Original Research Article

Lung Cancer: A Chronic Disease Epidemiology; Prevalence Study.

7 Abstract

Chronic lung diseases (CLD) including asthma or chronic obstructive pulmonary disease (COPD) are a 8 9 leading cause of morbidity and mortality worldwide and their occurrence in multiple sclerosis (MS) remains 10 of interest. Increasing awareness of the possible adverse effect of CLD on outcomes in MS, such as disability progression and mortality, has heightened the need to understand the relationship between these 11 chronic conditions. Prevalence of Lung Cancer was discussed in this paper, with intend to; Investigate the 12 13 number of patients and deaths affected with lung cancer, test the effect of sex on lung cancer incidence, test 14 the effect of environment and educational level on lung cancer incidence, examine the trend in lung cancer, 15 and measure the relative risk associated with lung cancer. Secondary data sourced from the records units of five different hospitals was used. Cross tabulation, Chi-square test for independence, Regression Analysis, 16 Correlation Analysis and Odds Ratio were applied on the three year study. From the study, it was found that 17 lung cancer cases are independent on environmental factor, educational level and sex. A strong linear 18 19 relationship exists between Lung Cancer and death from such disease, implying that increase in the number of lung cancer cases has very high positive effect on the occurrence of death (r = 0.783), 61.4% of the 20 variation in death occurrence is explained by lung cancer. The probability of dying from lung cancer is 21 higher in patients 50 years and above than in younger patients (age < 50 yrs). 22

23 Keywords: Lung cancer, chronic disease epidemiology, prevalence study, odds ratio, relative risk.

24

25 1. Introduction

Lung cancer, also known as lung carcinoma,^[1-3] is a malignant lung tumor characterized by uncontrolled cell 26 growth in tissues of the lung. If left untreated, this growth can spread beyond the lung by process of 27 metastasis into nearby tissue or other parts of the body [4-5]. Most cancers that start in the lung, known as 28 29 primary lung cancers, are carcinomas that derive from epithelial cells. The main primary types are small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC). The most common symptoms are 30 coughing (including coughing up blood), weight loss, shortness of breath, and chest pains.^[6] The vast 31 32 majority (85%) of cases of lung cancer are due to long-term exposure to tobacco smoke.^[7] About 10-15% of cases occur in people who have never smoked.^[8] These cases are often caused by a combination of genetic factors^[9] and exposure to radon gas,^[10] asbestos,^[11] or other forms of air pollution,^[12] including second-hand 33 34 smoke.^[11] Lung cancer may be seen on chest radiographs and computed tomography (CT) scans. The diagnosis is confirmed by biopsy ^[12] which is usually performed by bronchoscopy or CT-guidance. 35 36 Treatment and long-term outcomes depend on the type of cancer, the stage (degree of spread), and the 37 person's overall health, measured by performance status. Common treatments include surgery, chemotherapy, and radiotherapy. NSCLC is sometimes treated with surgery, whereas SCLC usually 38 39 responds better to chemotherapy and radiotherapy.^[13] Overall, 16.8% of people in the United States diagnosed with lung cancer survive five years after the diagnosis,^[14] while outcomes on average are worse in 40 41 42 the developing world. Worldwide, lung cancer is the most common cause of cancer-related death in men and women, and was responsible for 1.56 million deaths annually, as of 2012.^[14] Signs and symptoms which 43 may suggest lung cancer include; Respiratory symptoms: coughing, coughing up blood, wheezing, or 44 shortness of breath, Systemic symptoms: weight loss, weakness, fever, or clubbing of the fingernails and 45 46 Symptoms due to the cancer mass pressing on adjacent structures: chest pain, bone pain, superior vena cava obstruction, or difficulty swallowing If the cancer grows in the airways, it may obstruct airflow, causing 47 48 breathing difficulties. The obstruction can lead to accumulation of secretions behind the blockage, and

Comment [L1]: lung cancer Comment [L2]: investigate

Comment [L3]: re-present. You can use (i) respiratory symptoms such as.... (ii) systemic symptoms such as.... and (iii) symptoms due to......

predispose to pneumonia.^[15] Depending on the type of tumor, paraneoplastic phenomena-symptoms not 49 due to the local presence of cancer—may initially attract attention to the disease.^[16] In lung cancer, these 50 51 phenomena may include hypercalcemia, syndrome of inappropriate antidiuretic hormone (SIADH, 52 abnormally concentrated urine and diluted blood), ectopic ACTH production, or Lambert-Eaton myasthenic 53 syndrome (muscle weakness due to autoantibodies). Tumors in the top of the lung, known as Pancoast 54 tumors, may invade the local part of the sympathetic nervous system, leading to Horner's syndrome (dropping of the eyelid and a small pupil on that side), as well as damage to the brachial plexus.^[17] Many of the symptoms of lung cancer (poor appetite, weight loss, fever, fatigue) are not specific.^[18] In many people, 55 56 57 the cancer has already spread beyond the original site by the time they have symptoms and seek medical attention.^[19] Symptoms that suggest the presence of metastatic disease include weight loss, bone pain and neurological symptoms (headaches, fainting, convulsions, or limb weakness).^[20] Common sites of spread 58 59 include the brain, bone, adrenal glands, opposite lung, liver, pericardium, and kidneys.^[20] About 10% of 60 people with lung cancer do not have symptoms at diagnosis; these cancers are incidentally found on routine 61 chest radiography.^[21-22] Therefore in this paper, we intend to; 62

63 i. Investigate the number of patients and deaths affected with lung cancer

- 64 ii. Test the effect of sex on lung cancer incidence
- 65 iii. Test the effect of environment and educational level on lung cancer incidence
- 66 iv. Examine the trend in lung cancer.
- 67 v. Measure the relative risk associated with lung cancer.

68

69 2. Methodology

To achieve the set objectives, data pertaining the subject matter was obtained from the records unit of five different hospitals.

- 72
- 73 2.1 Chi-Square Test for Independence
- 74 This test was applied to investigate the agreement between the observed and expected frequencies;

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})}{e_{ij}}$$

75

- 76 And to test the hypothesis of independence
- 77 H_0 : The Classification is independent
- 78 H_1 : The Classification is dependent 79

80 2.2 Regression Model

82 Here we shall make use of the estimated model given by; 83

 $\hat{y} = a + bx$

85 To determine the relationship between the number of lung cancer patients and their death cases where,

87

89

84

86

 $\hat{b} = \frac{(n\sum xy - \sum x\sum y)}{n\sum x^2 - (\sum x)^2}$

 $\hat{a} = \bar{y} - \hat{b}\bar{x}$

Comment [L4]: Use report tense in third person form and not future tense

e.g Here, the relationship between the number of lung cancer patients and their death cases was determined using estimated model in the equation below: $\hat{y} = a + bx$ Where......

2.3 Correlation Coefficient 'R' and Coefficient Of Determination 'R²'
 91

$$\hat{b} = \frac{(n \sum xy - \sum x \sum y)}{(n \sum x^2 - (\sum x)^2)(n \sum y^2 - (\sum y)^2)}$$

$$R^2 = \frac{SS_Y - SS_E}{SS_{YY}} = 1 - \frac{SS_E}{SS_{YY}} \qquad for \ 0 < R^2 < 1$$

Odds Ratio 2.4 95

Therefore,

96 We employed this ratio to measure the risk of experiencing the outcome under study when the antecedent [____ Comment [L5]: Use third person tenses 97 factor is present.

98 99 Table 1: Odd Ratio

	В	\overline{B}	Total
А	P ₁₁	P ₁₂	P _{1.}
Ā	P ₂₁	P ₂₂	P _{2.}
Total	P.1	P.2	P

100 101

 $O_A = \frac{P_{11}}{P_{12}}$ $O_{\bar{A}} = \frac{P_{21}}{P_{22}}$ $O = \frac{O_A}{O_{\bar{A}}}$ $S.E(0) = \frac{0}{(n)^{1/2}} = \left(\frac{1}{P_{11}} + \frac{1}{P_{12}} + \frac{1}{P_{21}} + \frac{1}{P_{22}}\right)^{1/2}$

102

104

103 Thus, the estimated odds ratio is; $RR = \frac{P(\bar{B}/A)}{P(\bar{B}/A)}$

Data Analysis and Result 105 3.

106 107 Chi-Square Test for Independence of Sex on Lung Cancer Cases. 3.1

108 109 110

Table 2: Data Showing Age and Sex on Lung Cancer

1 00	Se	ex	Total
Age	Male	Female	Total
< 50	26	5	31
≥ 50	22	8	30
Total	48	13	61

111

 H_0 : Lung Cancer cases are independent on Sex H_1 : Lung Cancer cases are dependent on Sex 112

113

114

115 116

Table 3: Age * Sex Cross tabulation

Se	ex	
Male	Female	Total

Comment [L6]: is given by

Age	< 50	Count	26	5	31
		Expected Count	24.4	6.6	31.0
	\geq 50	Count	22	8	30
		Expected Count	23.6	6.4	30.0
Total		Count	48	13	61
		Expected Count	<mark>48.0</mark>	13.0	61.0

119

Table 4: Chi-Square Test

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1-sided)
Pearson Chi-Square	1.010 ^a	1	.315		
Continuity Correction ^b	.479	1	.489		
Likelihood Ratio	1.016	1	.313		
Fisher's Exact Test				.363	.245
Linear-by-Linear Association	.993	1	.319		
N of Valid Cases ^b	61		l		

Comment [L7]: the first cell should not be empty. Check table 2. Age, Count then

actual count and expected count under the column of count

Comment [L8]: the first cell should not be empty. You can write Statistical test

120

From Table 4, we see that " $\chi^2_{cal} = 1.010$ " this χ^2_{cal} value is less than the " $\chi^2_{0.05,1} = 3.841$ " thus, we do not reject the null hypothesis and therefore conclude that lung cancer cases are independent on Gender. 121 122

123 124 Chi-Square Test for Independence Of Environment on Lung Cancer Cases. 3.2

125 126 127

Table 5: Data Showing Age and environment on lung Cancer

1 00	Enviro	onment	Total
Age	Urban	Rural	Total
< 50	22	9	31
\geq 50	17	13	30
Total	39	22	61

128

129 H_0 : Lung Cancer cases are independent on Environmental factor

130 H_1 : Lung Cancer cases are dependent on Environmental factor

- 131
- 132
- 133 134
- 135
- 136
- 137

138

Table 6: Age * Environment Cross tabulation

Enviro	nment	
Urban	Rural	Total

Comment [L9]: Rephrase in third person tenses. gender

Age	< 50	Count	22	9	31
		Expected Count	19.8	11.2	31.0
	<u>≥ 50</u>	Count	17	13	30
		Expected Count	19.2	10.8	<mark>30.0</mark>
Total		Count	39	22	61
		Expected Count	<mark>39.0</mark>	22.0	<mark>61.0</mark>

Table 7: Chi-Square Test

			Asymp. Sig.	Exact Sig.	Exact Sig.	
	Value	$\mathbf{D}\mathbf{f}$	(2-sided)	(2-sided)	(1-sided)	
Pearson Chi-Square	1.352 ^a	1	.245			
Continuity Correction ^b	.803	1	.370			
Likelihood Ratio	1.358	1	.244			
Fisher's Exact Test				.293	.185	
Linear-by-Linear Association	1.330	1	<mark>.249</mark>			
N of Valid Cases ^b	61					

Comment [L10]: Check comment for table 3

From Table 7, we see that " χ^2_{cal} = 1.352", this χ^2_{cal} value is less than the " $\chi^2_{0.05,1}$ = 3.841" thus, we do not reject the null hypothesis and therefore conclude that lung cancer cases are independent on environmental factor. Comment [L12]: rephrase

3.3 Chi-Square Test for Independence of Educational Level on Lung Cancer Cases.

 Table 8: Data Showing Age and Educational Level on Lung Cancer

	1.00	Ed	ucational Le	vel	Total
	Age	Tertiary	Secondary	Primary	Total
\searrow	< 50	12	13	6	31
	\geq 50	5	12	13	30
	Total	17	25	19	61

 H_0 : Lung Cancer cases are independent on Educational Level

 H_1 : Lung Cancer cases are dependent on Educational Level

Table 9: Age * Educational Level Cross tabulation

		Ed	ucational Le	vel	
		Tertiary	Secondary	Primary	Total
Age < 50	Count	12	13	6	31

		Expecte Count	ed	8.6	12.7	9.7	31.0			
	>	50 Count		5	12	13	30			
		Expecte Count	ed	8.4	12.3	<mark>9.3</mark>	30.0			
	Total	Count		17	25	19	61			
		Expecte Count	ed	17.0	25.0	<mark>19.0</mark>	61.0			Comment [L13]: Check comment for table 3
			Table 10:	Chi-Squa	re Test					
				Value	Df	Asymp. Sig. (2- sided)	X			
		Pearson Ch	-	5.48		.064				
		Likelihood		5.63	4 2	.060				
		Linear-by-I		5.39	2 1	.020				
m Table 10,	, we see the	Association N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore	Cases 486", this ;	χ^2_{cal} value	is less the set	$\tan "\chi^2_{0.05,2}$	= 5.991" dent on e	t <mark>hus, we do n</mark> educational leve	ot	
ect the null hy	ypothesis a	N of Valid of the value of the	Cases 486", this ; conclude th 1 Number o	χ^2_{cal} value at lung ca	e is less th ncer cases	$ \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	ndent on e	educational leve	ot el	Comment [L14]: Check comment for table 4
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ and therefore c as on the Tota	Cases 486", this ; conclude th	χ _{cat} value at lung ca of Lung Ca Model Su	e is less the neer cases ancer Cases mmary	han " $\chi^2_{0.05,2}$ as are independent and Death	ndent on e	educational leve	ot el	
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore of s on the Tota Mode	Cases 486", this ; conclude th 1 Number o Table 11:	χ^2_{cal} value at lung ca of Lung Ca Model Su Adjue	e is less the neer cases ancer Cases mmary sted R S	than " $\chi^2_{0.05,2}$ is are independent of the second dependence of th	ndent on e	educational leve	ot el.	
et the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this ; conclude th 1 Number o Table 11: R Squa	χ^2_{cal} value at lung ca of Lung Ca Model Su Model Su re Squ	e is less the second se	than " $\chi^2_{0.05,2}$ are independent of the second contract of the second contract of the Estimate second contract of the second contrac	ndent on e	educational leve	ot el	Comment [L15]: rephrase
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this f conclude th 1 Number o Table 11: R Squa 83 ^a 6	χ^2_{cal} value at lung ca of Lung Ca Model Su Adjue	e is less the second se	than " $\chi^2_{0.05,2}$ is are independent of the second dependence of th	ndent on e	educational leve	ot el	
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this f conclude th 1 Number o Table 11: R Squa 83 ^a 6	χ^2_{cal} value at lung ca of Lung Ca Model Su Model Su re Squ 14	is less the second seco	han " $\chi^2_{0.05,2}$ s are independent es and Death td. Error of the Estimate 968	ident on e	educational leve	ot el	Comment [L15]: rephrase Comment [L16]: 0.783 Make changes in the table
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this f conclude th 1 Number o Table 11: R Squa 83 ^a 6	χ^2_{cal} value at lung ca of Lung Ca Model Su Model Su re Squ 14	e is less the second se	han " $\chi^2_{0.05,2}$ s are independent es and Death td. Error of the Estimate 968	ident on e	educational leve	ot el	Comment [L15]: rephrase Comment [L16]: 0.783 Make changes in the table
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this ; conclude th 1 Number o Table 11: R Squa 83 ^a 6 Table 12 Unstand	χ^2_{cat} value at lung ca of Lung Ca Model Su me Adjue 14 2: Coeffic lardized	is less the second seco	than " $\chi^2_{0.05,2}$ is are independent independent of the Estimate968	ident on e	educational leve	ot el	Comment [L15]: rephrase Comment [L16]: 0.783 Make changes in the table
ct the null hy	ypothesis a ion Analysi	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this ; conclude th 1 Number o Table 11: R Squa 83 ^a 6 Table 12	χ^2_{cat} value at lung ca of Lung Ca Model Su Hodel Su Adjue 14 2: Coeffic lardized icients	is less the second seco	han " $\chi^2_{0.05,2}$ is are independent independent independent independent independent is and Death td. Error of the Estimate <u>968</u> dize	from Su	educational leve	ot e <u>1</u>	Comment [L15]: rephrase Comment [L16]: 0.783 Make changes in the table
ct the null hy	ypothesis a ion Analysi Model	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as son the Tota Mode 1 R 1 .7	Cases 486", this ; conclude th 1 Number o Table 11: R Squa 83 ^a 6 Table 12 Unstanc Coeffi B	χ^2_{cal} value at lung ca of Lung Ca Model Su ure Squ 14 2: Coeffic lardized icients Std. Erro	is less the second seco	$\begin{array}{c c} & x_{0.05,2}^2 \\ \hline s & are & independent \\ \hline s & and & Death \\ \hline td. & Error & of \\ \hline ae & Estimate \\ \hline$	from Su	educational leve	ot el.	Comment [L15]: rephrase Comment [L16]: 0.783 Make changes in the table
ct the null hy	ypothesis a ion Analysi Model 1 (Co	N of Valid at " $\chi^2_{cal} = 5.4$ nd therefore as on the Tota Mode 1 R	Cases 486", this f conclude th 1 Number o Table 11: R Squa 83 ^a 6 Table 12 Unstand Coeffi	χ^2_{cat} value at lung ca of Lung Ca Model Su Hodel Su Adjue 14 2: Coeffic lardized icients	is less the second seco	han " $\chi^2_{0.05,2}$ is are independent independent independent independent independent is and Death td. Error of the Estimate <u>968</u> dize	from Su	educational leve	ot el	Comment [L16]: 0.783 Make changes in the table

Table 11 clearly shows a strong linear relationship exists between Lung Cancer and death from such disease,

implying that increase in the number of lung cancer cases has very high positive effect on the occurrence of death (r = 0.783). Also, 61.4% of the variation in death occurrence is explained by lung cancer cases while

177 38.6% of the variation is due to other factors other than lung cancer. Table 12 shows that a unit increase in

178 lung cancer cases results in an increase in the number of death occurrence (b = 0.362), implying that there

is a direct relationship between the number of lung cancer cases and the number of death occurrence fromthe disease.

181

182 3.5 Calculation of Odds Ratio for Lung Cancer Cases.

1	83	
1	84	

185

186

187

Table 13:	Age *	State of Patient
-----------	-------	------------------

		State of	Patients	Total
Age	e	Death	Alive	Total
Α	< 50	9	22	31
Ā	\geq 50	14	16	30
Г	otal	23	38	61

Table 14: Proportions; Age * State of Patient

188					
189 190			State of	Patients	Total
190	Age	;	Death	Alive	Totai
192	Α	< 50	0.15	0.36	0.51
193 194	Ā	\geq 50	0.23	0.26	0.49
194	Т	otal	0.38	0.62	1

$$P(B/A) = 0.71 P(\bar{B}/A) = 0.55 O_A = 0.42 O_{\bar{A}} = 0.88 O = 0.47 RR = \frac{P(B/A)}{P(\bar{B}/A)} = 0.62$$

197

From the equations above, O_A is 5/12 implying that 5 out of every 12 lung cancer patients aged less than 50 years is expected to die. Similarly, $O_{\overline{A}}$ is 23/26 implying that 23 out of every 26 lung cancer patient aged more than 50 years is expected to die. Equation 5 revealed an odds ratio of 0.41 indicating that the odds of lung cancer patient aged less than 50 years dying is 51% lesser than those aged 50 years and above. Relative **R**isk of lung cancer patient dying is " ${}^{31}/{}_{50} \approx 0.62$ " times higher for patients aged 50 years and above when compared with those aged below 50 years of age.

4. Conclusion and Recommendation

205 206

204

207 Based on the findings so far, we hereby conclude that the prevalence of lung cancer is independent on sex, 208 environment and educational level, this therefore implies that it depends on other factors not considered in 209 the study, this may include; tobacco smoking, genetic factors and exposure to random gas, asbestos or other 210 forms of air pollution. Also, lung cancer claims more life in Older patients (age \geq 50 yrs) than in younger 211 patients (age < 50 yrs). Therefore, the government should try as much as possible to eliminate tobacco 212 smoking and the smoking of cessation. Policy interventions decreasing passive smoking in public areas such 213 as restaurants and workplaces should be put in place. Also, the government to adhere to the World Health 214 Organizations instructions to institute a total ban on tobacco advertising to prevent young people from 215 taking up smoking.

216 217 **Comment [L18]:** Remove. Make your recommendation within the text of the conclusion.

218	
219	
220	
221	_
222	Re

-

222 223	Refe	rences	
224 225 226	1.	Lung Carcinoma: Tumors of the Lungs. Merck Manual Professional Edition, Online edition. Retrieved 15 August 2007. <u>http://www.merckmanuals.com/professional/pulmonary-</u> disorders/tumors-of-the-lungs/lung-carcinoma	
227 228	2.	Falk, S; Williams, C (2010). Chapter 1. Lung Cancer-the facts (3rd ed.). Oxford University Press.	
229 230		pp. 3–4. ISBN 978-0-19-956933-5. https://wikivisually.com/wiki/Lung_cancer	Comment [L19]: Use correct book referencing style. See reference 3, line 248.
231 232 233	3.	Horn, L; Lovly, CM; Johnson, DH (2015). Chapter 107: Neoplasms of the lung. In Kasper, DL;Hauser, SL; Jameson, JL; Fauci, AS; Longo, DL; Loscalzo, J. Harrison's Principles of InternalMedicine(19thed.).McGraw-Hill.ISBN 978-0-07-180216-1.	
234 235 236		https://archive.org/stream/DennisKasperAnthonyFauciStephenHauserDanLongoJ.JamesonJosephLos calzoHarrisonsPri/Dennis%20Kasper,%20Anthony%20Fauci,%20Stephen%20Hauser,%20Dan%20 Longo,%20J.%20Jameson,%20Joseph%20Loscalzo- Harrison's%20Principles%20of%20Internal%20Medicine.%202%20volsMcGraw-	
237 238 239		Hill%20(2015) djvu.txt	Comment [L20]: Remove. Include the country of the publisher and pages
240 241 242 243 244	4.	Thun MJ, Hannan LM, Adams-Campbell LL, et al. (September 2008). Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Medicine 5 (9): e185. doi:10.1371/journal.pmed.0050185.PMC 2531137.PMID 18788891.http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050185PMC 2531137.PMID 18788891.	Comment [L21]: remove
245 246 247	5.	Obubu, M. Nwokolo P.C (2016). Prevalence of Breast Cancer in Delta State, Nigeria. World Journal of Probability and Statistics. Vol. 2, No. 2, Pp 1-9	Comment [L22]: this should be written as , 2(2): 1-9.
248 249 250	<mark>6.</mark>	Osuji G.A., Obubu, M., Obiora-Ilouno H.O (2016). An investigation on the causes of Low birth weight in Delta State, Nigeria. European Journal of Statistics and Probability. Vol. 4, No 1, pp. 1-6	
251 252 253 254	7.	Osuji G.A., Obubu, M., Obiora-Ilouno H.O (2016). Uterine Fibroid on Women's Fertility and Pregnancy Outcome in Delta State, Nigeria. Journal of Natural Sciences Research, Vol. 6, No 2, pp. 27-33.	
255 256 257	8.	Alberg AJ, Samet JM (2010). "Chapter 46". Murray & Nadel's Textbook of Respiratory Medicine (5th ed.). Saunders Elsevier. ISBN 978-1-4160-4710-0. <u>https://www.elsevier.com/books/murray-and-nadels-textbook-of-respiratory-medicine/mason/978-1-4557-0873-4</u>	Comment [L23]: Use correct book referencing
258 259	9.	O'Reilly, KM; Mclaughlin AM; Beckett WS; Sime PJ (March 2007). Asbestos-related lung disease.	style. See reference 3, line 248.
260 261 262		AmericanFamilyPhysician75(5):683–688.PMID 17375514https://www.ncbi.nlm.nih.gov/pubmed/17375514	Comment [L25]: remove
263 264 265 266 267	10.	Carmona, RH (27 June 2006). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. U.S. Department of Health and Human Services. Secondhand smoke exposure causes disease and premature death in children and adults who do not smoke. Retrieved 2014-06-16. <u>https://www.healthypeople.gov/2020/tools-resources/evidence-based- resource/the-health consequences-of-involuntary-exposure-to</u>	Comment [L26]: remove include the pages if it is a document and not webpage if it is document, then remove retrieved date and website
268 269 270 271	11.	Tobacco Smoke and Involuntary Smoking (PDF). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (WHO International Agency for Research on Cancer) 83 . 2004. There is sufficient evidence that involuntary smoking (exposure to secondhand or 'environmental'	

	tobacco smoke) causes lung cancer in humans Involuntary smoking (exposure to secondhand or 'environmental' tobacco smoke) is carcinogenic to humans (Group 1).	'	Comment [L27]: use book referencing style, include the chapel where your reference can be
12.	Lu C, Onn A, Vaporciyan AA, et al. (2010). 78: Cancer of the Lung. Holland-Frei Cancer Medicine (8th ed.). People's Medical Publishing House. ISBN 978-1-60795-014-1.		found Comment [L28]: correct this also
13.	Chapman, S; Robinson G; Stradling J; West S (2009). Chapter 31. Oxford Handbook of Respiratory Medicine (2nd ed.). Oxford University Press. ISBN 978-0-19-954516-2.	'	Comment [L29]: correct this
14.	Surveillance, Epidemiology and End Results Program. National Cancer Institute. Retrieved 15 July 2014.		
15.	World Cancer Report 2014. World Health Organization. 2014. pp. Chapter 1.1. ISBN 9283204298.	`	Comment [L30]: correct this
16.	Honnorat, J; Antoine JC (May 2007). Paraneoplastic neurological syndromes. Orphanet Journal of Rare Diseases (BioMed Central) 2 (1): 22. doi:10.1186/1750-1172-2-22. PMC 1868710. PMID 17480225. http://www.cancereffects.com/Lung-Cancer-(Cancer-of-Lungs)-Symptoms,- Screening,-Rates,-Treatment.html		Comment [L31]: remove
17.	Greene, Frederick L. (2002). AJCC cancer staging manual. Berlin: Springer-Verlag. ISBN 0-387- 95271-3. <u>http://www.springer.com/gp/book/9780387884424</u>		Comment [L33]: correct this
18.	Collins, LG; Haines C; Perkel R; Enck RE (January 2007). Lung cancer: diagnosis and management. American Family Physician (American Academy of Family Physicians) 75 (1): 56–63. PMID 17225705. https://www.ncbi.nlm.nih.gov/pubmed/17225705	'	Comment [L34]: remove
19.	Osuji G.A., Obubu, M., Obiora-Ilouno H.O., Okoro, C.N (2015). Post-Partum Hemorrhage in Delta State, Nigeria; A Logistic Approach. International Journal of Sciences: Basic and Applied Research (IJSBAR). Vol. 24, No 6, pp. 45-53	`	Comment [L36]: remove
20.	Osuji G.A., Obubu, M., Obiora-Ilouno H.O., Nwosu, D.F (2015). Perinatal Mortality and Associated Obstetric Risk Factors in Urban Delta State, Nigeria; Rural-Urban Differences. International Journal of Mathematics and Statistics Studies Vol. 3, No. 5, PP 32-46		
21.	Obubu, M., Okoye Valentine, Omoruyi Frederick, Ngonadi Lilian Oluebube (2017). Infant Mortality; a continuing social problem in Northern Nigeria: Cox Regression Approach. American Journal of Innovative Research and Applied Sciences. 2017; 5(5):1-5		
22.	Maxwell O, Friday AI, Chukwudike NC, et al. A theoretical analysis of the odd generalized exponentiated inverse Lomax distribution. Biom Biostat Int J. 2019; 8(1): 17-22. DOI: 10.15406/bbij.2019.08.00264.		Comment [L37]: year
	\mathcal{O}^{\times}		