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Biosynthesis and characterization of silver nanoparticles produced by plant 2 

extracts and its antimicrobial activity 3 

  4 

Abstract  5 

Solanum tubersum is the fourth most imperative plant in Egypt that is affected by numerous, 6 

fungi, viral and bacterial diseases. Bacterial and fungal isolates were collected and main 7 

pathogens were existing; Brown rot disease (Ralstonia solaniserum), soft root disease 8 

(Pectobacterium carotovora) and dry rot disease (Fusarium oxisporum). The green extracts of 9 

silver nanoparticles were prepared by means of aqueous extracts of three wild plants, Physalis 10 

peruviana (leaves, red and green fruits) (N1, N2 and N3), Solanum nigrum (fruit) (N4) and 11 

Moringa oliefera (leaves) (N5). The characterization of the biosynthesis of silver nanoparticles 12 

was achieved via SEM, TEM, FT-IR and X-RD, and the resulting nanoparticles were spherical, 13 

smooth and appeared to differ in size from 12 to 33 nm. The activity of the nanoparticle 14 

formulations was tested against the two bacterial isolates using agar diffusion method and one 15 

fungus using mycelial growth method. For the five formulations, N5 formulation exerted 16 

significantly potent antibacterial activity against R. solanacearum. Nevertheless, N1 formulation 17 

was the highest active one against P. carotovra. In addition, the antifungal activity indicated that 18 

N1 had the highest effect (EC50 = 687.03 mg/L) followed by N3 (EC50 = 981.61 mg/L) against F. 19 

oxysporium. Nanoparticles synthesized by wild plants could be used as safe alternatives to 20 

harmful microbicides. 21 

 22 

Keywords: Biosynthesis, Silver nanoparticles, Physalis peruviana, Solanum nigrum, 23 

Moringa oliefera, Plant extract, Antifungal, Antibacterial, SEM, TEM, FT-IR, XRD.  24 

 25 

1. Introduction 26 

 Solanum tubersum (family Solanaceae) is a worldwide-cultivated tuber‐bearing plant, 27 

which is the fourth main food crop in the world after rice (Oryza sativa), maize (Zea mays) and 28 

wheat (Triticum aestivum), in terms of both area cultivated and total production (Douches et al., 29 

1996). Potato does not require special growth conditions; it has been for a long time a major field 30 

crop in temperate regions, and increasingly in warmer regions (Haverkort, 1990). It is currently 31 

the second most important vegetable crop after tomatoes in Egypt, and Egypt is one of Africa's 32 

largest potato producers and exporters. Potato is susceptible to a number of diseases, including 33 

late blight caused by Phytophthora infestans, several viruses and bacterial wilt caused by 34 

Ralstonia solanacearum. Bacteria and Fungi are played a major role in the yield losses, 35 
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especially Erwinia the causal agent of soft rot in potato (Rashid et al. 2012) and Alternaria spp 36 

the causal agent of early blight of potato (Belosokhov et al., 2017). Ralstonia solanacearum, the 37 

causative agent of bacterial wilt in potatoes, is soilborne and can persist in soil for a long time in 38 

infected host plant debris or by colonizing potato volunteer plants, alternative hosts or even non-39 

host plants (Aliye et al., 2008). To infect a plant successfully, the pathogen first has to be able to 40 

penetrate and colonize host tissues and overcome active plant defense responses to induce the set 41 

of events finally that leads to disease symptoms. Additionally, Pectobacterium carotovra is a 42 

gram-negative phytopathogenic bacterium, which attack several of plants such as carrots, 43 

potatoes, cucumber, onions and tomatoes. It caused black leg (soft rot) to these plants during 44 

cultivation, transportation and storage (Leite et al., 2014). Pectobacterium caused destruction of 45 

the cell wall of the plants then cause death of the plants. Fusarium wilt diseases are responsible 46 

for important yield losses on numerous crops. Fusarium oxysporum causes dry rot, stem-end rot 47 

and wilt of potatoes (Solanum tuberosum L.). Fusarium dry rot is mainly a post-harvest disease 48 

and can become a major problem when infected potatoes are stored. Chemical control of potato 49 

brown rot with currently available crop protectants is not effective (Lopez and Biosca, 2004). 50 

Development of more effective chemical control methods is not encouraged due to the general 51 

awareness about negative impacts of synthetic crop protectants on human health and the 52 

environment; this has led to the phasing out of an increasing number of crop protectants. 53 

Therefore, there is a clear need to develop alternative practical, safe and effective management 54 

strategies that can shorten the time that no host plants can be grown. Plant extracts of many 55 

higher plants have been reported to exhibit antibacterial and antifungal properties under 56 

laboratory trails (Okigbo and Ogbonnaya, 2006; Shariff et al., 2006). Plant metabolites and 57 

plant-based pesticides appear to be one of the better alternatives as they are known to have 58 

minimal environmental impact and danger to consumers in contrast to the synthetic pesticides 59 

(Varma and Dubey, 1999). Nanotechnology has been used on widespread in plant pathogens 60 

and the application of nanoparticles become important in the management of plant diseases 61 

(Sastry et al., 2010). Biosynthesized of silver nanoparticles using plant extracts are an important 62 

contrast chemical and biosynthetic using platinum, silver and gold in the synthized of 63 

nanoparticles (Patil and Hooli, 2013). Therefore, the present study aims to synthesize silver 64 

nanoparticles by a green biological route, using an extract derived from Physalis peruviana 65 

(leaves, red and green fruits), Solanum nigrum (fruit) and Moringa oliefera (leaves). 66 

Characterization of the synthesized nanoparticles performed using scanning electron microscope 67 

(SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform 68 

infrared spectroscopy (FT-IR) analysis. Besides, their antimicrobial activity against 69 

representatives of plant pathogenic bacteria (Pectobacterium carotovra and Ralstonia 70 

solaniserum) and fungus (Fusarium oxysporium) was investigated.  71 

 72 

 73 

 74 
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2. Materials and methods 75 

2.1. Cultures and growth conditions 76 

The potato plants were grown at two localities in Abo-Homous and Borg-Elarb, El-Behera 77 

and Alexandria Governorates, respectively, Egypt during the growing season 2016. The two 78 

bacteria were isolated from infected potato tubers and purified on Luria Bertani medium (LB) 79 

(Maniatis et al. 1982), and incubated for 24 hours at 30ºC. In addition, the fungi was grown on 80 

Potato dextrose agar (PDA) and Kelman's TZC media (Kelman, 1954), then incubated at 28ºC 81 

for 7 days. The microbes (bacteria and fungi) were identified using different methods including 82 

microscopically extension and molecular identification. 83 

2.2. Pathogenicity test   84 

 According to (Zhang et al., 2014) with some modification, healthy potato tubers selected 85 

and washed carefully in water. Then tubers dipped in ethanol 70% for 5 min and washed in 86 

distilled water. Sterilized tuber was inoculated by syringe in plates containing a piece of sterile 87 

cotton saturated with water. The suspension concentration of bacteria and fungi were 108 and 106 88 

CFU/mL, respectively. Control tubers were inoculated by distilled water and incubated at the 89 

same conditions. 90 

2.3. Preparation of the plant extracts 91 

Three medicinal plants, P. peruviana (leaves, red and green fruits), S. nigrum (fruit) and 92 

M. oliefera (leaves) were selected from Abo-Homous and Borg-Elarb, El-Behera and Alexandria 93 

Governorates, respectively, Egypt. Fresh and healthy leaves and fruits were collected locally and 94 

rinsed thoroughly first with tap water followed by distilled water to remove all the dust and 95 

unwanted visible particles, cut into small pieces and dried at room temperature. About 10 g of 96 

these finely incised leaves of each plant type were weighed separately, 100 mL distilled water 97 

was added and boiled for about 20 min. The extracts were then filtered thrice to get clear 98 

solutions, which were then, refrigerated (4°C) for further experiments (Banerjee et al., 2014).  99 

2.4. Green synthesis of silver nanoparticles formulations 100 

 Plant extract was added to aqueous solution (10 mM) of silver nitrate (AgNO3) in dark flask 101 

with shaking at 250 rpm and the changes in the color was observed. The reduction of Ag solution 102 

was subjected to UV- Visible spectrophotometer at 540 nm (Beckman, model Du 540), and the 103 

reaction stopped when the value of optical density was decreased. The solution was centrifuged 104 

at 12000 rpm for 30 min, the supernatant was discard and the pellet washed 3 times by sterile 105 

water. The pellet was dried at 50ºC and then dissolved in sterile water (Banerjee et al., 2014).  106 

2.5. Characterization of silver nanoparticles formulations 107 
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 2.5.1. Scanning electron microscopy (SEM) 108 

Scanning electron microscopy (SEM) is a method for high-resolution imaging of surfaces. 109 

SEM analysis was done by using a JEOL JSM-5410 (Japan) electron microscope with a W-110 

source and operating at 80 kV. Sample was prepared on a glass slide (1 × 1 cm) after washing it 111 

with ethanol. A tiny drop of nanoparticles was spreaded evenly over glass slide and allowed to 112 

air dry. In order to make it conductive, gold coating with Jeol Quick Auto Coater was performed 113 

(JFC-1500). The NPs were then subjected to SEM analysis under ambient conditions.  114 

2.5.2. Transmission electron microscopy (TEM) 115 

 Morphology of the nanoparticles usually determined by transmission electron microscopy 116 

(TEM). A combination of bright-field imaging at increasing magnification and of diffraction 117 

modes use to reveal the form and size of the nanoparticles. To perform the TEM observations, 118 

the nanoparticles formulation dilute with water (1/100). A drop of the diluted nanoparticles 119 

directly deposited on the film grid and observed after dry. 120 

2.5.3. Fourier transform infrared spectroscopy (FT-IR)  121 

 FTIR spectra of nanoparticles were taken with potassium bromide pellets on a Thermo 122 

Nicolet AVATAR 300 FTIR spectrometer in the range 400-4000 Cm-1. 123 

2.5.4. X-ray diffraction analysis (XRD)  124 

 X-ray powder diffraction patterns of nanoparticles were obtained by a D/max-rA 125 

diffractometer. The X-ray source was CuK radiation (40 kV, 80 mA). Samples were scanned 126 

at a scanning rate of 4°/min. 127 

2.6. Assessment of antimicrobial assay 128 

2.6.1. Antibacterial activity of nanoparticles formulations  129 

The antibacterial activity of the nanoparticles was evaluated against P. carotovra and R. 130 

solaniserum by the agar diffusion method with LB agar media. A 20 mL of LB agar media was 131 

poured into sterilized petri dishes and the plates were leaved for solidification then bacterial 132 

suspension of the two tested bacteria was streaked. The paper discs of 6 mm size were saturated 133 

with 20 µL of silver nanoparticles solutions (100, 200, 400 and 600 mg/L) or Doxycycline (30 134 

µg) as standard antibacterial agent and plated on the surface of each plates at equivalent distance 135 

with control. Bacteria was stand by 30 min, then incubated at 30º C for 24 h and the formed 136 

inhibition zone was measured and three replicates were used (Abbassy et al., 2016). 137 

2.6.2. Antifungal activity of nanoparticles formulations 138 

The antifungal activity was tested using mycelia radial growth technique (Badawy et al., 139 

2014). The compounds were dissolved and serial concentrations ranged from 1000 to 3000 mg/L 140 

were tested. Standard fungicide, gold plus was used at 0.25, 0.5 and 1.0 fold of field application 141 

(200 g/100 L). The aliquots of the stock solutions were added to the PDA medium, and then 142 

transferred to Petri dishes. After solidification, the mixtures were inoculated with a 5 mm in 143 
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diameter mycelium fungi at the center of Petri dishes and these were incubated in the dark at 27 144 

± 2ᵒC. Fungal growth was measured when the control had grown to the edge of the plate. The 145 

inhibition of fungal growth was calculated as the percentage of inhibition of radial growth 146 

compared to the control. The effective concentration that inhibits 50% of mycelial growth (EC50) 147 

for each compound was estimated by probit analysis (Finney 1971) using SPSS 21.0 software.   148 

2.7. Molecular identification of obtained isolates using specific PCR, sequencing and 149 

phylogenetic analysis 150 

DNA was isolated from the two bacterial isolates and the fungus isolate using QIAgene 151 

DNA extraction kit according to the manufacture procedures (QIAgene, Germany). PCR 152 

amplification for the bacteria was performed using the 16S rRNA primers (forward; 153 

AGAGTTTGATCCTGGCTCAG and reverse; AAGGAGGTGATGCAGCC) according to 154 

(weisburg et al., 1991). On the other hand, the fungus DNA was subjected to PCR amplification 155 

using ITS specific primers (ITS1; TCCGTAGGTGAACCTGCGG and ITS4; 156 

TCCTCCGCTTATTGATATG) according to (White et al., 1990). The 25 μL PCR reaction 157 

components were; 12.5 μL master mix (Applied Biotechnology, Egypt), 1 μL DNA (30       ng), 158 

1 μL for each primer (10 p mol ⁄ μL) and the volume completed up to 25 μL with sterile H2O. 159 

The PCR program was applied as follow; initial denaturation at 95°C for 2 min; 34 cycles of 160 

94°C for 1 min; annealing at 55°C for 1 min; extension at 72°C for 1 min and a final extension 161 

step at 72°C for 5 min; A 5 μL of PCR products were separated on 2% (w/v) agarose gel 162 

electrophoresis in 0.5x TBE buffer. The molecular weight of band was estimated using DNA 163 

marker. Finally, the gel was photographed using gel documentation system. PCR products were 164 

purified using PCR clean up column kit (Maxim biotech INC, USA). The purified PCR products 165 

were subjected to DNA sequencing using the forward primer of 16S rRNA and ITS (Sigma 166 

company, Korea). The DNA nucleotide sequences were alignment using BLASTn 167 

(http://www.ncbi.nlm.gov/BLAST) and then the clean sequences was submitted to Gene Bank.  168 

Phytogenic tree was constructed using Mega 4 program, to examine the origin of the obtained 169 

microbial strains (Tamura et al., 2007).  170 

2.8. Statistical analysis 171 

Statistical analysis was performed using SPSS 21.0 software (Statistical Package for Social 172 

Sciences, USA). All experiments were repeated at least 3 times. The data were expressed as the 173 

mean ± standard error (SE). The log dose-response curves allowed determination of the EC50 174 

values for the fungal bioassay according to the probit analysis (Finney 1971). The 95% 175 

confidence limits for the range of EC50 values were determined by the least-square regression 176 

analysis of the relative growth rate (% control) against the logarithm of the compound 177 

concentration. 178 

3. Results and Discussion 179 

3.1. Pathogenicity test 180 
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 218 

Fig. 3: Phylogenetic tree of 16s RNA and ITS genes: P. carotovra (A); R. solanacearum (B) and 219 

F.  oxysporium (C). Based on the DNA nucleotide sequencing and comparing with the other 220 

species listed in the Gene Bank. 221 

3.3. Green synthesis of silver nanoparticles using plant extracts  222 

The synthesized nanoparticles using the five different aqueous plant extracts; M. oliefera 223 

(leaves) S. nigrum (fruits) and P. peruviana (leaves, red and green fruits) were obtained after 224 

incubation period lasts for 24h. It was observed that the solution color changed from yellow to 225 

dark brown within the first 10 hrs. Silver nanoparticles exhibit yellowish brown color in aqueous 226 

solution due to excitation of surface plasmon vibrations in silver nanoparticles. Thus, plant 227 

extracts act as reducing agents as well as capping agents. 228 

The papaya fruit extract was mixed in the aqueous solution of the silver ion complex; it 229 

started to change the color from watery to yellowish brown due to reduction of silver ion, which 230 

indicated formation of silver nanoparticles (Jain et al., 2009). UV-Vis spectroscopy could be 231 

used to examine size- and shape-controlled nanoparticles in aqueous suspensions. Five plant leaf 232 

extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their 233 

extracellular synthesis of silver nanoparticles (Song and Kim, 2009). Stable silver nanoparticles 234 

were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing 235 

agent of Ag+ to Ag0. Magnolia leaf broth was the best reducing agent in terms of synthesis rate 236 
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and conversion to silver nanoparticles. The average particle size ranged from 15 to 500 nm. 237 

Silver nanoparticles were rapidly synthesized using leaf extract of Acalypha indica and the 238 

formation of nanoparticles was observed within 30 min with the size of 20–30 nm (Krishnaraj 239 

et al., 2010). Ali et al., (2011) showed that the leaf extract of menthol is very good bioreductant 240 

for the synthesis of silver nanoparticles and synthesized nanoparticles were found to be spherical 241 

in shape with 90 nm. 242 

3.4. Characterization of silver nanoparticles formulations 243 

The obtained silver nanoparticles was subjected to different characterization methods; SEM, 244 

TEM, XRD and FT-IR. From the SEM and TEM micrograph of AgNPs, different extracts 245 

produce different size and different crystals, which occurs different effective of the activity of 246 

nanoparticles on organisms (Figs. 4A and 4B). FT-IR results revealed that the obtained particles 247 

are silver nanoparticles when compared with the standard nanosilver profile (Fig. 5A). It was 248 

noticed that extract which produced silver nanoparticles in the rage of 12-33 nm, and detected 249 

the function group which coated on the surface of particles by X-RD and FT-IR.  250 

The biosynthesised silver nanoparticles by using papaya fruit extract was confirmed by XRD 251 

and SEM (Jain et al., 2009). The characteristic peaks observed in the XRD image showed in 252 

(Fig. 5B) three intense peaks in the whole spectrum of 2θ value ranging from 10 to 80. The XRD 253 

pattern average size of the particles synthesized was 15 nm with size range 10 to 50 nm with 254 

cubic and hexagonal shape. The SEM image showing the high-density silver nanoparticles 255 

synthesized by the papaya extract further confirmed the development of silver nanostructures. 256 

FT-IR  analysis was used for the characterization of the extract and the resulting 257 

nanoparticles (Bar et al., 2009). The 1226 cm-1 band arises most probably from the C–O group 258 

of polyols such as hydroxyflavones and catechins. The total disappearance of this band after the 259 

bioreduction may be due to the fact that the polyols are mainly responsible for the reduction of 260 

Ag ions, whereby they themselves get oxidized to unsaturated carbonyl groups leading to a broad 261 

peak at 1650 cm-1 (for reduction of Ag) (Jain et al., 2009). 262 

 263 
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activity of the silver nanoparticles formulations increased with increase in surface-to-volume 286 

ratio, due to the decrease in size of nanoparticles.  287 

Antibacterial effects of Ag nanoparticles obeyed a dual action mechanism of antibacterial 288 

activity, i.e., the bactericidal effect of Ag+ and membrane-disrupting effect of the polymer 289 

subunits. The antibacterial activities of Ag nanoparticles, Ag+ ions were blocked by 290 

thiolcontaining agents. Silver was also known to cause pits in bacterial cell walls, leading to an 291 

increased cell-membrane permeability and cell death (Sambhy et al., 2006). The antibacterial 292 

activity of synthesized silver nanoparticles using leaf extract of Acalypha indica showed 293 

effective inhibitory activity against water borne pathogens, Escherichia coli and Vibrio cholera 294 

(Krishnaraj et al., 2010). Silver nanoparticles 10 g/ml were recorded as the minimal inhibitory 295 

concentration (MIC) against E. coli and V. cholerae. Alteration in membrane permeability and 296 

respiration of the silver nanoparticle treated bacterial cells were evident from the activity of 297 

silver nanoparticles.  298 

Table 1: The in vitro antibacterial activity of biosynthesized silver nanoparticles against R. 299 

solanacearum and P. carotovra by the agar diffusion method 300 

Formulations 
Conc. 

(mg ⁄L) 
Inhibition (%) 

R. solanacearum P. carotovra 

N1 

100 20.95  ± 1.39 23.70 ± 0.64 
200 21.48  ± 0.64 24.81 ± 1.70 
400 21.48  ± 2.24 27.04 ± 1.70 
600 22.22  ± 1.46 29.26 ± 0.64 

N2 

100 20.56 ± 1.11 21.07 ± 1.11 
200 23.04 ± 1.79 23.37 ± 1.89 
400 23.14 ± 2.62 25.9   ± 2.79 
600 24.63  ± 2.50 26.26 ± 1.45 

N3 

100 22.04 ± 0.32 23.70 ± 1.69 
200 22.96 ± 1.69 24.07 ± 1.89 
400 23.15 ± 1.15 25.00 ± 0.56 
600 23.26 ± 1.67 25.22 ± 0.91 

N4 

100 20.74 ± 2.56 16.85 ± 6.62 
200 21.85 ± 2.56 22.22 ± 3.33 
400 22.04 ± 4.01 22.59 ±  0.64 
600 25.00 ±1.11 23.89 ± 2.00 

N5 

100 22.41 ± 0.32 21.85 ± 0.84 
200 26.30 ± 2.74 23.15 ± 1.60 
400 26.67 ± 1.11 26.67 ± 1.11 
600 27.04  ± 0.64 28.52 ± 2.31 

Doxycycline 30 12.77 ± 0.40 22.89 ± 0.99 
 301 
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Green P. peruviana (N1); Red P. peruviana (N2); leaves of P. peruviana (N3); S. nigrum (N4) 302 

and M. oliefera (N5). 303 

 304 

 305 

Fig. 6: The in vitro antibacterial activity of silver nanoparticles formulations against P. 306 

carotovra (A) and R. solanacearum (B) by the agar diffusion method with different 307 

concentrations (0, 100, 200, 400 and 600 mg/L, respectively).  Green P. peruviana (N1); Red P. 308 

peruviana (N2); leaves of P. peruviana (N3); S. nigrum (N4) and M. oliefera (N5). 309 

3.6. Antifungal activity of silver nanoparticles synthesized with plant extracts  310 

The in vitro antifungal activity of silver nanoparticles formulations against the plant 311 

pathogenic fungus F. oxysporum is presented in Table 2 and the results are expressed as EC50. 312 

Most of the tested compounds showed inhibitory effect against tested fungus. For the five silver 313 

nanoparticles formulations, N1 formulation exerted significantly potent antifungal activity with 314 

EC50 of 687.03 mg/L against F. oxysporum. Followed by N3 in the descending order with EC50 315 

of 981.61 mg/L. However, N2 formulation was the lowest active (EC50 = 1474.86 mg/L against 316 

tested fungus as showed in Fig. 7. Standard fungicide, Ridomil gold  showed the highest 317 

fungicidal activity (EC50 = 204.02 mg/L). From statistical analysis, there is no significant 318 

difference between standard fungicide and N1 formulation (see Table 2). 319 

Different concentrations of biosynthesized silver nanoparticles were tested to know the 320 

inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, 321 
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Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. 322 

Remarkably, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity 323 

against all the tested pathogens (Krishnaraj et al., 2012). Rajiv et al., (2013) synthesized 324 

different sized zinc oxide nanoparticles and explored the size-dependent antifungal activity 325 

against plant fungal pathogens. Highest zone of inhibition was observed in 25 μg/ml of 326 

27 ± 5 nm size zinc oxide nanoparticles against Aspergillus flavus and Aspergillus niger. 327 

Narayanan and Park, (2014) demonstrated the synthesis of silver nanoparticles using turnip 328 

leaf extract and its interaction with wood-degrading fungal pathogens, Gloeophyllum abietinum, 329 

G. trabeum, Chaetomium globosum, and Phanerochaete sordida. The synthesized silver 330 

nanoparticles showed broad-spectrum antifungal activity against wood-degrading fungi by 331 

inhibiting growth. 332 

Reports on the mechanism of inhibitory action of silver ions on microorganisms have shown 333 

that upon treatment with Ag+, DNA loses its ability to replicate resulting in inactivated 334 

expression of ribosomal subunit proteins, as well as certain other cellular proteins and enzymes 335 

essential to ATP production (Feng et al., 2000; Yamanaka et al., 2005).  It has also been 336 

hypothesized that Ag+ primarily affects the function of membrane-bound enzymes, such as those 337 

in the respiratory chain (McDonnell and Russell, 1999). 338 

 339 

Table 2. The in vitro antifungal activity of biosynthesized silver  nanoparticles against F. 340 

oxysporium by mycelia radial growth technique. 341 

 342 

Formulations 
EC50

a 

(mg/L) 

95% confidence limits Slopeb 

± SE 

Interceptc 

± SE 
(χ2)d 

Lower Upper 

N1 687.03 39.36 687.03 1.588±0.602 -4.419±1.945 0.412 
N2 1474.86 1087.44 1709.49 1.942±0.567 -6.153±1.838 1.829 
N3 981.61 99.52 1321.13 1.404±0.572 -4.200±1.853 0.269 
N4 1319.49 685.56 1588.39 1.629±0.566 -5.08±1.833 0.030 
N5 999.61 257.19 1306.04 1.596±0.576 -4.788±1.866 0.780 
Ridomil gold 204.02 138.44 680.25 0.976±0.305 -2.255±0.618 0.575 
aThe concentration causing 50% mycelial growth inhibition.  343 

bSlope of the concentration-inhibition regression line ± standard error. 344 

cIntercept of the regression line ± standard error. 345 

dChi square value. 346 

Green P. peruviana (N1); Red P. peruviana (N2); leaves of P. peruviana (N3); S. nigrum (N4) 347 

and M. oliefera (N5). 348 

 349 
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 350 
 351 

Fig. 7: The antifungal activity of the silver nanoparticles formulations (from left to right, 0, 352 

1200, 1600, 2000 and 2400 mg/L, respectively) against F. oxysporium. Green P. peruviana (N1); 353 

Red P. peruviana (N2); leaves of P. peruviana (N3); S. nigrum (N4) and M. oliefera (N5); 354 

Ridomil gold (G) 355 

 356 
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