations are written as:

∂L

∂Xj (z)
− d

dz

∂L

∂Ẋj (z)
=

∫ +∞

−∞
ζf∗Xj

dt+ c.c (3.5)

Substituting the expression of the average Lagrangian given in equation (2.11) and the ansatz function
f in ζ, then performing the integration of the right-hand side of (3.5), we obtain the following set of
variational equations:
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Ẋ1 = −aX1X4 +
2X3

1X4

35(π2 − 6)

(
(24π2 − 235)θ1 + (24π2 − 157)(θ2 − θ3)

)
(3.6)

Ẋ2 = 2aX5 − 2α− 24

35

(
(3λ+ 2ν)X2

1 + (6θ1 + 2θ2 − 2θ3)X
2
1X5

)
Ẋ3 = 2aX3X4 −

4

35 (−6 + π2)

((
−307 + 36π2) θ1 + (−85 + 12π2) (θ2 − θ3))X2

1X3X4

Ẋ4 = −2aX2
4 +

672a

35(π2 − 6)X4
3

− 1

(π2 − 6)X2
3

(
144b1
35

X2
1 +

1024b2
231

X4
1 +

3072b3
715

X6
1

+
568b4
139

X8
1 +

1648b5
425

X8
1 +

288

35
λX2

1X5) +
4

175

X2
1

X4
3

(
(30π2 − 245)X4

3X
2
4 − 360X2

3X
2
5 − 3168

)
θ1

+
4

175

X2
1

X4
3

(
(30π2 − 245)X4

3X
2
4 − 360X2

3X
2
5 − 864

)
(θ2 + θ3)

Ẋ5 = −2 (X1X4 + 2X5) aX5

X1
+

4αX5

X1
− 4

35

X1X5

(
24π2X5 − 13X1X4 − 144X5

)
π2 − 6

+
4

35

X1X5

(
72π2X5 − 91X1X4 − 432X5

)
θ1

π2 − 6
− 48

35
(X1X4 − 3X5)λX1

+
4

35

X1X5

(
24π2X1X4 + 24π2X5 − 157X1X4 − 144X5

)
θ2

π2 − 6
− 48

35
(X1X4 − 2X5) νX1

Ẋ6 =
1

35

35aX2
3X

2
5 − 56a

X2
3

+
30

35
b1X

2
1 +

512

693
b2X

4
1 +

896

1365
b3X

6
1 +

497

834
b4X

8
1

+
309

500
b5X

10
1 +

1

350

X2
1

X2
3

(
(30π2 − 245)X4

3X
2
4 − 840X2

3X
2
5 + 928

)
θ1

− 2

35
(6λ+ 24ν)X2

1X5 +
1

350

X2
1

X2
3

(
(30π2 − 245)X4

3X
2
4 − 120X2

3X
2
5 + 928

)
(θ2 + θ3)

4 Results and Discussion

The numerical study of the evolution of the different parameters of the super-sech soliton momentum
has been made in order to appreciate the impact of the generally parabolic law nonlinearity terms on
the dynamics of such an pulse in a metamaterials. The different results are obtained using standard
fourth order Runge-Kutta method for integration of the system of ordinary differential equation systems
[Balac (2013)]. The dynamics of the system have been presented in Figure2 for the following parameter
values: a = 0.1, b1 = −20, α = −0.25, λ = 0.1, ν = 0.1, θ1 = −0.01, θ2 = −0.02, θ3 = −0.3,
b2 = 0.001, b3 = 0.1, b4 = 0.1, b5 = 2.
The analysis of this curve shows that the amplitude, the pulse width, the chirp and the frequency slip
vary periodically as a function of z. Indeed, it should be noted that the choice of the initial condition is
of paramount importance for such a study. These parameters have been chosen so that the super-
sech soliton propagates itself without attenuation. The variationals equations Ẋ1, Ẋ2, Ẋ3 obtained
are identical to those of Veljkovic et al. [Veljkovic (2017)]. This explains the resemblance of the
representative curves of the amplitude, the center position and the pulse width. The terms of high
order added to the equation don’t influence the evolution of these parameters (Ẋ1, Ẋ2, Ẋ3). On the
other hand the variationals equations: Ẋ4, Ẋ5, Ẋ6 are functions of the terms of high order introduced
and show dissimilarities. The different terms bk, k = 1, ...6, rather influence the parameters of the
pulse phase. This confirms the absence of these terms in the expression that describes the variation
of the energy (4.3). A particular attention has been carried on the energy of the system. The energy
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is defined as:

L =

∫ +∞

−∞
|q|2 dt. (4.1)

In the case of the super-sech soliton, one has:

E =
4X2

1X3

3
(4.2)

The evolution of the energy is given by:

dE

dz
=

[
θ1

(
192− 32π2

35(−6 + π2)

)
+ (θ2 − θ3)

(
−976 + 128π2

35(−6 + π2)

)]
X4

1X3X4. (4.3)

Figure 1: Variation of energy
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Figure 2: Variation of normalized pulse parameters( X1-soliton amplitude, X2-
center position of the soliton, X3-pulse width, X4-soliton chirp, X5-soliton frequency,
X6-soliton phase) with propagation distance

5 CONCLUSION
This paper presents lagrangian variational approach for super sech soliton dynamics in optical metamaterials.
The optical soliton dynamics is governed by the generalized nonlinear Schrödinger equation including
generally parabolic law of nonlinearity. This equation is solved by lagrangian approach where a six
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paramater (amplitude, center position, pulse width, chirp, frequency and phase) super-sech soliton
test function has been used to approximate the exact solution. Numerical simulations have made it to
represent these parameters graphically as a function of the propagation distance. This study reveals
that the generally parabolic law of nonlinearity terms don’t affect the energy of the system, but affect
the pulse phase. Finally, the analysis of these results revealed that the choice of the initial condition is
crucial for such a study. A comparison with other results gave excellent agreement. This work could
be proposed in telecommunication to optimize the transmission of information. The results with those
additional laws of nonlinearity will be reported in future.
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