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 8 

In this article, the Quadratic rank transmutation map proposed and studied by [15] is used to 9 

construct and study a new distribution called the transmuted Lomax-Exponential distribution 10 

(TLED) as an extension of the Lomax-Exponential distribution recently proposed by [6]. Using 11 

the transmutation map, we defined the probability density function (pdf) and cumulative 12 

distribution function (cdf) of the transmuted Lomax-Exponential distribution. Some properties of 13 

the new distribution such as moments, moment generating function, characteristics function, 14 

quantile function, survival function, hazard function and order statistics are also studied. The 15 

estimation of the distributions’ parameters has been done using the method of maximum likelihood 16 

estimation. The performance of the proposed probability distribution is being tested in comparison 17 

with some other generalizations of Exponential distribution using a real life dataset. The results 18 

obtained show that the TLED performs better than the other probability distributions. 19 

 20 

Keywords: Exponential distribution, Quadratic rank transmutation map, Moments, Reliability 21 

analysis, Maximum likelihood estimation, Transmuted Lomax-Exponential distribution, 22 

parameters, Applications. 23 

 24 

1. INTRODUCTION  25 

An Exponential distribution which can be used in Poisson processes gives a description of the time 26 

between events. The distribution has been applied widely life testing experiments. The distribution 27 

exhibits memoryless property with a constant failure rate which makes the distribution unsuitable 28 

for real life problems and hence creating a vital problem in statistical modeling and applications.  29 

The cumulative distribution function (cdf) and probability density function (pdf) of an exponential 30 

random variable X are respectively given by; 31 

                            
( ) 1 xG x e  

                                                                       (1.1)
 32 

                         
( ) xg x e  

                                                                            (1.2)
 33 

where 0  is the exponential parameter and 0x  is the random variable.  34 

There are several ways of adding one or more parameters to a distribution function which makes 35 

the resulting distribution richer and more flexible for modeling data. Some of the recent studies on 36 

the generalization of exponential distribution include the Lomax-exponential distribution by [6], 37 

the transmuted odd generalized exponential-exponential distribution by [1], the transmuted 38 

exponential distribution by [13], transmuted inverse exponential distribution by [11], the odd 39 
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generalized exponential-exponential distribution by [9] and the Weibull-exponential distribution 40 

by [12]. Of interest to us in this article is the Lomax-exponential distribution (LED) which has 41 

been found to be useful in various fields to model variables whose chances of survival and failure 42 

decreases with time. It was also discovered that the LED is positively skewed and performed better 43 

than some existing distributions like Weibull-exponential and exponential distributions.  44 

According to [3] the cdf and pdf of the Lomax-G family (Lomax-based generator) for any 45 

continuous probability distribution are given respectively as: 46 

               

  ( ) 1 log 1 ( )F x G x
 


   

                                                              (1.3)          

 47 

            

     
1

1

( ) ( ) 1 ( ) log 1 ( ) ,f x g x G x G x
 




                                        (1.4) 48 

where g(x) and G(x) are the pdf and cdf of any continuous distribution to be generalized 49 

respectively and 𝛼>0 and β>0 are the two additional new parameters. 50 

Recently, a new extension of the exponential distribution has been proposed in the literature by 51 

considering the Lomax-G family above where the random variable X is said to have follow the 52 

Exponential distribution with parameter θ. The distribution of X according to [6] is referred to as 53 

Lomax-Exponential distribution. The pdf of the Lomax-Exponential distribution is defined by 54 

                   
( 1)

( ) , 0, , , 0g x x x
      

 
                                              (1.5) 55 

The corresponding cumulative distribution function (cdf) of Lomax-Exponential distribution is 56 

given by 57 

                  ( ) 1 , 0, , , 0G x x x
     


                                                  (1.6) 58 

Where, 0, 0, 0, 0x        ; α and β are the shape parameters and θ is a scale parameter. 59 

The cdf and pdf of the transmuted Lomax-Exponential distribution are obtained using the steps 60 

proposed by [15]. A random variable X is said to have a transmuted distribution function if its pdf 61 

and cdf are respectively given by; 62 

                 )(21)()( xGxgxf                                                                     (1.7) 63 

and  64 

               

2

( ) (1 ) ( ) [ ( )]F x G x G x   
                                                            (1.8) 

65 

where; x > 0, and −1 ≤ 𝜆 ≤ 1 is the transmuted parameter, G(x) is the cdf of any continuous 66 

distribution while f(x) and g(x) are the associated pdf of F(x) and G(x), respectively. 67 

The aim of this paper is to introduce a new continuous distribution called the Transmuted Lomax-68 

Exponential distribution (TLED) from the proposed quadratic rank transmutation map by [15]. The 69 

remaining parts of this paper are presented in sections as follows: We defined the new distribution 70 

and give its plots in section 2. Section 3 derived some properties of the new distribution. Section 71 

4 discusses reliability analysis of the TLED. The estimation of parameters using maximum 72 

likelihood estimation (MLE) is provided in section 5. In section 6, we carry out application of the 73 
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proposed model with others using a real life dataset. Lastly, in section 7, we make some useful 74 

conclusions. 75 

 76 

2.    The Transmuted Lomax-Exponential Distribution (TLED) 77 

Using equation (1.5) and (1.6) in (1.7) and (1.8) and simplifying, we obtain the cdf and pdf of the 78 

transmuted Lomax-Exponential distribution as follows: 79 

                      
     

2

( ) (1 ) 1 1F x x x



       

 
      

      (2.1) 

80 

and 

81 

                    

    ( 1)
( ) 1 2 1f x x x

          
        

  
             (2.2) 

82 

respectively. Where, 0, 0, 0, 0, 1 1x           ; α and β are the shape parameters, θ is a 83 

scale parameter and  is called the transmuted parameter. 84 

The pdf and cdf of the TLED using some parameter values are displayed in figures 2.1 and 2.2 as 85 

follows. 86 

  87 

Figure 2.1: The graph of pdf of the TLED for 3, 2, 1     and different values of  as 88 

displayed on the key in the plot above. 89 
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 91 

Figure 2.2: The graph of cdf of the TLED for 3, 2, 1     and different values of  as shown 92 

in the key on the figure above. 93 

3.    Statistical Properties of the TLED 94 

3.1   The Quantile Function 95 

This function is derived by inverting the cdf of any given continuous probability distribution. It is 96 

used for obtaining some moments like skewness and kurtosis as well as the median and for 97 

generation of random variables from the distribution in question. Hyndman and Fan [4] defined 98 

the quantile function for any distribution in the form Q(u) = 𝐹−1(u)  where Q(u) is the quantile 99 

function of F(x) for  0 < u <1 100 

Taking F(x) to be the cdf of the TLED and inverting it as above will give us the quantile function 101 

as follows:  102 

  

     
2

( ) (1 ) 1 1F x x ux



       

 
      

                 (3.1.1)

 103 

Simplifying equation (3.1.1) above, we obtain: 

104 

   

 

1

2(1 ) (1 ) 41 1
1

2
q

u
Q u X





  


  

                  
                                     (3.1.2) 

105 

3.2   Skewness and Kurtosis 106 

This paper presents the quantile based measures of skewness and kurtosis due to non-existence of 107 

the classical measures in some cases.  108 

The Bowley’s measure of skewness by [7] based on quartiles is given by: 109 
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     
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3 1
4 4
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 
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
                                                           (3.2.1) 110 

 111 

And the [10] kurtosis is on octiles and is given by; 112 

                    

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q
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


                                                 (3.2.2) 113 

3.3     Moments 114 

Let X denote a continuous random variable, the nth moment of X is given by; 115 

                       

  



0

'

)( dxxfE xX
nn

n


                                                                  (3.3.1)

 116 

Taking f(x) to be the pdf of the TLED as given in equation (2.2) and simplifying the integral we 117 

have: 118 

                       

    
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1 2
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     Using integration by substitution, let:

                  122 

            

 1 uu x x

du du
dx

dx



 
 




     

  
   123 

Now, substituting for u, x  and dx above, we have: 124 
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      
'

1 1 1, 1 2 1 2 1, 1

n

n
B n B n

 
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 


  
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    (3.3.2) 

130 

The mean, variance, skewness and kurtosis measures can also be calculated from the nth ordinary 131 

moments as well as the moment generating function and characteristics function using some well-132 

known relationships. 133 

The Mean 

134 

The mean of the TLED can be obtained from the nth moment of the distribution when n=1 as 

135 

follows:                                      

136 

            
'

1
1 1 1,2 2 1 2 1,2B B
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 
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          (3.3.3)

 

137 

Also the second moment of the TLED is obtained from the nth moment of the distribution when 

138 

n=2 as 

139 

     

      
'

22
1 1 1,3 2 1 2 1,3B B
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
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(3.3.4)

     

     

 

140 

The Variance 

141 

The nth central moment or moment about the mean of X, say 𝜇𝑛, can be obtained as 142 

                           
 ' ' '

1 1

0

( 1)
n

n
i i

n i
n

i

n
E X

i
   



 
     

 
                                           (3.3.5) 143 

The variance of X for TLED is obtained from the central moment when n=2, that is, 144 

                               
22( )Var X E X E X                                                                 (3.3.6) 145 

                                

 
2

' '

2 1( )Var X                                                                           (3.3.7) 146 

Where '

1 and '

2 are the mean and second moment of the TLED all obtainable from equation 147 

(3.3.2).  148 

3.2    Moment Generating Function 149 

The moment generating is an important shape characteristic of a distribution and is always in one 150 

function that represents all the moments. In other words, the mgf produces all the moments of the 151 

random variable X by differentiation. 152 

The mgf of a random variable X can be obtained by 153 

                 
 

0

( ) ( )
tx tx

x
t E f x dxe eM



  
                                                              (3.2.1) 

154 

               
 

'

0

( )
!

n

tx

x n
n

t E
n

t
eM 





 
                                                                   (3.2.2) 

155 

where  156 

fhernanb
Line

fhernanb
Line

fhernanb
Callout
3.3.3 and 3.3.4???

fhernanb
Pencil



 

7 
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n

n
B n B n

 
   

 
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  
 157 

is as defined in equation (10) previously. 158 

3.3     Characteristics Function 159 

This is useful and has some properties which give it a genuine role in mathematical statistics. It is 160 

used for generating moments, characterization of distributions and in analysis of linear 161 

combination of independent random variables. 162 

The characteristics function of a random variable X is given by; 163 

                         
       ( ) cos( ) sin( ) cos( ) sin( )itx

x t E e E tx i tx E tx E i tx         (3.3.1) 164 

Simple algebra and power series expansion proves that 165 
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                                 (3.3.2) 166 

Where 𝜇2𝑛
′  and 𝜇2𝑛+1

′ are the moments of X for n=2n and n=2n+1 respectively and can be obtained 167 

from 𝜇𝑛
′   as  168 
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and 170 
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respectively. 172 

 173 

4. Some Reliability Functions 174 

In this section, we present some reliability functions associated with TLED including the survival 175 

and hazard functions. 176 

4.1   The Survival Function 177 

The survival function describes the likelihood that a system or an individual will not fail after a 178 

given time. It tells us about the probability of success or survival of a given product or component. 179 

Mathematically, the survival function is given by: 180 

                               1S x F x                                                                                   (4.1.1) 181 

Taking F(x) to be the cdf of the TLED, substituting and simplifying (4.1.1) above, we get the 182 

survival function of the TLED as: 183 
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(4.1.2)
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Below is a plot of the survival function at chosen parameter values in figure 4.1.1 

185 

  186 

Figure 4.1.1: Plot of the survival function of the TLED for 3, 2, 1     and different values 187 

of as shown on the figure above.  188 

From the figure above, we observed that the probability of survival for any random variable 189 

following a TLED decreases with time, that is, as time or age grows the probability of life 190 

decreases. This implies that the TLED could be used to model random variables whose survival 191 

rate decreases as their age lasts.  192 

4.2    The Hazard Function 193 

Hazard function as the name implies is also called risk function, it gives us the probability that a 194 

component will fail or die for an interval of time. The hazard function is defined mathematically 195 

as; 196 

                           
 

 

 

 1

f x f x
h x

F x S x
 


                                                                  (4.2.1) 197 

Taking f(x) and F(x) to be the pdf and cdf of the proposed Lomax-Exponential distribution given 198 

previously, we obtain the hazard function as:  199 

                               
    

     

( 1)

2

1 2 1

(1 ) 1 1

x x
h x

x x

  



        


       

  



     
  


     

    (4.2.2)

 200 

The following is a plot of the hazard function at chosen parameter values in figure 4.2.1 

201 
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  202 

Figure 4.2.1: Plot of the hazard function of the TLED for 3, 2, 1     and different values 203 

of as shown on the plot above.  204 

Interpretation: Figure 4.2.1 above shows the behavior of hazard function of the TLED and it means 205 

that the probability of failure for any TLED random variable is decreasing  with respect to time 206 

that is, as the time increases, the probability of failure or death decreases.  207 

5. Parameter Estimation via Maximum Likelihood 208 

Let X1, - - -,Xn be a sample of size ‘n’ independently and identically distributed random variables 209 

from the TLED with unknown parameters α, β, θ, and λ defined previously. The pdf of the TLED 210 

is given as: 211 

                                
    ( 1)

( ) 1 2 1f x x x
          

        
  

 212 

The likelihood function is given by; 213 

            ( 1)

1 1

/ , , , 1 2 1
n n

n

i i

i i

L X x x
              

  

 

      
   

         

(5.1)

 

214 

Taking the natural logarithm of the likelihood function, i.e.,  215 

Let,  1 2log , ,.. / , , ,nl L x x x    
, 
such that 216 

      
1 1

log log log 1 log log 1 2 1
n n

i i

i i

l n n n x x
           


 

           
   

(5.2)

 217 

 218 

Differentiating 𝑙 partially with respect to α, β, θ and λ respectively gives; 219 

 220 
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 
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1 2
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                         (5.5) 
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                                                                    (5.6)

 

224 

Equating equations (5.3), (5.4), (5.5) and (5.6) to zero and solving for the solution of the non-linear 225 

system of equations will give us the maximum likelihood estimates of parameters , &    226 

respectively. However, the solution cannot be obtained analytically except numerically with the 227 

aid of suitable statistical software like Python, R, SAS, etc., when data sets are given. 228 

 229 

6    Applications 230 

Here, we have applied and compared the performance of the Transmuted Lomax-exponential 231 

distribution (TLED) to that of Lomax-Exponential distribution (LED), transmuted odd generalized 232 

exponential-exponential distribution (TOGEED), odd generalized exponential-exponential 233 

distribution (OGEED), Weibull-Exponential distribution (WED), Transmuted Exponential 234 

distribution (TED) and the Exponential distribution (ED) using the following dataset. 235 

Data set: This data represents the remission times (in months) of a random sample of 128 bladder 236 

cancer patients. It has previously been used by [5], [1], [14] and [8]. It’s summarized as follows:  237 

Table 6.1: Summary Statistics for the dataset 238 

parameters n Minimum 
1Q  

Median 
3Q  

Mean Maximum Variance Skewness Kurtosis 

Values 128 0.0800 3.348 6.395 11.840 9.366 79.05 110.425 3.3257 19.1537 

 239 

From the descriptive statistics in table 6.1, we observed that the data set is positively skewed with 240 

a very high coefficient of kurtosis and therefore suitable for flexible and skewed distributions.  241 

To compare the distributions listed above, we have used several measures of model fit such as AIC 242 

(Akaike Information Criterion), Cramѐr-Von Mises (W*), Anderson Darling (A*)  Kolmogorov 243 

smirnov (K-S) statistics.  244 

Note that the model with the lowest values of these statistics shall be chosen as the best model to 245 

fit the data. 246 

Table 6.2: The statistics ll, AIC, A*, W* and K-S for the fitted models to the dataset. 247 
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Distributi

ons 

Parameter 

estimates  

ƖƖ=(log-

likelihood 

value) 

AIC A* W* K-S P-Value 

(K-S) 

Ranks 

TLED 𝜽̂=0.4665  

𝜶̂=4.2157   

𝜷̂ =9.7146   

𝝀̂ =-0.8445  

409.6905  827.3809  0.1326  0.0210  0.0448  0.9593  1 

LED 𝜽̂=0.1643  

𝜶̂=6.3108  

𝜷̂ =9.9520   

415.6839  837.3678  0.3392  0.0551  0.0988  0.1639  2 

TOGEED 𝜽̂=0.0182 

𝜶̂=2.7822  

𝝀̂ =0.7591  

416.5186  839.0372  1.0381  0.1747 0.1079  0.1014  3 

TED 𝜽̂=0.1065 

𝝀̂=-0.2944 

415.7532  835.5065  0.8349 0.1404 0.1322 0.0228 4 

OGEED 𝜽̂=0.0346  

𝜶̂ =1.6066 

439.5273 883.0546 3.2153 0.5463 0.2341 1.6e-06  5 

WED 𝜽̂=0.0070  

𝜶̂=5.1855 

𝜷̂=0.7814  

465.8212  937.6424  0.5678 0.0924  0.2435 5.1e-07 6 

ED 𝜽̂=0.1085  414.3576  830.7153 NaN NaN 0.9465  2.2e-16 7 

 248 

It is shown from Table 6.2 above that the Transmuted Lomax-Exponential distribution (TLED) 249 

corresponds to the smallest values of ƖƖ, AIC, A*, W* and K-S  compared to those of the Lomax-250 

Exponential distribution (TLED), Transmuted odd generalized exponential-exponential 251 

distribution (TOGEED), odd generalized exponential-exponential distribution (OGEED), 252 

Weibull-Exponential distribution (WED), Transmuted Exponential distribution (TED) and the 253 

Exponential distribution (ED) and therefore we chose the TLED as the best model the fits the real 254 

life data.  255 

7     Conclusion 256 

In this article, we proposed a new distribution, TLED, derived and study some of its properties 257 

with graphical analysis and discussion on its usefulness and applications. Hence, having 258 

demonstrated earlier in the previous section, we have a conclusion based on our applications of 259 

the model to a real life data that the new distribution (TLED) has a better fit compared to the other 260 

six already existing models and hence a very competitive model for studying real life situations. 261 

 262 
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