1	Response of co-inoculation of Phosphate Solubilizing Bacteria (PSB) and Arbuscular
2	Mycorrhizal (AM) fungi to microbial population of soil and NPKuptake by wheat (Triticum
3	aestivum L.) crop
4	<u>ABSTRACT</u>
5	Aim: To study the response of co-inoculation of Phosphate Solubilizing Bacteria (PSB) and
6	Arbuscular Mycorrhizal (AM) fungi to microbial population of soil and nutrient uptake by wheat
7	crop.
8 9 10 11 12 13 14	Study Design: Theused design was completely randomized design with three replications. Place of study: The pot experiment was conducted during <i>Rabi</i> season of 2017 taking wheat (cv. HD 2967) as test crop in experimental unit of the department of Soil Science and Agricultural Chemistry, Bihar Agricultural College, Sabour, Bhagalpur (Bihar). Methodology: The present study includes eight treatments with three replications. N P K uptake by wheatcrop were measured from each treatment and microbial population of soil were determined from the rhizospheric soils collected from each treatment by using standard protocol. Results: Maximum microbial population <i>viz.</i> , Bacteria, Actinomycetes, Fungi (39.00, 21.33,
16	24.66 CFU \times 10 ⁵ g ⁻¹ oven dry soil) were recorded under treatment T ₄ (T ₁ +PSB @ 20 g kg ⁻¹
L7	seed+AM fungi @ 5.0g pot ⁻¹) for bacteria and actinomycetes and T ₃ (T ₁ +AM fungi@5.0 g pot ⁻¹)
18	¹)for fungi, at flowering stage and similar trend was followed at harvesting stage. The treatment
19	T ₄ significantly increased available nitrogen, phosphorus and potassium in soil as well as also
20	contributed to comparatively better plant growth and higher uptake of N, P and K by grain and
21	shoot. The maximum N, P and K content of wheat was also recorded under treatment T ₄ which
22	was found to be most effective in modifying soil microbial population, microbial community
23	structure and grain yield of wheat crop.
24 25 26	Conclusion: Application of co-inoculation of Phosphorus solubilizing bacteria and arbuscular mycorrhizal fungi enhance the microbial population and N P K uptake from soil by wheat crop.
27	Keywords: AM fungi, microbial population, phosphorus solubilizing bacteria, wheat
28	
29	Introduction
30	Phosphorus is critical element for plant growth and their development, and is a

component of the nucleic acid structure of plants and biomembrane. Consequently, it is

important in cell division and tissue development. Phosphorus is also involved in the energy

31

metabolism of cells and is required for the biosynthesis of primary and secondary metabolites in plants. Therefore, plants have evolved a range of strategies to increase phosphorus uptake and mobility [9], the most common among which are phosphate solubilizing bacteria (PSB) and Arbuscular mycorrhiza (AM) fungi symbiosis.

Most of the applied phosphorus in the soils is not taken up by the crop, but it is retained in insoluble forms or fixed as mineral forms in the farms even as high as 90% or more. Soil P can exist in various inorganic (Pi) and organic forms (Po). Specific determination of Pi can be obtained by fractionation methods. Generally, plants take up P as the primary (H₂PO₄) and secondary orthophosphate (HPO₄) ions. They are easily retained in most soils when added, and in many cases this retention is so high that the element becomes largely unavailable to the plants. The P retained by the soil is generally considered as fixed P, although a part of it can be utilized. The rate of release of P from fixed form to replenish the immediately available soil P is the most important factor in determining the P supplying capacity of the soil because the quantity of P present in soil solution is not sufficient to meet the crop requirements. The release of fixed soil P depends upon the nature of its fixation and the extracting power of the crop or reagent used to determine availability of soil P. The P is generally fixed as Fe-P and AI-P in acidic soils and Ca-P in alkaline soils.

P-solubilization ability of the microorganisms is considered to be one of the most important traits associated with plant phosphorus (P) nutrition. Recently, phosphate solubilizing microorganisms have attracted the attention of agriculturists as soil inoculums to improve the plant growth and yield. Conversion of the insoluble forms of P to the form which is available to plants (ortho-phosphate) is an important characteristics of phosphate-solubilizing bacteria (PSB) and Arbuscular Mycorrhizal Fungi (AMF). Bacteria such asPSB and AM fungi are usually effective on phosphate solubility due to different mechanism such as production and secretion of organic acids and by their co-inoculation they make phosphorus available to plant for different metabolic functions [3]. Release of phosphorus by PSB from insoluble and fixed or adsorbed forms is an important aspect regarding P availability in soils. There are strong evidences that soil bacteria are capable of transforming soil P to the forms available to plant. AM fungi are species of fungi that intimately associate with plant roots forming asymbiotic relationship, with the plant

Comment [s1]: Do not use abbreviations

Comment [s2]: Do not use abbreviations

providing sugars for the fungi and the fungi providing nutrients such as phosphorus, to the plants. Mycorrhizal fungi can absorb, accumulate and transport large quantities of phosphate within their hyphae and release to plant cells in root tissue. Arbuscular mycorrhizal (AM) fungus plant relationships are usually described as mutually beneficial, because fungi supply mineral nutrients, especially phosphorus (P) to their host plants in return for photosynthates. The contribution of AM fungi to P uptake by positively responsive plants can be easily identified by comparison of P uptake in AM plants and non-mycorrhizal (NM) plants. The beneficial effect of arbuscular mycorrhiza on plant growth is mainly attributed to higher P uptake by plants [12].

This is the fact that phosphorus solubilizing bacteria and mycorrhizal fungi increase the availability of phosphorus. There is a great scope to make more P availability in soil by adopting new agronomic practices like use of co-inoculation of PSB and AMF with its appropriate dose, proper combinations and inorganic fertilizer etc. Considering above mentioned facts a pot experiment on response of Co-inoculation of Phosphorus solubilizing bacteria (PSB) and Arbuscular Mycorrhizal (AM) Fungi on phosphorus availability under wheat rhizosphere has been conducted.

Methods and Material

The present study was undertaken in pot to evaluate the response of co-inoculation of Phosphate Solubilizing Bacteria (PSB) and Arbuscular Mycorrhizal (AM) fungi to soil microbial population and availability of phosphorus under wheat rhizosphere during the *Rabi* season of 2017 with a promising var. HD 2967, at the experimental site of department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.

The microbial inoculums viz., PSB- *Burkholderia cepecia* and AM fungi- *Glomus mosseae* were procured from biofertilizer production unit, Bihar Agricultural University, Sabour, Bhagalpur, and Bihar. The soil used for the pot experiment wasUstochrept clayey in texture, having a pH of 7.78 and EC of 0.20ds m⁻¹. The organic carbon content of the soil was 0.47%, and the available nitrogen (N), phosphorus (P) and potassium (K) content was found 150.42, 12.51 and 192.66 kg ha⁻¹, respectively.

The following treatment structure was formulated for the study: T_1 -RDF (120:60:40), T_2 - T_1 +PSB @ 20 g kg⁻¹ of seed, T_3 - T_1 +AM fungi@5.0 g pot⁻¹, T_4 - T_1 +PSB@20 g kg⁻¹ seed+AM

fungi @ 5.0g pot⁻¹, T₅-75% RDF of Phosphorus +PSB@ 20 g kg-¹ seed, T₆-75% RDF of Phosphorus +AM fungi @ 5.0g pot-1, T7-75% RDF of Phosphorus +PSB @ 20g kg-1 of seed+AM fungi@5.0 g pot⁻¹, and T₈-50% RDF of Phosphorus +PSB @ 20g/kg seed+AM fungi @5.0 gPot-1. Earthen pots of 15 cm height and 30 cm diameter were filled with 10 kg of soil. The seed treatment with PSB@ 20 kg⁻¹ seed was done and AM fungi@ 5g Inoculum pot⁻¹ were applied 2cm below the seed at the time of sowing. In each pot, 10 seeds of wheat (var. HD-2967) were planted. Nitrogenous, phosphatic and potassic fertilizers were applied just before the sowing according to the treatments. Using urea, single super phosphate and murate of potash as source of nitrogen, phosphorus and potash, respectively and mixed in the soil uniformly by working with spade. The irrigation was applied as and when required the crops. The plants were thin to maintain eight plants in all pots.

Rhizosphere samples were drawn from the soil adhering to the roots. The 10 g of soil samples were placed in an Erlenmeyer flask containing 90 ml of sterilized distilled water, and shaken for 30 min. Ten-fold series dilutions were prepared, and appropriate dilutions were plated in specific media. For the isolation of bacteria, fungi and actinomycetes, the Plate Count Agar, Czapek-Dox Agar [19] and Kenknight and Munaier's Medium, respectively were used. The numbers of colony forming cells were determined in each plot by serial dilution pour plate method [18]. Phosphorus concentration in straw and grain were determined by employing the vanadomolybdate yellow color method given by [6] and the distribution of P in soil was determined by using a modified version of the [5]. Analysis of variance (ANOVA) was performed as described by [2] to determine the effects of various treatments. Critical difference (CD) at 5% level of probability and P values was used to examine differences among treatment means.

Result and Discussion

Effect on Bacterial population

It is evident from presented data that the microbial population resulted highest in the flowering stage of wheatplant growth. This might be due to accumulation of various root exudates and which in turn, established a strong and well defined root-microbe interaction [16]. The inoculation with treatment T_4 (T_1+PSB @20 gkg⁻¹ seed + AM fungi @ 5.0gpot⁻¹) having significantly more bacterial population, when compared with applied treatments. It is clearly

shown that all applied treatments have given maximum bacterial count at flowering stage when compared with harvesting stage .The application of treatment T₄(T₁+PSB@20 gkg⁻¹ seed+AM fungi @ 5.0gpot⁻¹) also produced significantly higher bacterial count by 22.23%, 4.28%, 9.41%, than application of T₁(RDF 120:60:40),T₂(T₁+PSB@20gkg⁻¹seed), T₃(T₁+AMfungi@5.0g pot⁻¹) respectively. The similar trends were observed at harvesting stage. At harvesting stage application of treatment T₆(75% RDF of P +AM fungi @ 5.0gpot⁻¹) and treatment T₇(75% RDF of P + PSB @ 20g kg⁻¹seed+AMfungi@5.0g pot⁻¹) given significantly higher colonization over all the applied treatments. Similar trend followed at harvesting stage. It might be due to the AM fungi are probably the most abundant fungi in agricultural soil accounting for somewhere between 5 and 50% of biomass of soil microbes live on carbohydrates obtained from the root cells. They alter root exudation considerably [8] and are therefore expected to influence rhizosphere populations as well [4]. Numerous studies have shown conclusively that AM is having synergistic interaction with other beneficial soil microorganism such as N fixers and P solubilizers. AM fungi affect the composition of bacterial communities either directly by changing host plant physiology or indirectly by changing the pattern of root exudation. The number of both rhizospheric bacteria and actinomycetes enhanced when plant formed mycorrhizae, along with the inoculation of PSB [15]. There may be two pathways for AM fungi to change microbe community structure, the first one is that the AM fungal hyphae secretion directly impacts microbe community structures; the another one is that both AM fungi in roots and on the roots alter plant physiological and biochemical processes, then directly or indirectly change the plant root secretion, thus alter those structures [20].

Effect on actinomycetes population

123

124

125

126 127

128

129

130

131

132

133

134

135

136 137

138

139

140

141 142

143

144

145 146

147

148

149

150 151

152

153

Same trend of enhancement of actinomycetes count has been resulted under the experimentation as compared as obtained incase of bacteria. The growth pattern was resulted synonymous to bacterial counterpart. The highest individual treatment effect was observed under the treatment $T_4(T_1+PSB@20\ g\ kg^{-1}\ seed+AM\ fungi\ @\ 5.0gpot^{-1})$ in flowering stage, produced maximum population of actinomycetes (21.33 CFU×10⁶ g⁻¹ soil). The treatmentwas significantly affected actinomycetes population in all the applied treatments except treatment T_2 (T_1+PSB @ 20g/kg of seed). Similar trends were followed at harvesting stage. The similar results were obtained by [11] who conducted a field experiment and found that the maximum bacterial population (71.66 CFU × 105 g⁻¹ soil and 40.00 CFU × 105 g⁻¹ soil), fungi population (27.33

CFU × 104 g⁻¹ soil and 22.66 CFU × 104 g⁻¹ soil) and actinomycetes population (57.66 CFU × 105 g⁻¹ soil and 46.33 CFU × 105 g⁻¹ soil) are observed in the treatment T_5 {(75 % N (FYM) basal + 25 % N (V/C) at 25 DAT + *Azospirillum*@ 5 kg ha⁻¹ + PSB @ 5 kg ha⁻¹ + KSB @ 5 kg ha⁻¹)} at both the panicle and harvesting stage in scented rice.

Effect on fungal population

It is depicted from the data that the fungal count resulted highest in the flowering stage of growth as compared to harvesting stage. The application of treatment $T_3(T_1+AMfungi\@ 5.0\ g$ pot⁻¹) given maximum population of fungi (24.66 propagules ×10³ g⁻¹ soil). This treatment also given significantly higher fungal population by 17.02%, 40.53%,16.21 %, 44.59%, 12.16%, 16.21%, over application of treatment T_1 (RDF (120:60:40), T_2 (T_1+PSB @ 20gkg⁻¹ seed), T_4 (T_1+PSB @ 20 gkg⁻¹ seed+AM fungi @ 5.0gpot⁻¹), T_5 (75% RDF of P +PSB @ 20gkg⁻¹ seed+AM fungi@5.0 gpot⁻¹) respectively. Similar trend observed at harvesting stage. At harvesting stage the maximum number of fungal population (15.667 propagules×10³ g⁻¹ soil) was recorded with the application of treatment $T_3(T_1+AMfungi\@ 5.0\ g\ pot^{-1})$. It might be due accumulation of various root exudates and which in turn, established a strong and well defined root-microbe interaction [10]also as compared to bacteria and fungi. The similar results were found by the [16].

Response of PSB and AMF species to availability of nutrient in soil after harvestAvailable Nitrogen (kg ha-1).

The maximum available nitrogen (210.24 kg ha⁻¹) was recorded under the application of treatment T_4 (T_1 +PSB @ 20 gkg⁻¹ seed +AM fungi @ 5.0gPot⁻¹). It has been clearly observed that the available nitrogen in soil was significantly higher than all the applied treatments. It might be due to the production of more shoot biomass and root biomass by the application of given treatments and might be due to the structural changes in the microbial community. These changes in the microbial community may alter the nutrients dynamics in the rhizosphere. The similar results were observed by the [1].

Available phosphorus (kg ha⁻¹)

The data regarding available phosphorus in soil revealed that the maximum phosphorus (19.25 kg ha⁻¹) was found by the application of treatment T_4 (T_1 +PSB @ 20 gkg⁻¹ seed+AM fungi @ 5.0gPot⁻¹). The application of treatment T_4 given significantly higher available phosphorus by 31.68%, 15.37%, 19.16%, 10.38% and 5.66% when compared with the

Comment [s3]: Clarify the description

Comment [s4]: Not clear.. is it subheading? or sentence

treatment T₁{ (RDF (120:60:40)}, T₂ (T₁+PSB @ 20gkg⁻¹ of seed), T₃(T₁+AM fungi @ 5.0 gPot⁻¹), T₅(75% RDF of P +PSB @ 20gkg⁻¹ seed), T₆(75% RDF of P +AM fungi @ 5.0 gPot⁻¹), and numerically the least value of available phosphorus was found under the treatment T₁(RDF (120:60:40)}. Recorded data shows that the inoculation with T₇ (75% RDF of P +PSB @ 20 g kg⁻¹ of seed+AM fungi@ 5.0 gPot⁻¹) having also more significantly availability of phosphorus by 28.72%, 11.70%, 15.66%, 6.50% and 22.76% over the treatments T₁, T₂, T₃, T₅ and T₈ respectively.It may be due to the *Glomus mosseae* had pronounced effect for phosphorus acquisition in soil inoculated with PSB have a great result. [13] who conducted an experiment on *Coriander sativum* L. to study the effect of arbuscular mycorrhizal fungus *Glomus mosseae* and phosphorus application on plant growth rate,essential oil content and composition of coriander, and found that the mycorrhizal inoculation significantly increased growth responses and P and N plant nutrients in shoot and root tissue, also after inoculation of arbuscular mycorrhizal fungi in to coriander plant is a feasible alternative to increase growth ,nutrition, essential oil production and reduce the use of P fertilizers required to obtain economic production of coriander under phosphorus deficient soil condition.

5.3.3. Available potassium (kg ha-1)

The maximum available potassium $(210.07 \text{ kg ha}^{-1})$ in soil was recorded bythe application of T_4 (T_1 +PSB@20 gkg⁻¹ seed+AM fungi @ 5.0gPot⁻¹). This treatment also gave significantly higher amount of available potassium in soil by 13.66%, 11.68%, 12.81%, 12.25%, 12.13%, 4.72% over the treatments T_1 {(RDF (120:60:40)}, T_2 (T_1 +PSB@20gkg⁻¹ seed), T_5 (75% RDF of P +PSB @ 20gkg⁻¹ seed), T_6 (75% RDF of P +AM fungi @ 5.0gPot⁻¹), T_7 (75% RDF of P +PSB @ 20gkg⁻¹ of seed+AM fungi@5.0 gPot⁻¹) and T_8 (50% RDF of P+PSB @ 20gkg⁻¹ seed+AM fungi @5.0 gPot⁻¹) while the treatment T_3 (T_1 +AM fungi@5.0 gPot⁻¹) given significantly zero value.It has been shown that in co-inoculated treatment of PSB and AM fungi having more amount of available potassium present with respect to un-inoculated condition like T_1 , T_2 , T_3 etc. Another treatment which is inoculated with T_8 given significantly higher availability of potassium except T_3 and T_4 but another by 9.37%, 7.30%, 8.49% and 7.77% than T_1 , T_2 , T_5 , T_7 respectively. The obtained results are in the agreement of [1], who conducted an investigation to evaluate the response of selected species of mycorrhizae for nutrient acquisition and phosphorus uptake by maize in an alluvial soils of Bihar and found that value of available potassium has increased .

Comment [s5]: Follow same formatting style

Soil organic carbon (%)

The data revealed with percent organic carbon in soil showed that the application of all treatments were non-significant. The data regarding available organic carbon in a soil maximum (0.54%) was recorded by the application of treatment T₂ (T₁+ PSB @ 20g/kg of seed),T₃(T₁+AM fungi @5.0 gPot⁻¹),T₄ (T₁+PSB @20 gkg⁻¹ seed +AM fungi @ 5.0gPot⁻¹), T₅ (75% RDF of P +PSB @ 20 g kg⁻¹ seed), T₆ (75% RDF of P +AM fungi @ 5.0gPot⁻¹), T₇ (75% RDF of P +PSB @ 20gkg⁻¹ of seed+AM fungi@5.0 gPot⁻¹) and T₈(50% RDF of P +PSB @ 20gkg⁻¹ seed+AM fungi @5.0 gPot⁻¹). It might be due to the AM colonization produced more root biomass and plant biomass [1],who conducted an experiment Evaluation of Arbuscular Mycorrhiza Fungi Species for Their Efficiency Towards Nutrient Acquisition in Rhizospheric Soil of Maize and revealed thatthe organiccarbon content exhibited significant positive correlation withcontent. This positive correlation with organic carbon indicated that cationic micronutrients formed complexes with organic matter and consequentially remained in the forms, easily available to the plants.

Effect of microbial inoculants on N P K content and uptake by wheat

The data regarding N P K content and uptake in shoot and grain of wheat clearly depicted that the application of treatment T₄(T₁+PSB@20 gkg⁻¹ seed+AM fungi @ 5.0gPot⁻¹) given maximumN P K content and their uptake over all the applied treatments, which is found to be significantly higher over the applied treatment T₁{(RDF (120:60:40)},T₂(T₁+PSB @ 20gkg⁻¹ seed),T₅ (75% RDF of P +PSB @ 20gkg⁻¹ seed),T₆ (75% RDF of P +AM fungi @ 5.0gPot ¹),T₇(75% RDF of P+PSB @ 20gkg⁻¹ seed+AM fungi@5.0 gPot⁻¹) and T₈(50% RDF of P+PSB @ 20gkg⁻¹ seed+AM fungi @5.0 gPot⁻¹). The data pertaining N content (%) has been clearly observed that the nitrogen content percentage in shoot was maximum (0.149%) with the treatment T₄(T₁+PSB@20 g kg⁻¹seed+AM fungi @ 5.0gpot⁻¹), which is significantly zeroover the applied treatment T₁{(RDF (120:60:40)},T₂ (T₁+PSB@20gkg⁻¹ of seed),T₃(T₁+AM fungi@5.0 gpot⁻¹),T₅,(75% RDF of Phosphorus +PSB @ 20gkg⁻¹ seed),T₆(75% RDF OF Phosphorus +AM fungi @ 5.0gpot⁻¹) and T₇(75% RDF of Phosphorus +PSB @ 20g kg⁻¹ of seed+AM fungi@5.0 g pot⁻¹)The lowest nitrogen content (0.140%) was found under the treatment T₁. While the treatment T₃ given significantly higher value by 2.75%, 2.06%, 2.7% over the applied treatment T₁, T₂ and T_5 respectively while T_4 and T_8 are at par values. In the same way treatment $T_8(50\%\ RDF$ of

Phosphorus +PSB @ 20gkg⁻¹ seed+AM fungi @5.0 gpot⁻¹) have given significantly higher value by 5.40%, 4.05%, 2.02%, 4.72%, 2.70%, over the applied treatment T_1, T_2, T_3, T_5 and T_7 while the treatment T_4 have at par values.

The data pertaining P content (%) has been clearly observed that the phosphorus content percentage was maximum (0.245%) with the treatment $T_4(T_1+PSB@20\ g\ kg^{-1}\ seed+AM\ fungi\ @5.0gpot^{-1})$, which is found to be significantly higher over the applied treatment $T_1\{(RDF\ (120:60:40)\},T_2(T_1+PSB@20gkg^{-1}\ of\ seed)$ $T_3(T_1+AM\ fungi@5.0\ gpot^{-1}\),T_5(75\%\ RDF\ of\ Phosphorus\ +PSB\ @20gkg^{-1}\ seed)$ $T_3(T_1+AM\ fungi@5.0\ gpot^{-1}\),T_7(75\%\ RDF\ of\ Phosphorus\ +PSB\ @20gkg^{-1}\ of\ seed+AM\ fungi@5.0\ gpot^{-1}\)$ and $T_8(50\%\ RDF\ of\ Phosphorus\ +PSB\ @20gkg^{-1}\ seed+AM\ fungi\ @5.0\ gpot^{-1}\)$ by22.85%,1.22%,2.04%,6.93%,4.48%,19.18% respectively.While the treatment T_2 have given significantly higher value by 21.90%,5.71%, 17.95% over the applied treatment T_1,T_5 and T_8 respectively, while the values of treatment T_2,T_3,T_7 are at par.

The data pertaining k content (%) has been clearly observed that the potassium content percentage was maximum (1.16%) with the treatment T₄(T₁+PSB@20 g kg⁻¹ seed+AM fungi @ 5.0gpot⁻¹), which is found to be significantly higher over the applied treatment T_1 {(RDF) (120:60:40)}, T₂(T₁+PSB@20gkg⁻¹ of seed),T₅(75% RDF of Phosphorus +PSB @ 20gkg⁻¹ seed),T₆(75% RDF OF Phosphorus +AM fungi @ 5.0gpot⁻¹),T₇(75% RDF of Phosphorus +PSB @ 20g kg⁻¹ of seed+AM fungi@5.0 g pot⁻¹) and T₈(50% RDF of Phosphorus +PSB @ 20gkg⁻¹seed+AMfungi@5.0 g pot⁻¹) by 13.79%, 9.48%, 11.20%,10.34%, 9.48%, 7.75% respectively while the value of T₄ and T₇ are at par .The treatment T₃ have given significantly higher value than 13.04%,1.904% over the applied treatments T₁ and T₂, while the values of T₃ and T₄ are at par. The data pertaining nitrogen uptake (g pot⁻¹), has been clearly observed that the nitrogen uptake in shoot was maximum (0.0460%) with the treatment T₄(T₁+PSB@20 g kg ¹ seed+AM fungi @ 5.0gpot⁻¹) of table in which the nitrogen uptake was maximum which is significantly higher than applied treatment T1{(RDF (120:60:40)},T₂(T₁+PSB@20gkg⁻¹ of seed),T₃(T₁+AM fungi@5.0 gpot⁻¹) ,T₅(75% RDF of Phosphorus +PSB @ 20gkg⁻¹ seed),T₆(75% RDF Of Phosphorus +AM fungi @ 5.0gpot⁻¹) T₇(75% RDF of Phosphorus +PSB @ 20g kg⁻¹ of seed+AM fungi@5.0 gpot⁻¹) and T₈(50% RDF of Phosphorus +PSB @ 20gkg⁻¹ seed+AM fungi @5.0 gpot⁻¹) by21.73%, 10.86%, 17.39%, 13.47%, 13.26%, 17.39% and 14.78% respectively.

- 277 6.57%, 6.44%,17.10%,13.55% respectively. While the treatment T₃ have given significantly
- higher value 5.26% over the applied treatment T_1 while the value T_2 , T_5 and T_8 are at par.
- 279 Also from the data pertaining P uptake (g pot⁻¹) clearly observed that the phosphorus uptake
- in shoot was maximum (0.0760%) with the treatment T₄(T₁+PSB@20 g kg⁻¹ seed+AM fungi @
- 281 5.0gpot⁻¹) of table in which the phosphorus uptake was maximum which is significantly higher
- 282 than applied treatment $T_1\{(RDF\ (120:60:40)\}, T_2(T_1+PSB@20gkg^{-1}\ of\ seed\), T_3(T_1+AM)\}$
- 283 fungi@5.0 gpot⁻¹) ,T₅(75% RDF of Phosphorus +PSB @ 20gkg⁻¹ seed), T₆(75% RDF of
- 284 Phosphorus +AM fungi @ 5.0gpot⁻¹)by35.52% ,6.57% ,6.44%, 17.10%, 13.55%,
- 17.63%,29.73% respectively. The similar results reported by [15].
- The data pertaining K uptake (g pot⁻¹) has been clearly observed that the potassium
- uptake in shoot was maximum (0.362%) with the application of treatment $T_4(T_1+PSB@20 \text{ g kg}^2)$
- ¹ seed+AM fungi @ 5.0gpot⁻¹) of table in which the potassium uptake was maximum which is
- significantly higher than applied treatment T₁{(RDF (120:60:40)},T₂(T1+PSB@20gkg⁻¹ of seed
- 290), $T_3(T_1+AM \text{ fungi}@5.0 \text{ gpot}^{-1})$, $T_5(75\% \text{ RDF of Phosphorus +PSB} @ 20gkg^{-1} \text{ seed})$, $T_6(75\% \text{ RDF of Phosphorus +PSB})$
- 291 RDF OF Phosphorous +AM fungi @ 5.0g/pot)by27.07% and 14.91% ,6.077%, 21.27%, 19.33%,
- 292 respectively. While the treatment T3 have given significantly higher value by
- 22.35%,9.41%,16.17%, 14.11%, 17.94%, 15% over the applied treatment T₁, T₂, T₅, T₆, T₇ and
- T_8 respectively with the value T_4 is at par. It clearly indicate that the potassium uptake was more
- and more occur in inoculated species with respect to uninoculated treatment .It might be due to
- 296 the co-inoculation of PSB and AMF along with full dose of fertilizers, PSB secrete organic
- 297 acids of lower molecular weight and AM fungi make it more available to plants through its
- 298 hyphae and thus nutrient content and uptake concentration increases. Similar results were
- obtained by [14], who conducted an experiment on Co-inoculation studies of vesicular
- 300 Arbuscular Mycorrhizal fungi (VAM) and Phosphate solubilizing bacteria (PSB) on nutrient
- 301 uptake of Marsdenia volubilis (T. Cooke) and found an excellent improvements in uptake of
- 302 nutrients like N, P, K, Ca, Mg, Fe, Mn and Zn concentrations in Marsdenia volubilis than single
- 303 application.

304

Conclusion:

- 305 The application of microbial inoculants in combination yield was better than separate application
- 306 of inoculation. The results of the study revealed that the maximum microbial population viz.,
- 307 Bacteria, Actinomycetes, Fungi were found co-inoculation of PSB and AM fungi along with

309	pot ⁻¹ along with 100% RDF significantly increased available nitrogen, phosphorus and potassium
310	in soil as well as also contributed to comparatively better plant growth and higher uptake of N, P
311	and K by grain and shoot. This treatment was found to be most effective in modifying soil
312	microbial population, microbial community structure and grain yield of wheat crop.
313	References:
314	1.Beura K, Singh M, Kumar A, Rakshit R, Lal M.Evaluation of Arbuscular Mycorrhiza Fung
315	Species for Their Efficiency Towards Nutrient Acquisition in Rhizospheric Soil of Maize
316	International Journal of Bio-resourceand Stress Management. 2016;7 (1):130-135.
317 318	2.Gome KA, Gomez AA.Statistical Procedures in Agricultural Research, By New York, Chichester, etc.Wiley 2nd edition, paperback.1984:680.
319	3.Gyaneshwar P, Kumar N, Parekh LJ, Poole PS. Role of soil microorganisms in improving
320	nutrition of plants.Plant and Soil.2002; 245: 83-93.
321 322	4.Hayman DS.The physiology of vesicular-arbuscular mycorrhizal symbiosis.Canadian Journal of Botany.1983; 61:944-963.
323 324	5.HedleyM,Stewart J.Method to measure microbial phosphate in soils, Soil Biol. Biochem. 1982 14, 377-385.
325	6. Jackson M L. Soil Chemical Analysis Prentice-Hall Inc. Englewood Cliffs, New Jersey; 1973.
326	7.Marschner H.Mineral nutrition of higher plants. Academic press, San Diego,CA USA.
327	1996;889.
328	8.Marschner P, Crowley DE, Higashi M.Root exudation and physiological status of a root
329	colonizing fluorescent pseudomonas in mycorrhizal and non-mycorrhizal pepper
330	(Capsicum annuum). Plant Soil.1997;189:11-20.
331	9.MarschnerM. Mineral nutrition of higher plants. Plant and Soil.1996; 159: 89-102.
332	10.Rovira AD.Interaction between plant roots and soil microorganisms. Ann. Rev

Microbiol.1965;19: 241-246.

recommended dose of phosphorus. The application of PSB@20 g kg- 1 seed+AM fungi @ 5.0g

308

334	11.San AK, Singh M, Plasad S, Banera KS, Chattopadhayan, Kiran K. Effect of organic
335	fertilizer and microbial inoculants on soil biological properties and yield of scented rice
336	(Oryza sativa L.). Journal of Applied and Natural Science.2018; 10(3): 995 – 1002.
337	12.Sakurai K, Tanaka N, Iwasaki K, Tanak S . Effect of arbuscular mycorrhizal application on the
338	distributionAzcon-Aguilar C, Barea JM Applying mycorrhizal biotechnology to
339	horticulture; 2001.
340	13.Salem M, Al-Amri, Khalid M, Elhindi Ahmed F,Sharaf El-Din.Effect of arbuscular mycorrhiza
341	fungus Glomus mosseae and phosphorus application on plant growth rate, essential oil
342	content and composition of coriander (Coriander sativum L.) Progress in
343	Nutrition.2016;10(4):443-454.
344	14.Sandhya A1, Vijaya T2, Sridevi A1, Narasimha G.Annals of Plant SciencesCo-Inoculation
345	Studies of Vesicular Arbuscular Mycorrhizal Fungi (VAM) and Phosphate Solubilizing
346	Bacteria (PSB) On Nutrient Uptake of Marsdenia volubilis(T. Cooke);2014.
347	15.Singh M, Kumar N, Kumar S, Mehilal M.Effect of co-inoculation of b. japonicum, psb and
348	am fungi on microbial biomass carbon, nutrient uptake and yield of soybean (Glycine
349	max L. merril)Agriways.2015;3(1): 14-18. ISSN: 2321-8614.
350	16.Singh M, Kumar N. Effect of FYM, Vermicompost, Vermiwash and NPK on Growth,
351	Microbial Biomass C and Yield of Soybean. Soybean Res. 2012; 10: 60-66.
352	17.Singh M, Kumar N, Kumar S, Lal M. Effect of Co-Inoculation of B. Japonicum, PSB and
353	AM fungi on microbial biomass carbon, nutrient uptake and yield of soybean (Glycine
354	Max L. Merril)Agriways. 2015;3(1): 14-18.
355	18. Subba RNS. Rhizobium and root nodulation. In: soil microorganisms and plant growth. Oxford
356	IBH New Delhi; 1986.
357	19. Thom C, Raper K.B. A manual of the Aspergilli. Williams and Wilkins Co., Baltimore, U. S.
358	A;1945.
359	20.Zhu HH, Long LK, Yang SZ.Influence of AM fungus on RalstoniaSolanacearumPopulation

and bacterial community structure in rhizospherenMycosystema. 2005;24(11):137-142.

Table 1: Effect of Co-inoculation of PSB and AM fungi on microbial population under wheat rhizoshpere

Treatment	Bacterial count (CFU 10 ⁶ g ⁻¹ soil)			cetes count 0 ⁶ g ⁻¹ soil)	Fungi count (CFU 10 ⁴ g ⁻¹ soil)		
	Flowering stage	Harvesting Stage	Flowering stage	Harvesting Stage	Flowering stage	Harvesting Stage	
T_1	30.33	21.00	12.66	5.66	20.46	10.66	
T ₂	37.33	28.66	20.67	8.67	14.66	8.67	
T ₃	35.33	27.66	18.66	17.67	24.66	15.66	
T ₄	39.00	29.33	21.33	11.67	20.67	9.67	
T_5	30.66	29.00	10.67	7.66	13.67	7.66	
T ₆	31.66	31.00	9.67	8.66	21.66	13.67	
T ₇	32.66	31.00	13.67	11.66	20.66	11.66	
T ₈	29.33	20.00	8.66	6.67	22.66	11.67	
C.D.(P=0.05)	1.671	1.51	1.671	1.008	1.008	1.008	
C.V.	2.876	3.18	2.876	5.896	2.899	5.17	

Note: T₁-RDF (120:60:40), T₂- T₁+PSB @ 20 g kg⁻¹ of seed, T₃-T₁+AM fungi@5.0 g pot⁻¹, T₄- T₁+PSB@20 g kg⁻¹ seed+AM fungi @ 5.0g pot⁻¹, T₅-75% RDF of P +PSB@ 20 g kg⁻¹ seed, T₆-75% RDF of P +AM fungi @ 5.0g pot⁻¹, T₇-75% RDF of P +PSB @ 20g kg⁻¹ of seed+AM

 $fungi@5.0\ g\ pot^{\text{-}1},\ and\ T_{8}\text{-}50\%\ RDF\ of\ P\ +PSB\ @\ 20gkg^{\text{-}1}\ seed+AM\ fungi\ @5.0\ gpot^{\text{-}1}.$

377

378

381

383

384

Table 2: Effect of co-inoculation of PSB and AM fungi on availability of N P K(kg ha-1) and organic carbon in soil after wheat harvest.

		Available N, P K (kg				
Treatment	Nitrogen Phosphorus Potassium					
T_1	188.19	13.15	181.37	0.53		
T_2	199.95	16.29	185.52	0.54		
T_3	198.36	15.56	208.18	0.54		
T_4	210.24	19.25	210.07	0.54		
T ₅	197.24	17.25	183.14	0.54		
T_6	204.18	18.16	184.33	0.54		
T_7	204.52	18.45	184.57	0.54		
T ₈	202.13	14.25	200.14	0.54		
C.D.(P=0.05)	0.422	0.209	0.232	NS		
C.V.	0.12	0.722	0.069	-		

Note: T₁-RDF (120:60:40), T₂- T₁+PSB @ 20 g kg⁻¹ of seed, T₃-T₁+AM fungi@5.0 g pot⁻¹, T₄T₁+PSB@20 g kg⁻¹ seed+AM fungi @ 5.0g pot⁻¹, T₅-75% RDF of P +PSB@ 20 g kg⁻¹ seed, T₆-

75% RDF of P +AM fungi @ 5.0g pot⁻¹, T₇-75% RDF of P +PSB @ 20g kg⁻¹ of seed+AM

382 fungi@ 5.0 g pot^{-1} , and $T_8-50\% \text{ RDF of P +PSB }$ @ $20 \text{gkg}^{-1} \text{ seed+AM fungi }$ @ 5.0 gpot^{-1} .

Table 3: Effect of co-inoculation of PSB and AM fungi on N P K content (%) and N, P, K uptake (g pot⁻¹) by wheat plant

Treatment	N, P, K co	ontent (%) in	N, P, K uptake(g pot-1) by plant			
	N	P	K	N	P	K
T ₁	0.140	0.189	1.00	0.0360	0.0490	0.264
T ₂	0.142	0.242	1.05	0.0410	0.0710	0.308
T ₃	0.145	0.240	1.15	0.0380	0.0711	0.340
T ₄	0.149	0.245	1.16	0.0460	0.0760	0.362
T_5	0.141	0.228	1.03	0.0398	0.0630	0.285
T_6	0.142	0.234	1.04	0.0399	0.0657	0.292
T_7	0.144	0.235	1.05	0.0380	0.0626	0.279
T ₈	0.148	0.198	1.07	0.0392	0.0534	0.289

C.D.(P=0.05)	0.001	0.008	0.008	0.001	0.005	0.004
C.V.	0.402	0.936	0.426	0.395	0.456	0.389

Note: T₁-RDF (120:60:40), T₂- T₁+PSB @ 20 g kg⁻¹ of seed, T₃-T₁+AM fungi@5.0 g pot⁻¹, T₄-T₁+PSB@20 g kg⁻¹ seed+AM fungi @ 5.0g pot⁻¹, T₅-75% RDF of P +PSB@ 20 g kg⁻¹ seed, T₆-75% RDF of P +AM fungi @ 5.0g pot⁻¹, T₇-75% RDF of P +PSB @ 20g kg⁻¹ of seed+AM fungi@5.0 g pot⁻¹, and T₈-50% RDF of P +PSB @ 20gkg⁻¹ seed+AM fungi @5.0 gpot⁻¹.